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Abstract: The paper presented a nonlinear 

mathematical model for unemployment using 

system of dynamic differential equations. This 

paper analyzed the situation of job competition 

between native unemployed and new migrant 

workers. We observed the effect of efforts for 

creating new vacancies made by government and 

private sector with delay and without delay as well 

as efforts of native unemployed and new migrant 

workers to become self-employed. We studied the 

stability of equilibrium points and carried out 

numerical simulation to compare with analytical 

result.  
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I.      INTRODUCTION 

Unemployment is one of the annoying 

problem of the world which is spread day by day. 

Many people leave their home town, their country 

and go to other country for getting job. Because of 

this, that government realize more burden of 

unemployment of native unemployed and new 

migrant workers.  

Nikolopoulos and Tzanetis ([6]) presented 

a model for a housing allocation of homeless 

families due to natural disaster. Using some 

concept of this paper, Misra and Singh ([1, 2]) 

developed a nonlinear mathematical model for 

unemployment. In ([2]) the model considered three 

dynamic variables number of unemployed persons, 

employed persons and newly created vacancies by 

government intervention. Inspired by this paper 

G.N.Pathan and P.H.Bhathawala ([7]) developed a 

mathematical model for unemployment with effect 

of self-employment. In ([4]) M. Neamtu presented 

a model for unemployment basedon some concept 

of ([2]) with adding two new variables said number 

of present jobs in the market and number of 

immigrants. 

Based on concept of above models 

G.N.Pathan and P.H.Bhathawala ([9]) developed a 

new model of unemployment with four dynamic 

variables (i) Number of unemployed persons 

U(t),(ii) Number of new migrant workers M(t), (iii) 

Number of Employed persons E(t) and (iv) Number 

of newly created vacancies by government and 

private sectorV(t).Using this concept we developed 

a new model with this four variables and analyzed 

the result with delay and without delay. We 

assumed that native unemployed and new migrant 

workers can apply for available vacancies and get 

chances equally. Therefore new migrant attracts to 

the territory and government realized more burden 

of native unemployed workers and migrant 

workers. So, government tried to take a step of 

creating new vacancies with the help of private 

sector. We consider the situation that native 

unemployed and migrant both try for their 

independent work and taking a step of self-

employment to survive. 

The paper is organized as follows: Section 

2 describes Model for unemployment, Section 3 

describes an equilibrium analysis, Section 4 

describes the stability of equilibrium point, 

Numerical simulation describes in section 5 and 

Conclusion is given in section 6. 

 

II .    MATHEMATICAL MODEL 

  In the process of making a model we 

assume that all entrants of the  category 

unemployment are fully qualified to do any job at 

any time t. Number of unemployed personsU, 

increases with constant rate 1a .The rate of 

movement from unemployed class to employed 

class is jointly proportional to U and (P+V - 

E).Where present jobs in the market provided by 

government and private sector is constant denoted 

by P. Government and private sector try to create 

new vacancies denoted by V and number of 

employed persons denoted by E. So, total available 

vacancies in the market are P+V-E.  

  We assumed that job search is open for 

native unemployed as well as new migrant. So, 

new migrant also become part of the labor 

workforce of the territory denoted by M.Number of 

migrant increases with constant rate 1m . The rate 

of movement of migrant workers in employment is 

jointly proportional to M and (P+V-E). Native 

unemployed and migrant both try for self-

employment to survive which is proportional to 

number of unemployed and migrant with the rate 

5a  and 7a  respectively. Employed persons joint 

unemployed class with rate 4a because offired from 

the job or leave the job. The death and retirement 

rate of employed person is 8a .The death rate of 
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unemployed and migrant are 3a  and 3m

respectively. The rate of migrantwho registered as 

unemployed or fired from their job is 6a . 

  

MaUaEaUaEVPUaa
dt

dU
654321 )( 

 _____(1) 

MaMmMaEVPMmm
dt

dM
73621 )( 

     _____(2) 

EaEVPMmEVPUa
dt

dE
422 )()( 

 EaMaUa 875  ______(3) 

VtMtU
dt

dV
  )()(         ______(4) 

Here,  and   is the rate of newly created 

vacancies by government and Private sector 

respectively and  is the diminution rate of newly 

created vacancies. 

Lemma: 
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where ),min( 8,33 ama  is a region of 

attraction for the system (1) – (4) and it attracts all 

solutions initiating in the interior of the positive 

octant. 

Proof:  

From equation (1) – (3) we get, 
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By taking limit supremum 
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from (4) we have 

 

 )()()( tVtU
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dV
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By taking limit supremum which leads to, 

 

This proves the lemma. 

III.      EQUILIBRIUM  ANALYSIS 

  The model system (1) - (4) has only one 

non- negative equilibrium point 

*)*,*,*,(0 VEMUE  which obtained by solving 

the following set of algebraic equations. 
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0)( 73621  MaMmMaEVPMmm

 _____(6) 

UaEaEVPMmEVPUa 5422 )()( 

087  EaMa                           _____(7) 

0 VMU                             _____(8) 

Taking addition of  equation (5), (6) and (7) 
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Put values of  equations  (9) and (11) in (5) and (6) 

we get, 
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820 aaaA  , baaA 821  , 

])()([ 8584381122 aaaaaPamaaA   

][ 43863 amaaA  ,

)]([ 114814 maaaaA  , 

280 mbaB  , 
281 maaB  , 

)]()([ 736881122 amaaPamamB  , 

813 amB  . 

equation  (12) and (13) represent the equation of 

hyperbolas. 

from  equation (12) , 
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put value of equation (14) in (13) we get, 
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)( 211301120 BABAABAAH  , 
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2
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3

2

3243

2

403 BABAAABH  . 

Since Hi , i=1,2,3,4 all are positive andnumber of 

changes in signs of equation (15) is only one. By 

Descart’s rule  equation (15) has only one positive 

solution say  *U . So, we get the non-negative 

equilibrium point of model with coordinates: 
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So, *)*,*,*,(0 VEMUE  is required non negative 

solution of the Model. 

IV. STABILITY ANALYSIS 

Stability of equilibrium point without any delay: 

To check the local stability for 0

atequilibrium point  *)*,*,*,(0 VEMUE we 

calculate the variational matrix T of the model 

system (1) – (4) correspondingto

*)*,*,*,(0 VEMUE . 


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Where  

)(21 EVPap  , )(22 EVPmp  , 

Uap 23  , Mmp 24  , 

53111 aapC  ,
4313 apC  ,

736223 amapC  , 

5131 apC  , 
7232 apC  , 

844333 aappC  , 

4334 ppC  . 

The characteristic equation of  above matrix is 

043

2

2
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Where 
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         + 
331133243323 )( pCCCpCC   , 

)()( 3311232311333 CCCCCCd    

)()( 114323334114   CpCCCCp  

)()( 3164233113 CapCCC    

)( 2333333413 CpCpCC   

 

))(( 4611433344 paCpCCd    

))(( 324314133 CpCpCp    

)( 332343211 CCpCC    

)( 64231331 apCCC    

)( 333341323 CpCCC   

  Since, 4321 ,,, dddd  are positive 

then all coefficients of equation(16) are positive 

and some algebraic manipulation  convey that 

321 ddd   and 4

2

1

2

3321 dddddd  .  So,by 

Routh Hurwitz criteria all  roots of equation (16) 

are negative or having a negative real part. 

Therefore equilibrium point 
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*)*,*,*,(0 VEMUE   is locally asymptotically 

stable. 

 

Stability  of equilibrium point with  delay: 

To check the local stability for 0  at 

equilibrium point  *)*,*,*,(0 VEMUE  we 

calculate the variational  matrix  T1 and T2of the 

model system (1) – (4) corresponding to

*)*,*,*,(0 VEMUE  . 
 .  

)()( 21  txTtxT
dt

dx
_____(17) 
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)(tu , )(tm , )(te and )(tv  are small  perturbations 

around the equilibrium point  E0.   



























000

0

34333231

4423

313611

1
CCCC

ppC

pCaC

T  





















00

0000

0000

0000

2



T  

Where )(21 EVPap  , 

)(22 EVPmp  , 

Uap 23  , Mmp 24  , 

53111 aapC  ,
4313 apC  ,
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 The characteristic equation of system (17)  is  
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Where 
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Now to check the stability of Eq. (18) we 

should not directly use Routh-Hurwitz criterion.We 

check that Hopf -bifurcation occurs for that we 

have to show that Eq. (18) has a pair of purely 

imaginary roots.  For this we substitute   
 i

in 

Eq. (18) and we get  
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Separating real and imaginary part of Eq. (20) we 

get 
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 By squaring and adding Eq. (21) and Eq. (22)  
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By taking expansion of this  
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Substituting  2
 in above Eq. then we have 
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If all 0ie  (i=1,2,3,4)  and satisfies 

Routh-Hurwitz criterion then there is no positive 

root of Eq. (25) i.e. all roots of Eq. (24) are 

negative or having a negative real part. So, by 

Routh-Hurwitz criterion equilibrium 0E  is 

asymptotically stable for all delay 0 . 

Contrary if all ie  does not satisfy the 

Routh-Hurwitz criterion then there is at least one 

positive root 0  exist of Eq. (24)  for 04 e .  

From this we get that   0)(
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imaginary roots ( i )  of  Eq. (19). 
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From  Eq. (21)  and Eq. (22) we  get 
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For positive  0  we have corresponding 0  is 
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n=0, 1, 2, 3….. 

 

By Butler’s lemma we can say that equilibrium  

0E  remains stable for  0  . 

Now to check that Hopf- bifurcation occurs at  0  

we have to check that  0  satisfies the 

transversality condition. 

Lemma 2: Transversality   condition is  
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Proof:   By differentiating Eq. (18) with respect to 

 , we have  
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Since condition (26)   is satisfied then we have 

positive 0  and for that Transversality  condition 

is satisfies.  

This shows that if condition (26) satisfies then 

equilibrium 0E  is asymptotically stable for 

0   ( i.e.  ),0[ 0  ) and   unstable for 

0  . The condition of Hopf-bifurcation is 

satisfied so, periodic solution occurs   when   

passes to the 0  for equilibrium 0E . 

 

V.   NUMERICAL SIMULATION 

  For the Numerical simulation using 

MATLAB 7.6.0 we consider the following data, 
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50001 a , 00004.02 a , 04.03 a , 004.04 a

,  03.05 a ,  1.06 a ,  

01.07 a ,  07.08 a ,   30001 m ,  

00002.02m ,  05.03 m ,  2.0 , 

001.0 ,    08.0 ,    10000P  

The equilibrium values of the model are: 

 

31978* U , 13101*M ,    86654* E , 

80108* V  

The eigenvalues  of the variationalmatrix 

corresponding to the equilibrium point  

*)*,*,*,(0 VEMUE   of  model system (1) - (4) are:   

6004.1 , i0302.02318.0  , 

i0302.02318.0  , 0683.0 .  

All eigenvalues are negative or having negative 

real part.  So, equilibrium  *)*,*,*,(0 VEMUE   is 

locally asymptotically stable. 

Using above parameter and equation (24) we get 

1357.0 . From equation (27) we get 66.13  

 

Figure-1: 

 
Figure-2: 

 
 

Figure-3: 

 
 

VI.   CONCLUSION 

  The paper presented a nonlinear 

mathematical model for unemployment using four 

dynamic variables: Number of unemployed 

persons, number of migrant workers, number of 

employed persons and number of newly created 

vacancies by government and private sector. It 

shows the theoretical calculation and compare it 

with numerical simulation using MATLAB 7.6.0. 

 

  Fig.1 shows that unemployment is lower 

for higher rate of persons who joined employed 

class. Similarly From Fig.2 it can be observe that 

unemployment is lower for higher self-employment 

rate. That is to control unemploymentmore and 

more people have to join employed class which is  

possible with efforts of government and private 

sector by creating new vacancies and also efforts of 

unemployed by create chances for self-

employment. From Fig.3 we can observe that rate 

of unemployment of migrant workers goes lower as 

they joined employed class. That is government 

and private sector should create new vacancies for 

both native unemployed and migrant workers to  

control unemployment.  

 

  We observed  that if territory allow new 

migrant workers then it should be create new 

vacancies proportional to native unemployed as 

well as migrant workers. We get the equilibrium 

point without any condition in absence of delay.  In 

presence of delay equilibrium point is stable if it 

satisfies the eq. 26. Equilibrium point is unstable if 

it cross the critical value of delay ( ) given by eq. 

27.  
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