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Abstract In this paper, using generalized kudryashov 

method, we present some new explicit formulas of 

exact traveling the (2+1)-Dimensional Burger 

equation. Three exact traveling wave solutions in 

terms exponential function are found from the 

investigation. It is shown that the generalized 

kudryashov method is a very effective and powerful 

mathematic tool for solving nonlinear evolution 

equations in mathematical physics and engineering.  
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I. INTRODUCTION  

Most scientific problems and physical phenomena 

occur nonlinearly. Except in a limited number of 

these problems, finding the exact analytical solutions 

of such problems are rather difficult. Recently, namy 

kinds of powerful methods have been proposed to 

find exact solutions of nonlinear partial differential 

equations, e.g., the homogeneous balance method [1], 

homotopy analysis method [2, 3], three-wave 

method [4], extended homoclinic test approach [5], 

the )/( GG -expansion method [6, 10] and the exp-

function method [11-13] and so on. Hellal and 

Mehanna [14] used a semi-analytical method, that is 

the Adomian decomposition and the tanh method to 

handle the foam drainage equation. Roshid et. al. 

[15-16] investigated solitary wave solutions for 

some nonlinear evolution equations via exp-function 

and Exp ))((  -expansion method. Demiray et. al. 

[17] investigate exact solutions of nonlinear time 

fractional Klein –Gordon equation by using 

generalized Kudryashov. The modified simple 

equation method is performed in  [18], multi-soliton 

solutions are found in [19]. 

In this paper, we will apply the the generalized 

Kudryashov method on the (2+1)-Dimensional 

Burger equation. 

II. FUNDAMENTAL PROPERTIES OF THE 

GENERALIZED KUDRYASHOV METHOD 

The basic properties of the generalized Kudryashov 

method is explained in this section. In order to apply 

the methods, we consider the nonlinear evolution 

equation of the following form: 
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where   is a polynomial of the function 

),( txuu  and its partial derivatives with respect to 

the spatial variable yx, and the time variable t . Let 

us combine the real variables yx, and t by a 

compound variable  as 

wtlykxutyxu  );(),,( which convert the 

Eq.(1) into an ODE for :)(uu   
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Step 1: Suppose that the solution of Eq. (2) has the 

following form:  
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Equation Eq. (4) has the solution 
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where C is a constant of integration. 

Step 2: The positive integers N  and M  appearing 

in Eq. (3) can be determined by define the degree 

of )(u  as MNuD ))((  which gives rise to 

the degree of other expression as follows: 
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sqp ,,  are integer numbers. In this regard, we can 

find the value of N  and M in Eq. (3). 
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Step 3: Inserting Eq.(3) with Eq.(4) into Eq.(2) 

provides a polynomial in )( . We equate the 

coefficients of all terms of the same powers of 

)( to zero, this procedure yields a system of 

equations which can be solved to find unknown 

parameters in the trial solution.  

III. THE (2+1)-DIMENSIONAL BURGER EQUATION  

In this section, we apply the generalized 

Kudryashov method to construct the traveling wave 

solutions for the (2+1)-Dimensional Burger equation 

in the form:  

 0
yyxxxt

uuuuu   (6) 

Upon using the transformation  

 )(uu  ; wtlykx    (7) 

where lk,   and w are constants, eq. (6)   is 

transferred to  

 0)( 22  uwukuulk . (8) 

Integrating eq. (8) with respect to  , we have  
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where the prime denotes differentiation with respect 

to  . Taking homogeneous balance between the 

highest order derivative term u  and highest 

nonlinear term 
2u in the Eq.(9), we get the relation . 

When  1N , then 2M . So the equation (3) has 

the following solution 
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Substitute (10) and (4)  into (9), let the coefficient of  

),2,1,0(,))(( ii  be zero, yields a set of 

algebraic equations about wBA
ii
,, as follows: 
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 Then the solution of the system of equations, we 

achieve the solutions sets:  
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Substituting (11) with (5) into (10) , we have 
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Substituting (12) with (5) into (10) , we have 
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Substituting (13) with (5) into (10) , we have 
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IV. CONCLUSIONS 

We successfully implemented the generalized 

Kudryashov method to construct the traveling wave 

solutions for the (2+1)-Dimensional Burger equation. 

In fact, we have presented three new solutions for 

the nonlinear Burger equation. Results of the current 

work illustrates that the generalized Kudryashov 

method is indeed powerful analytical technique for 
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most types of nonlinear problems and several such 

problems in scientific studies and engineering may 

be solved by this method. 
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