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Abstract — the function
f:v —>{0,1, 2,3} is named a Strong Roman
dominating function on a graph G whenever for
each vertex u with f(u):O there exists an

adjacent vertex v to u such that f (v)= 3. Also

for each vertex u with f (u )= 1 there should be at
least one adjacent vertex v to u weight2. The
weight of an SRDF is denoted as f(V)

and f(V): ZV f(u) . Strong  Roman
ue

domination number of a graph G which we denoted
by 7SR (G ) is minimum weight of an SRDF on G .
In this paper, we characterize all connected graphs

of order n with Strong Roman domination
numbers 2n—-2 ,2n-3, 2n-4 and 2n-5.

Also we present the properties of connected graph of
order n with Strong Roman domination
number2n —6.

Keywords — Strong Roman domination number,
Strong Roman domination function.

l. INTRODUCTION

For all terminologies and notations related to graph
theory which is not provided here, we follow [2, 3,
7]. In this paper, G is a graph with the set of

vertices V=V (G ) and the set of
edgesE = E ( G ) The order and the size of a graph

G are denoted by |V |: n and| E | =N, respectively.

The set of all vertices which are adjacent to a vertex
v is called open neighbourhood of vertex v and

denoted by N (v ) The closed neighbourhood of the
vertex Vv is defined by N [v]z N (V)U {v} The
degree of a vertex veV (G ) is defined
as deg(v):| N (V )| . The minimum degree and
maximum degree of a graph are denoted by
o= 5(6 ) andA = A(G ) respectively. The set of

vertices AgV(G) is a dominating set if every

vertex v not in A is adjacent to at least one vertex
in A. The minimum cardinality of any dominating

set of G is the domination number of G and is
denoted by;/(G ) A dominating set A in G with

|A|=7/(G) is called ay(G)—set. A set A of

vertices in a graph G is a total dominating set of G

if every vertex of G is adjacent to some vertex in A .
The minimum cardinality of a total dominating set of
G is the total domination number of G and is

denoted by y¢ (G ) A total dominating set of G of

cardinality y¢ (G ) is called a ¢ (G )— set , see [4].
A set is independent (or stable) if no two vertices in
it are adjacent. An independent dominating set of G

is a set that is both dominating and independent
in G . The independent domination number of G ,
denoted byi(G ) and is the minimum size of an
independent dominating set. An independent
dominating set of G of size i(G) is called
an  i—set see [1]. The  function
f :V(G)—){O,l, 2,3} is named an SRDF on
G whenever for each vertex u with weight 0 there
exists an adjacent vertex v such that f(v):3.

Also each vertex with weight 1 has at least an
adjacent wvertex of weight 2 .  Strong Roman
domination number of graph G that denoted by

7SR (G) is minimum weight of an SRDF onG .

The concept of Strong Roman domination is
introduced by K. Selvakumar et al. [5]. One of the
interests in the discussion of domination and its
parameters dependent, determine the graph that is
the number of that parameter is Large. For example,
M. A. Henning’s classification of all graphs with
total domination number [4]. W. C. Shiu et al.
characterize  Triangle-free graphs with large
independent domination number [1].

In this paper, we characterize all connected
graph of order n with

ySR(G)e{2n—1,2n—2,2n—3,2n—4,2n—5}
and also we show that if G is a connected graph of
order n with ygp (G ):Zn — 6, then

2§A(G )§3 add6 < n < 8. Now, we use the
following theorem to prove the rest of theorems.
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Theorem 1[6]: For any cycle and path of
ordern > 3, we have

?’SR(Pn )ZVSR(Cn )

{n if n=0(mod3)

n+1 if nz0(mod3)

Theorem 2: Let G be a connected graph of ordern .
Hence yqn (G ): 2n-1ifandonlyifG = K,.

Proof: Assume that G is a connected graph of
order n . |If ySR(G)=2n—1 , then we show

that G = Ky, . For it is enough to show
that A(G )=1.

On the contrary suppose that A(G )2 2 and visa
vertex with degreeA(G ) In this case, it is clearly
f=(g Vi vov3)
whereVy =N (v),V; =¢, V, =V (G )-N[v]
and Vg = {v } is an SRDF on graph G . Therefore

rep (6)<2|vy | 3|y
—2(n-A-1)+3
=2n-2A+1.
SinceA(G)zZ,we have
ysp(G)<2n-2a+1

the function

=2n-4+1

=2n-3.

Which is a contradiction.
Therefore A(G )s 1. Now, suppose that A(G ) =1.
Since G is a connected graph, then either G = K1
orG =K,. If G=K; thenyep (G )=2>2n-1,
which is a contradiction.
Therefore A(G ):1 impliesG = K.

Conversely, if G= K2 ,

thenyeg (G )=3=2n-1.0

Theorem 3: There is no connected graph G of
order n with ygp (G ): 2n - 2.

Proof: Let G be a connected graph of order n .
it a(G)=1 ., then G=K; and

thusygp (G )=2>2n-2.
Now, suppose thatA(G )=1. In this case, G = K2
andthus;/SR(G)=3>2n—2.

Therefore, we can assume thatA(G )2 2. In this
case, the function h:(VO,Vl,VZ,V3) ,
whereVy =N (v),V; =¢, V, =V (G )-N[v]
andV3:{v}isanSRDFongraphG.Hence
rsr(6)<h(V)
=2|vy | +3|vs
—2(n-A-1)+3
=2n-2A+1.

SinceA(G)22,we have
rer(G)<2n-2a+1

=2n-4+1
=2n-3
=2n-2.

Thus in any case there is no connected graph G
withyep (G )=2n-2.0

In the previous theorem we proved that
there is no connected graph with

yr(G)=2n-2  but if G=2K,
thenyg (G )= 6=2n-2.

In the next theorem we characterize all
disconnected graphs with ygp (G ): 2n - 2.

Theorem 4: Let G be a disconnected graph.
Therefore  ygp (G )= 2n-2 if and only if
G =2K, UKy suchthatr =n—4.

Proof: First, we show that A(G ): 1. On the
contrary, suppose that A(G );é 1 , therefore
A(G)=0ora(G)>2.

IfA(G ): 0, then since G is a disconnected graph,
G=Kp forn>2. In this case, ygp (G)=2n

which is a contradiction. Therefore A(G )9& 0.

A(G )2 2 and

deg(v):A(G) for a verteXVeV(G ) Similar
to the previous theorem, we consider the
function h= (VO ’Vl ,V2 ,V3 ) ,

whereVy =N(v),V; =¢, V, =V(G)-N[v]

Now, suppose that

andV3 = {v } It is clearly h is an SRDF on graph

G and ygr(G)<2n-3 , which is a
contradiction.
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ThereforeA(G )= 1. Hence G is a graph obtained
from copies of K2 and isolated vertices. Since G
is a disconnected graph and A(G )=1, G has at
least three vertices. Assume that G has m induced
sub-graphs K, . For solving the problem it is enough

to show that m=2 . On the contrary, suppose
that m + 2. We consider following two cases:
Casel:m=1.

In this case, G:KZUK2 .
that V(Kz):{x,y} , hence the

f=(vo. v v )
where Vg = iy} Vi=¢
Vo =V(G)-{x.,y} and vy ={x} is
an SRDF on graph G . Therefore

rsr (6)<2|v, | +3]vg]
—2(n-2)+3
=2n-1
>2n-2,

Which is a contradiction.
Case2:m> 2.

In this case, G has at least three induced
sub-graphs KZ . Suppose that {x, y} ,

Suppose

function

{u ,v} and {W, z} are vertex sets of
those three induced sub-graphs. We define
the function g = (VO 'Vl ,V2 ,V3 ) ,

where VO:{y,v,z} , Vi=¢
V2:V(G)—{x,y,u,v,z,w} and
V3:{x,u,w}isan SRDF on graph G .

Therefore
YSR(G)SQ(V)
=2|Vy | +3[vg |
=2(n—6)+9
=2n-3
<2n-3,

which is a contradiction.
Hence m=2 and thus G=2K,UK;
wherer =n —4.
The converse part is obvious. O

Theorem 5: Let G be a connected graph of ordern.
Hence  yqn (G ):Zn -3 if and only
ifG=(Py, P, Cq.Cy)
Proof: First, we show that A(G):Z . On the
contrary, suppose that A(G )> 2 and the vertex
VEV(G) has maximum degree A(G) . We
consider the function f :(VO V.V Vg ) ,
whereVy =N (v),V; =¢, V, =V (G )-N[v]
and V, :{V}> is an SRDF on graph G . It is
obvious that f is an SRDF on graph G . Therefore
rsr(G)<f(V)

AREN

—2(n-A-1)+3

=2n-2A+1

<2n-4+1

=2n-3,
which is a contradiction. ThusA(G )s 2.
If A(G)zl , then G= K, . In this case,
7SR (G ): 3>2n-3 which is a contradiction.
ThenA(G );tl.
If  A(G)=0 , then
ysr (G)=2%2n-3.
Thus A(G ):2. Hence G is a path or a cycle.
Based on Theorem 1 if n EO(mod 3) :
thenygg (G ): n. Therefore
n=ygr(G)=2n-3

= n=3.

G= K1 and

It follows that G = P3 orG :C3. Now, suppose
thatn O(mod 3). In this case, y g (G ): n+1,
then n+1:ySR(G)=2n—3 ,  where we

conclude that n = 4 and thus G = P4 or G = C4.

The converse part is obvious from Theorem
1.o

Theorem 6: Let G be a connected graph of ordern .
Then  yqp (G ): 2n—-4 if and  only
ifG < {Ps, Cs |.

Proof: Suppose that G be a connected graph of
order n with ygp (G ): 2n —4. We consider the

vertex veV (G ) with maximum degree inG . In
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this case, the function f=(VO ,Vl ,V2 ,V3),
whereVy =N (v),V; =¢, V, =V (G )-N[v]
and Vg = {v} is an SRDF on graph G . It is obvious
that f isan SRDF on graph G . Therefore
2n-4=ysr(G)
<f(v)
—2(n-a-1)+3

=2n-2A+1.

From which we can conclude that
2n—-4<2n-2A+1,

-5<-2A,
2A <5,

A<L2.
Based on proof of previous theorem it is easy to
show thatA(G ): 2.Thus G isa path or a cycle.

Ifn=0 ( mod 3) , then based on Theorem 1 we
haveySR(G):n. Thusn:ySR(G)=2n—4,
from which we get n =4 which is a contradiction
withn =0 (mod3).

Hence nséo(mod3) :
Theorem 1, we have 7SR(G):n+1 . Then
n+1=2n-4 and thus n=5. Therefore, G is

In this case, based on

either a path Py oracycleCg.

Conversely, we assume that
Ge {PS ,CS} then based on Theorem 1 we

have ygn (G )=6=2n-4.0

Let F be family of graphs shown in Figure

e
=

Fs Fs

ol

F7

Fe Fo
[—0
g </
Fio Fi1
Fro Fia
SRS
Fia Fis

Figure 1. Family of F.

Theorem 7: Let G be a connected graph of ordern .
Then 7SR (G )= 2n -5 ifandonlyif GeF.
Proof: Suppose that G is a connected graph
with ygp (G ): 2n—5. We consider the vertex
v eV(G ) with degreeA(G )

If A(G ): 0 , then G=K; and thus
7SR (G )= 2 # 2n —5 which is a contradiction.
Now, assume thatA(G ):1. In this case, G = K.

Therefore, yqp (G ): 3#2n-5 which is a
contradiction.

HenceA(G )2 2. IfA(G )= 2, then G is a cycle
or a path.

Also, ifn=0 ( mod 3), then based on Theorem 1
7SR (G ): n
n:ySR(G):Zn—S and thus n =5 which is a

we have Therefore,

contradiction since n = 0 ( mod 3 )
Hence n $O(mod3) :
Theorem 1 we have ygn (G ): n+1 and thus

In this case, based on

n+1=2n-5 then n=6 which is a contradiction
sincen séo(mod 3).

Therefore, A(G )2 3. We define an SRDF function
for graph G as follows:
Let S (VSRVARVARYAS. ,

S e—— e 0
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whereVy =N (v),V; =¢, V, =V (G )~ N[v]
and Vg = {v}.Therefore
2n-5=y5(G)
<f(v)
2(n-a-1)+3
=2n-2A+1.

So, 2n-5<2n-2A+1 which
that—6 < —2A.

Therefore, A(G ) 3.
Hence A(G ) =3
that N (v ) { VY

2},
if v(G)- [ ]=¢ . then the
h:( ( ) {v})isaysR(G)—fuction

and thus 7SR (G )= 3=2n-5. Now, suppose that

implies

Assume

function

there is no edge betweenx, y and z thenG = F -
If there is only one edge between X, y and z then

G= F2 and in case if there is two edges between x,

y and z then, G = F3. If there exists three edges
betweenx, y andz, thenG = F4.

Now, suppose thatV (G )— N [v];t ¢ . We claim
that the set V(G)— N[v] has at most three
elements.

To prove this claim, let V (G )— N [v] has at least
four vertices. We
consider{a ,b,c,d }gV(G )— N [v]

If there exists an edge between both vertices of
V(G)— N[v] like a and b, then the function

f=(Vy Vg Vo Vg) , where
Vg =N(v)U{b} , Vy=¢ ,
V2:V(G)—(N[V]U{a,b}) and

Vg3 = {a \ v} is an SRDF on graph G . Therefore
2n-5=y55(G)
<f(v)
=2|Vy |+ 3]vg
—2(n-a-3)+6
=2n-2A.
Thus —5§—2A(G) and
consequently—ZA(G )s 5. Therefore, A(G )s 2
which is a contradiction sinceA(G )= 3.

Already we have, A(G )2 3.

Hence there is no edge between the vertices
in V(G)—N[v]. In this case, since G is a

connected graph, each vertex of V (G )— N [v] is
adjacent to at least one vertex of N (v) On the
other hand, since V (G )— N [v] has at least four
elements and N (v ) has three elements, there exists
at least one vertex of N (v ) adjacent to at least two
vertices in V(G )— N [v] . Without loss of
generality, suppose that x € N (v) has at least two

neighbourhood vertices inV(G )— N [v] In this
case, we define an SRDF function as follows:
Define S (VSRVARVAR'S ,

where VO:(N(V)UN(X))—{X} V=9,

V, =v(G)-(N[v]un[x]) and

V3 = {x v} is an SRDF on graph G . Therefore
2n-5=y5(G)
<f(v)

= 2|V, | +3|vg]|

:Z(n—A—|N(v)|)+6
sZ(n—A—3)+6
=2n-2A.
Hence 2n —5<2n—2A from which we conclude
that A(G)<2 which is a
sinceA(G)zs.So,V(G)—

three elements.
Now, we consider the following cases:

Case 1: V (G )— N [v ] has exactly one vertex.
We assume thatV (G )— N [v]: {a}. Since
G is connected, a is adjacent to at least one
vertex of N (v) Without loss of generality,

contradiction,

N [v] has at most

suppose that x € N (a )

If a is adjacent to just the wvertex x ,
since A(G )§3, we get X is adjacent to at
most one of the vertices y and z . Now, we

consider the following sub-cases:
Sub-case 1: y isnotadjacenttoz .

In this case, if X is not adjacent to any of the
vertices y andz, thenG = Fg.

Now, suppose that x is adjacent to one of the
vertices y orz . Therefore if y and z are not

neighbourhoods. So G = Fe-
Sub-case 2: y isadjacenttoz.
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In this case, if x is not adjacent to any of the
vertices y and z, thenG =F, . And, if x is
adjacent to exactly one vertex of the set
of{y ) Z },thenG = Fg.

Now, assume that a is adjacent with exactly
two vertices of the set { X,VY,2 } Without loss
of generality, suppose that N (a)= {x : y} .

We consider the following sub-cases:
Sub-case 1: x isnot adjacenttoy .

In this case, if z is adjacent to exactly one
vertex x ory , thenG = Fq . On the other hand,

if z is adjacent to both vertices x and y ,
thenG = FlO'

Sub-case 2: x isadjacenttoy .

In this case, z cannot be adjacent to one of the
vertices x and y . Otherwise, G has a vertex of

degree 4 which is a contradiction
sinceA(G )= 3. Therefore G = Fg.

Now, suppose that a is adjacent with all
verticesx, y andz.

If x is adjacent to the both vertices y and z,
then deg(x):4 which is a contradiction
sinceA(G ): 3. Therefore, x is adjacent to at
most one of vertices y andz.

Same as before we can show that y is adjacent

to at most one of the vertices x and z .
Also, z is adjacent to at most one of the
vertices x and y .

Therefore, there exists at most an edge between
the verticesx, y andz. SoG = F12 . If there

does not exist any edge between vertices X, y
andz, thenG = Fiq-
Case 2: Assume that the set V (G )— N [v]
has two elements.
SetV(G)— N[v]: {a , b}. Earlier we
have shown that a is not adjacent tob .

Now, suppose that x is adjacent to the both the
vertices a and b . In this case, the

function f :(V0 VYo ,V3) :
wherevoz{a,b,y,z},Vl=¢, Vo =¢

and V3 :{x,y} is an SRDF on graph G .
Therefore

2n-5= 7SR (G )

<f(v)

= 2|V, | +3V4

=6.
But since n = 6, there is a contradiction.
Therefore, X is adjacent to at most one of
vertices a andb . Same as before, each vertex
of {y , z} is adjacent to at most one vertex
of { a,b }
On the other hand, since G is connected, a is

adjacent to at least one vertex of N (v )
Without loss of generality, assume that a is
adjacent to x . Also since G is connected and a
is not adjacent tob, the vertex b is adjacent to
one vertex of N(v). Since earlier we have
shown that x is adjacent to at most one of
vertices in {a , b } and the vertex x is adjacent
to the vertexa, we get x cannot be adjacent
tob . Therefore, the vertex b is adjacent to at
least one of two vertices y andz .

Without loss of generality, suppose that b is
adjacent to y is not a neighbourhood ofa. We
consider the following sub-cases:

Sub-case 1: x is adjacenttoy .
In this case, since A(G )=3, we get x and y

are not adjacent toz . As in the previous case,
we know that the vertex z is adjacent to at most
one of the vertices a andb .

Now, if z is not adjacent to any of the vertices

a andb, then G = F13 . Otherwise, suppose
that z is adjacent to exactly one vertex
of{ a,b }

Without loss of generality, suppose that z is
adjacent to the vertex b . We define the
function f = (VO V.V, Vg ) ,

WhereVO:{x,y,z,a} ,V1:¢ , V2:¢
and Vg = {x \ b}. It is obvious that f is an
SRDFongrath,thus;/SR(G)Sf(V):G.

Hence 7SR(G)<2n—5:7 which is a

contradiction. Therefore, z is not adjacent to
any of the vertices a and b as discussed earlier.
Sub-case 2: x is not adjacenttoy .

In this case, if z is adjacent to both vertices x
and y . Since A(G )= 3, the vertex z cannot
be adjacent to any of the vertices a andb . Now,
we define the function f = (VO V1.V, Vg )
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where Vg ={v.a.,b,z} .V =¢ , V,=¢
andVs = {x Y } It is obvious that the function
f is an SRDF on graph G . Thus
yr(G)<f(V)=6 which is a
contradiction,  since  ygp (G )< 2n -5

Therefore, z is not adjacent to both vertices x
andy .

Now, suppose that z is adjacent to exactly one
vertex of x andy .

Without loss of generality, suppose that z is
adjacent to y . In this case, the function

f=(vo.v1.vp. )
whereVo:{v,x,b,z},V1:¢,V2=¢ and
V3:{a,y} is an SRDF on graph G .
Therefore
7sr(G)<f(V)
=6
<2n-5,

which is a contradiction to the assumption.
Therefore, z cannot be adjacent to any of the
vertices x andy .

If z is adjacent to the vertex a , then the
function f= (VO V.V, Vg )
whereV, :{v,x,z,b},Vl =¢,V, =¢ and
V3 = {a , y} is an SRDF on graph G . Hence
rsr(G)< (V)

=6

<2n-5,
which is a contradiction. Therefore, z is not

adjacent to the vertex a.
And same as before we can show that z cannot

be adjacenttob . Hence G = F; 4 .

Case 3: Now, assume
thatV (G )~ N[v]={a,b,c}.

Based on previous theorem, there is no edge
between all vertices of the set {a b, c} and
each vertex of N (v ) is adjacent to at most one
vertex of the set {a b, c} . Since G is
connected and there is no edge between the
vertices of the set {a b, c} , We get each

vertex of the set {a b, c} has a
neighbourhood in N (v )

If there exists a vertex of {a b, c} which is
adjacent to at least two vertices of N (v ) then

there exists a vertex of N(v) which is
adjacent to at least two vertices of the set
{a b, c} which is a contradiction. Therefore,

each vertex of {a b,c } is adjacent to exactly

one vertex of N (v )
Without loss of generality, assume that a is
adjacent to x , b to y and ¢ to z . Now,

sinceA(G ): 3, the vertex x is adjacent to at
most one vertex of{ y,z } Also, y is adjacent
to at most one vertex of {x , Z } and the vertex

z is adjacent to at most one vertex of{ y,Z }
Therefore, there exists at most one edge
between{x, y,z }

Suppose that there exists exactly an edge
between {x, y} . We define the

function f= (VO V1. V5, Vg ) )
WhereVO:{v,y,a,C},V1=¢7sz{b}
and V3 ={x,z} is an SRDF on graph G .
Thus

)/SR(G)Sf(V)

= 2|V |+ 3|V

=8

=2n-5,
which is a contradiction. Thus there is no edge
between the wvertices x , y and z

Hence G = F15 .

The converse part is obvious. O

In the following theorem we investigate the
properties of connected graph G of order n

with yp (G )=2n - 6.

Theorem 8: Let G be a connected graph of order
n with ygn (G ): 2n -6 . Hence the following
results hold:
a) 2<A(G)<3.
b) N (v) has at most two neighborhoods
outside N ( X )
c) The set V(G )— N[v] has at least two

elements and at most four elements.
Proof:
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a)

b)
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Let A(G)>3 and v be a vertex of G

with  degree A(G)

f=(vo. v v vg)

Vg=N(v) . v=¢

V, =V(G)-N[v]and vy ={v}isan

SRDF on graph G . Therefore

2n-6=y45(G)
<f(v)

= 2|V, [+3]vg

Hence the

function

where

=2(n-Aa-1)+3
=2n-2A +1.
SinceA(G)24,
2n-6=y45(G)
<f(v)
=2|V, | +3|vg |
=2n-2A+1
<2n-(2x4)+1
=2n-17,
which is a contradiction. ThusA(G )g 3.
On the other hand, if A(G)=0
orA(G ):1, since G is connected, then
G =K, orG =K, , respectively. But in
each case ySR(G);t 2n -6 which is a
contradiction. ThusA(G )2 2.

Hence 2 < A(G )33.
On the contrary assume that there exists a
vertex X e N(v) such that x has three

neighborhoods a, b and c¢ outside N (v)
In this case, the
function f= (VO V.V, Vg ) ,

WhereVO:N(v)U{a,b,c},Vl:¢,
vV, -v(G)-(N[v]u{a,b,c})
and V3:{x,v} is an SRDF on graph G .

Therefore
2n-6=y55(G)
<f(v)
=2\v2\+3‘v3‘ @)
=2(n-A-4)+6
=2n-2A-2.

c)

http://www.ijmttjournal.org

SinceZSA(G )SS, if A(G )= 2, then
it is obvious that the vertex x is adjacent to
at most one vertex outside N (v ) which is
a contradiction. So, we can suppose
thatA(G ):3. In this case, based on (1)
we have
2n-6=y45(G)
<2n-2A-2
=2n-28,
which is a contradiction. Thus, each vertex
of N (v) has at most two neighborhoods
in outside N (v )
First, we show that the set V (G )— N [v]
has at least two elements. It is enough to
show that the set V (G )— N [v] is neither
empty nor it contains a single element.
LetV(G )— N [v]:¢. Based on (1) we
have2 < A(G )<3.
IfA(G)=2, then G=P, orG=Cy.

But based on Theorem 1 in both cases we
have

VSR (G ): 3
#2N -6,
which is a contradiction.
Therefore, assume thatA(G )= 3. In this
case, the function f where the vertex v

has weight 3 and the other vertices have
weight 0 is an SRDF on graph G .

Hence y g (G ): 3. But, sincen=4, we
get 2n -6 =3 which is a contradiction
withygg (G )=2n-6.

Therefore, the set V (G )— N [v] has at
least two elements.

Now, we show that the set V (G )— N [v]
has at most four elements. On the contrary
suppose that V (G )— N [v] has at least
five  vertices.  Already, we have
that2 < A(G )s 3. Therefore

n-[v(o))
In[vIuv(e)-n[v]))
=[N[v][+|v(c)-n]v]|
2(A+1)+5.

Thus if A(G)=2, then n>8 . And
ifA(G)=3,thenn>9.
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Assume thatA( G )= 2, then G iseither a
path or a cycle.

Ifn so(modS), then yqp (G ): n and
thus 2n — 6 = n which indicate that n =6
which is contradiction withn > 8.
Ifn,=é0(mod3), then j/SR(G)Zn-i-l
and thus 2n—-6=n+1 which implies
that n=7 which is a contradiction
withn > 8.

Now, assume thatA(G )= 3. In this case,
we show that there exists at most an edge
between the vertices V (G )— N [v] . On

the contrary we assume that there exist at
least two edges between the vertices

ofV (G )— N [v] Therefore, at least one

of the following cases occurs:
Case 1: There exists a vertex

aeV(G)—N[v] such that a s
adjacent to two vertices b and c
ofv(G)-N[v].
In this case, the
function f = (VO V.V, Vg ) ,
WhereVO = N(v)U{b,c},V1 =9,

vV, -v(c)-(N[v]u{a,b,c})
and V3:{v,a} is an SRDF on

graph G . Therefore, since A(G ): 3,
we have

2n-6=y¢5(G)
<f(v)
= 2|V, | +3|vg]|
—2(n-A-4)+6
=2n-8,

which is a contradiction.
Case 2: There exist two edges ab and cd

in graph G , such that
{a,b,c,d}gV(G)—N[v].
In this case, the
function f :(VO V. Vo ,V3) ,
whereV = N(V)U {b ,d }'Vl =9,

V,=v(G)-(N[v]u{a.b,c.d})
and V3={v,a,c} is an SRDF on

graph G . Therefore, since A( G ): 3,
we have

http://www.ijmttjournal.org
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2n-6=y¢s(G)
<f(v)
= 2|V, [ +3[vs
=2(n—A—5)+9
=2n-17,

which is a contradiction.  Therefore,
ifA(G )= 3, then there exists at most an edge

between all vertices of V (G )— N [v ]
A(G)=3 and
\ (G )— N [v] has at least five elements.
Hencean.WeputN(v):{x, Y, z}.

If there is no edge between all vertices
of V(G)—N[v] , then since G is a
connected graph, we get each vertex of
\% (G )— N [v] should have adjacent to at
least one vertex in N(v). In this case, the
f=(vo vV v3)
whereVy =V (G )-N(v),V; =4, V, =¢
and V3 =N (v ) is an SRDF on graph G . So

2n-6=y¢5(G)

<f(v)

= 9’
which is a contradiction withn > 8.
Now, suppose that there exists an edge between
all  vertices V(G )— N [v] . We put
ab e E(G ) such
that {a , b}c;V(G )— N[v] . Since G is
connected, there exists at least one of the
vertices a or b is adjacent to a vertex

in N (v )
Without loss of generality, suppose that a is
adjacent to In this case, the

X
function f:(VO,Vl,VZ,Vs) ,
where VO:V(G)—{a,b,X,y,Z} ,
V1=¢,V2= b}andV3:{x,y,z}isan
SRDF on graph G . Therefore
2n-6=ye5(G)
<f(v)

Now,  suppose  that

function

= 2|V, |+ 3|V

=11,
which is a contradiction withn > 9.
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Thus V (G )— N [v] has at most four vertices.
O

Corollary: If G is a connected graph of order n
with yep (G )=2n -6, then6<n<8.

Proof: Assume that veV (G )

and deg (v) ( ) Based on previous

Theorem 2< A(G ) , we

have2 <|V (G )~ N[v][<4.1fA(G)=3, then
n=|v(c)|

=n.

Hence, ifA(G ):B,then6s n<8g.

Now, suppose thatA(G ): 2. Same as before we
can show that G = {Pﬁ P .Cs.Cy } and thus

ifA(G)=2,then6<n<7.
Hence in both cases6 <n<8. o
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