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Abstract: An analysis is carried out to study the flow 

and heat transfer characteristics in the laminar 

boundary layer flow of a second order fluid over a 

linearly stretching sheet with internal heat 

generation or absorption. The governing partial 

differential equations are converted into ordinary 

differential equations by a similarity transformation. 

A numerical method, quasilinearization technique is 

used to study velocity and temperature profiles of the 

fluid. Heat transfer analysis is carried out for two 

types of thermal boundary conditions namely, (i) 

Prescribed Surface temperature (PST) and (ii) 

Prescribed wall Heat Flux (PHF). The effects of 

various parameters on flow and heat transfer are 

presented through graphs and discussed. 
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I. INTRODUCTION 

In many engineering processes, boundary layer 

behaviour occurs for a flow over a moving 

continuous solid surface. Manufacturing processes 

that involve extrusion of a material and heat-treated 

materials that travel between feed and wind-up 

rollers or on conveyer belts are examples that exhibit 

the characteristics of flow over a moving continuous 

surface. Sakiadis [1] initiated the study of these 

applications by considering the boundary layer flow 

over a continuous solid surface moving with 

constant speed. Erickson et al [2] extended this 

problem to the case in which the transverse velocity 

at the moving surface is non zero, with heat and 

mass transfer in the boundary layer being taken into 

account. 

The above investigations have a definite bearing 

on the problem of a polymer sheet extruded 

continuously from a die. It is usually assumed that 

the sheet is inextensible, but situations may arise in 

the polymer industry in which it is necessary to deal 

with a stretching plastic sheet, as noted by Crane [3]. 

Danberg and Fansler [4] investigated the non-similar 

solution for the flow in the boundary layer past a 

wall that is stretched with a velocity proportional to 

the distance along the wall. 

Dutta, Roy and Gupta [5] have analysed the 

temperature distribution in the flow over a stretching 

sheet with uniform wall heat flux. Vajravelu and 

Rollins [6] investigated the heat transfer 

characteristics in a visco-elastic fluid over a 

continuous impermeable, linearly stretching sheet 

with PST and PHF cases. They studied the heat 

transfer characteristics in fluid initially at rest and at 

uniform temperature. As there is an appreciable 

temperature difference between the surface and the 

ambient fluid, one needs to consider the temperature 

dependent heat sources or sinks which may exert 

strong influence on the heat transfer characteristics. 

Foraboschi and Federico [7] studied heat transfer 

in a laminar flow of non-Newtonian heat generation 

fluids. Vajravelu and Hadjinicolaou [8] have studied 

the heat transfer characteristics in a viscous fluid 

over a stretching sheet with viscous dissipation and 

internal heat generation. Vajravelu and Roper [9] 

analysed heat transfer characteristics in a second 

grade fluid over stretching sheet with viscous 

dissipation, internal heat generation, and work due to 

deformation. Rollins and Vajravelu [10] studied 

flow and heat transfer characteristics in a second 

order fluid over a stretching sheet. In many of these 

studies, analytical solutions for flow and heat 

transfer are obtained for different wall temperature. 

Motivated by the above studies, present paper 

gives a numerical solution for flow and heat transfer 

of an incompressible second order fluid past 

stretching sheet with internal heat generation. A 

numerical approach, Quasilinearization technique is 

used to study flow and heat transfer characteristics 

of the fluid. This approach is easily adoptable and it 

is observed that results are in good agreement with 

the available literature. The effects of various 

parameters on flow and heat transfer are analysed 

through numerical calculations.  

II. MATHEMATICAL FORMULATION 

Following the postulates of gradually fading 

memory, Coleman and Noll [11] derived the 

constitutive equation of second-order fluid flow in 

the form 
2

12211 AAApIT    (1) 

Where T is the Cauchy stress tensor, -pI is the 

spherical stress due to constraint of incompressibility, 

µ is the dynamics viscosity, α1, α2 are the material 

constants and A1 and A2 are the first two Rivlin-

Ericksen tensors [12] defined as 
TvgradvgradA )()(1 

 (2)
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Here, ν denotes the velocity field and d/dt is the 

material time derivative. If the fluid of second grade 

modeled by (1) is to be compatible with 

thermodynamics and is to satisfy the Clausius-

Duhem inequality for all motions and the 

assumption that the specific Helmholtz free energy 

of the fluid is a minimum when it is locally at rest, 

Dunn and Fosdick [13] found that the material 

moduli must satisfy 

0,0,0 211          (4) 

 But later on Fosdick and Rajagopal [14] have 

reported, by using the data reduction from 

experiments, that in the case of a second order fluid 

the material constants µ,α1, α2 should satisfy the 

relation 

0,0,0 211                 (5) 

They also reported that the fluids modeled by (1) 

with the relationship (5) exhibit some anomalous 

behavior. A critical review on this controversial 

issue can be found in the work of Dunn and 

Rajagopal [15]. Second-order fluid, obeying model 

equation (1) with α1<α2, α1<0 although exhibits 

some undesirable instability characteristics, its 

approximations are valid at low shear rate. Now in 

literature the fluid satisfying the model equation (1) 

with α1<0  is termed as second-order fluid and with 

α1>0 is termed as second grade fluid.  

A laminar steady flow of an incompressible 

viscoelastic (Walters’ liquid B model) fluid over a 

wall coinciding with the plane y = 0 is considered, 

the flow being confined to y > 0. Two equal and 

opposite forces are applied along the x-axis, so that a 

sheet is stretched with a velocity proportional to the 

distance from the origin. The resulting motion of the 

quiescent fluid is thus caused solely by the moving 

surface. The flow satisfies the rheological equation 

of state derived by Beard and Walters [16]. The 

steady two-dimensional boundary layer equations 

for this fluid, in the usual form are 
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0, 0  kwhere



  

Where µ and ν are the velocity components along 

the x and y directions respectively, ν is the kinematic 

viscosity  k0=-α1/ρ is the co-efficient of elasticity, 

and ρ is the density. Hence, in the case of second 

order fluid flow, k0 
takes positive value, as α1 

takes 

negative value and other quantities have their usual 

meanings.  In deriving the equation (7), it is assumed 

that the normal stress is of the same order of 

magnitude as that of the shear stress, in addition to 

usual boundary layer approximations. 

The boundary conditions for the velocity field are  









yas
y

u
u

byatvbxuu w

0,0

0,00,

          (8) 

The condition  yasyu 0/  is the 

augmented condition, since the flow is in an 

unbounded domain, which has been discussed by 

Rajgopal [17]. In this case, the flow is caused solely 

by the stretching of the sheet, since the free stream 

velocity is zero.  

Defining new variables: 

    ybfbvbxfu  /,,  (9) 

where fƞ (ƞ) denotes differentiation with respect to η. 

Clearly u and v defined above satisfy the continuity 

equation (6), and the equation (7) reduces to 

 2

1

2 2  fffffkffff 
       

(10) 

Where k1=k0b/ν, is the visco-elastic parameter. 

The boundary conditions (8) become 

    10,00  ff      (11a) 

       asff 0,0     (11b) 

III. HEAT TRANSFER ANALYSIS 

The governing boundary layer equation with 

internal heat generation or absorption is given by 
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Where k is the thermal

 

diffusivity and cp is the 

specific heat of a fluid at constant pressure and Q is 

the volumetric rate of heat generation. 

Since there is an appreciable temperature 

difference between the surface and the ambient fluid, 

temperature dependent heat sources or sinks exert 

strong influence on the heat transfer characteristics 

so above equation (12) includes internal heat 

generation or absorption. 

Here the thermal boundary condition depends on 

the type of heating process under consideration. Heat 

transfer analysis is carried out for two types of 

thermal boundary conditions namely, (i) Prescribed 

Surface temperature (PST) and (ii) Prescribed wall 

Heat Flux (PHF),which are given below. 

A.Prescribed Surface Temperature (PST case) 

For this circumstance, the boundary conditions 

are 
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  yasTT     (13b) 

Here l is the characteristic length. Define non-

dimensional temperature as  
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Using (14), equation (12) reduces to 

  0Pr2Pr   ff   (15) 

 

Where Pr = µcp / k, Prandtl number, α =Q/(bρcp), 

heat source/sink parameter. 

With boundary conditions    

    0,10            (16)  

B. Prescribed surface Heat Flux (PHF Case) 

Prescribed power law surface heat flux (PHF), 

where surface is subjected to a power law heat flux 

qw on the wall surface is considered to be a quadratic 

power of x in the form 
2
















l

x
Dq

y

T
k w  at y = 0 (17) 

T  T  as y   
Where D is a constant, k is the thermal 

conductivity. 

Define a dimensionless, scaled temperature as  

 









TT

TT
g

w

    (18) 

where 
bl

x

k

D
TTw


2









 

 
Using (18), equation (12) reduces to  

  0Pr2Pr  gffgg    (19) 

Boundary conditions are: 
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IV. NUMERICAL SOLUTION OF THE PROBLEM  

The flow equation (10) coupled with energy 

equation (15) or (19) constitute a set of highly 

nonlinear differential equations in each thermal 

boundary condition. So obtaining closed form 

solution for this set is cumbersome and time 

consuming. Hence quasilinearization method, given 

by Bellman & Kalaba [18] is used to solve this 

system. This method is quadratically convergent, 

starting from the initial guess value and the solution 

is valid for a large range of parameters. Even when 

the required number of initial conditions is not given, 

this method converges very fast.  

For convenience equations (10), (15) and (19) are 

rearranged as 
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(PHF case)     (22b) 

 

In order to implement the quasilinearization 

method, the equations (21) and (22) are converted to 

a system of first order differential equations by 

substituting  
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Using Quasilinearization technique, the system 

(23) can be linearized as 
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The above system of equations (24) is linear 

in 6,...2,1(1  ixr

i ) and general solution can be 

obtained by using the principle of superposition. 

The boundary conditions given by (11), (16) and 

(20) reduce to 

PST case:       
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The initial values are chosen as follows: 

 

For homogeneous solution: 
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The general solution for the system (24) is given 

by 
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where C1, C2, C3 are the unknown constants, 

which are to be determined by considering the 

boundary conditions as  . This solution 

 6,...2,1,1  ixr

i
 is then compared with solution 

at the previous step  6,...2,1ixr

i  
and next 

iteration is performed, if the convergence has not 

been achieved or greater accuracy is desired.  

 

V. RESULTS AND DISCUSSIONS 

The flow and heat transfer characteristics of an 

incompressible second order fluid past a stretching 

sheet are studied for two types of thermal boundary 

conditions i) Prescribed Surface Temperature (PST) 

and ii) Prescribed Heat Flux (PHF) with internal heat 

generation or absorption. The governing boundary 

layer equations are solved using Quasilinearization 

Technique. The computational results of flow and 

heat transfer characteristics for various parameters 

are presented in graphs and discussed.  

Fig.1 (a) and Fig. 1(b) depict the effect of 

viscoelastic parameter k1 on longitudinal and 

transverse velocity components. It can be seen that 

for a fixed value of η, f(ƞ) and f(ƞ) decrease with 

increasing values of viscoelastic parameter k1. This 

can be explained by the fact that, as the viscoelastic 

parameter k1 increases, the boundary layer adheres 

strongly to the surface, which in turn retards the flow 

in longitudinal and transverse directions. 

In Fig.2(a) and 2(b), non-dimensional temperature 

θ(ƞ) is plotted for various values internal heat 

source/sink parameter (α).  It shows that θ(ƞ) 

increases with increasing values α. This is due to the 

fact that heat is generated inside the boundary layer 

for increasing values of heat source/sink parameter 

(α).  

Fig. 3(a) and 3(b) show the effect of Prandtl 

number (Pr) on non-dimensional temperature θ(ƞ) 

profiles. Temperature θ(ƞ) decreases with increase in 

the Prandtl number (Pr), this is consistent with the 

fact that the thermal boundary layer thickness 

decreases with increasing values Prandtl number (Pr).  

In Fig. 4(a) and 4(b) display the values of 

temperature θ(ƞ) for different values of viscoelastic 

parameter (k1). It can be observed that, at a given 

point η, θ(ƞ) increases with increasing values of k1. 

This is due to the fact that viscoelastic normal stress 

gives rise to thickening of thermal boundary layer.  

The heat transfer phenomena is usually analysed 

from the numerical values of two physical 

parameters namely, wall temperature gradient θ’ (0) 

and wall temperature g(0). The values of wall 

temperature gradient – θ'(0) and wall temperature 

g(0) for different parameters of the thermal 
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boundary layer are tabulated in Table 1.This reveals 

that the increase in visco elastic parameter (k1) is to 

increase the wall temperature gradient θ’(0) in PST 

case and wall temperature g (0) in PHF case. The 

increase in value of heat source/sink parameter (α) is 

to increase both θ’ (0) and g (0). Effect of Prandtl 

number (Pr) is to decrease the magnitude in both the 

cases. 

From our numerical results, it can be concluded 

that, temperature of the fluid increases with 

increasing values of viscoelastic parameter k1. 

Hence viscoelastic liquids having low viscous 

dissipation must be chosen. It also increases with 

increasing values of heat source/sink parameter (α). 

Hence heat source/sink parameter (α) is better suited 

for cooling purposes. Temperature of the fluid 

decreases with increasing values of Prandtl number 

Pr. 

The results of the PHF cases are qualitatively 

similar to that of the PST case, but quantitatively in 

the reduced magnitude. The Power Law Heat Flux 

(PHF) boundary condition is better suited for 

effective cooling of the stretching sheet. 

 

 

Fig.1: Effect of viscoelasticity (k1) on (a) transverse 

velocity component, (b) longitudinal velocity 

component 

  
             

 

Fig. 2: Effect of heat source/sink parameter (α) on 

temperature distribution θ (η) in a) PST case b) PHF 

case 

 

 

Fig. 3: Effect of Prandtl number (Pr) on temperature 

distribution θ (η) in (a) PST case (b) PHF case 
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Fig. 4. Effect of viscoelastic parameter (k1) on θ (η) 

in a) PST case and b) PHF case 

 

 

TABLE1: HEAT TRANSFER CHARACTERISTICS AT THE 

WALL 

Visco- 

elastic 

parameter 

 (k1) 

Prandtl 

number 

(Pr) 

Heat  

source/ 

sink  

parameter  

(α) 

PST 

θ'(0) 

PHF 

g(0) 

0.3 3 0.5 -2.46416 0.36954 

0.5 
  

-2.09070 0.42805 

0.7 
  

-1.75928 0.46702 

0.4 1 -0.5 -3.07090 0.63148 

  
0 -2.80242 0.70688 

  
0.5 -2.49414 0.84066 

0.5 1 0.5 -1.19491 0.91972 

 
3 

 
-2.46416 0.41900 

 
6 

 
-3.63958 0.27815 

 
10 

 
-4.74637 0.20677 
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