LA-Noetherian in a Generalized LA-Ring

Md. Helal Ahmed*

Centre for Applied Mathematics, Central University of Jharkhand, Ranchi-835205, India

Abstract

The present study introduces the notion of an LA-Noetherian in an LA-ring and a generalized LA-ring. Moreover, it extends the notion of ideal in an nLA-ring and LA-module over LA-ring and its substructure to LA-Noetherian.

Keywords: LA-ring, LA-modules, LA-submodules, nLA-ring, Ideals.

Mathematics Subject Classification 2010: 20M25, 20N02, 05C25.

1 <u>Introduction</u>

The concept of Right Almost semigroup, Left Almost semigroup and Almost semigroup was introduced by M. A. Kazim and M. Naseeruddin [2] in 1972. A groupoid G is said to be a Right Almost semigroup (abbreviated as an RA-semigroup) if it satisfies the right invertible law i.e.,

$$a * (b * c) = c * (b * a); \forall a, b, c \in G.$$

$$\tag{1}$$

Similarly, the concept of Left Almost semigroup (abbreviated as an LA-semigroup) is thought to be a groupoid G if it satisfies the left invertible law i.e.,

$$(a*b)*c = (c*b)*a; \forall a, b, c \in G.$$

$$(2)$$

The concept of Almost semigroup could not be so unless it satisfies both (1) and (2). But the theory footed parallel to both RA-semigroup and LA-semigroup. So, M. A. Kazim and M. Naseeruddin [2] deal with LA-semigroup. An LA-semigroup generalizes the notion of a commutative semigroup. The notion of LA-semigroup is also known as Abel-Grassmann's

ISSN: 2231-5373 http://www.ijmttjournal.org Page 285

groupoid [4] (abbreviated as an AG-groupoid). Furthermore, Q. Mushtaq and M. S. Kamran [3] extended the concept of LA-semigroup to Left Almost group (abbreviated as an LA-group), which are non-associative structures, defining LA-semigroup in such a way that $\exists e \in G$ such that ea = a, $\forall a \in G$ and for every $a \in G$, $\exists a^{-1} \in G$ such that $a^{-1}a = e$. The notion of LA-group is the generalization of a commutative group. S. M. Yusuf [8] extended the non-associative structure with two binary operations '+' and '.' If a non-empty set R together with binary operations '+' and '.' are satisfying the following conditions:-

- (1) (R, +) is an LA-group,
- (2) (R,.) is an LA-semigroup and
- (3) both left and right distributive law holds.

Then, (R, +, .) is called an LA-ring.

- T. Shah and I. Rahman [7] introduced the notion of LA-module over an LA-ring and further T. Shah, M. Raees and G. Ali [5] discussed sub-structures of LA-module and also non-similarity of an LA-module to the usual frame of module. The structure introduced by S. M. Yusuf [8] was strengthened by T. Shah and I. Rahman [7] as a generalization of commutative semigroup rings.
- T. Shah, Fazal ur Rehman and M. Raees [6] generalized the concept of an LA-ring into a near left almost ring (abbreviated as an nLA-ring). In the same paper they also introduced the concept of ideal, factor nLA-ring, nLA-ring homomorphism, nLA-integral domain and near almost field. Due to structural properties of nLA-ring, it behaves like a commutative ring and a commutative near ring. However, the aim of the present paper is to introduce the notion of Left Almost-Noetherian (abbreviated as an LA-Noetherian) and further extend the notion of ideal defined in an nLA-ring and LA-module over LA-ring and its substructure to LA-Noetherian.

2 Left Almost Noetherian

This section introduces the notion of Left Almost Noetherian, Right Almost Noetherian and Almost Noetherian. The ideas are similar to an LA-group and an nLA-ring. Further, it gives some significant theorems and propositions [1] of an LA-Noetherian.

Definition 1. An nLA-ring R is Left Almost Noetherian (abbreviated as an LA-Noetherian) if it satisfies the ascending chain of left ideals in R is stable. An nLA-ring R is Right Almost Noetherian (abbreviated as an RA-Noetherian) if it satisfies the ascending chain of right ideals in R is stable. An nLA-ring R is Almost-Noetherian if it is both LA-Noetherian and RA-Noetherian.

Definition 2. A free LA-module R is one which is isomorphic to an LA-module R of the

form $\bigoplus_{i \in I} M_i$, where each $M_i \cong R$. A finitely generated free LA-module R is therefore isomorphic to $R \oplus R \oplus ... \oplus R$, which is denoted by R^n .

Definition 3. An nLA-ring R is an LA-Noetherian if it satisfies the following three equivalent conditions:

- (i) Maximal Condition:- Every non-empty set of left ideals in R has a maximal element.
- (ii) Ascending Chain Condition:- Every ascending chain of left ideals in R is stationary.
- (iii) Finitely Generated Condition:- Every left ideal in R is finitely generated.

The theory runs completely parallel to both left ideals and right ideals in an nLA-ring R. Throughout this paper, consider left ideals in an nLA-ring R. One can obtain RA-Noetherian by replacing left ideals to right ideals in an nLA-ring R.

Theorem 1. Let M be an LA-module over an LA-ring R. Then the following are equivalent:

- (i) M is an LA-Noetherian over an LA-module R.
- (ii) Every non-empty set of LA-submodules of M contains a maximal element.
- (iii) Every LA-submodules of M is finitely generated.
- Proof. (i) \Rightarrow (ii). Let Σ be any non-empty collection of LA-submodules of M. If we choose any $M_1 \in \Sigma$. If M_1 is a maximal element in Σ , \Rightarrow (ii). Assume that M_1 is not maximal element. So there is some $M_2 \in \Sigma$ such that $M_1 \subset M_2$. If M_2 is maximal element in $\Sigma \Rightarrow$ (ii), if not, we may assume there is an $M_3 \in \Sigma$ such that $M_2 \subset M_3$. Proceeding in this way, we see that if (ii) fails, we have an infinite strictly increasing chain of elements of Σ , which contradict (i).
- $(ii) \Rightarrow (iii)$. Suppose that (ii) holds and let M_1 be any LA-submodule of M. Let $\Sigma = \{finitely\ generated\ LA-submodules\ of\ M_1\}$. Since $\{0\} \in \Sigma$, so Σ is non-empty. By (ii), Σ has a maximal element say M_2 . If $M_2 \neq M_1$, let $y \in M_1 M_2$. Since $M_2 \in \Sigma$, the LA-submodule by assumption, M_2 is finitely generated, hence the LA-submodule generated by M_2 and y is finitely generated. This contradict the maximality of M_2 . Hence $M_1 = M_2$ is finitely generated.
- (iii) \Rightarrow (i). Suppose that (iii) holds and let $M_1 \subseteq M_2 \subseteq M_3$... be a chain of an LA-submodules of M. Let $N = \bigcup_{i=1} M_i$, here N is an LA-submodule of M. By (iii), $N = \langle x_1, x_2, ..., x_n \rangle$. Since $x_i \in N$, $\forall i$, each x_i belongs to one of the LA-submodules in the chain. Let $l = Max\{1, 2, ..., n\}$. Then $x_i \in M_l$, $\forall i$. Therefore the LA-module they generate is contained in M_l , i.e., $N \subseteq M_l$. Thus $M_l = N = M_k$, $\forall k \geq l$, which implies (i).

Corollary 1: A finitely generated LA-module over an LA-Noetherian is an LA-Noetherian.

Proposition 1. If I is a left ideal of an LA-Noetherian in an nLA-ring R, then the factor R/I is an LA-Noetherian.

Proposition 2. If M is an LA-Noetherian and φ is a homomorphism of M onto an nLA-ring R, then M is an LA-Noetherian.

Corollary 2: Any homomorphic image of an LA-Noetherian is an LA-Noetherian.

Theorem 2. The following three statements are equivalent:

- (i) nLA-ring R is an LA-Noetherian.
- (ii) Every non-empty set of left ideals of R has a maximal element.
- (iii) Every left ideal of R is finitely generated.

Proof. The proof is similar to that of **Theorem 1**.

Theorem 3. Let S be an nLA-subring of an nLA-ring R. Suppose that S is an LA-Noetherian and R is finitely generated as an LA-module S, then R is an LA-Noetherian.

Proof. By **Corollary 1**, R is an LA-Noetherian LA-module S and all left ideals of R are also an LA-submodules S of R. Since LA-submodules S satisfy the ascending chain condition, so left ideals of R. This complete the proof. \Box

Theorem 4. If R is an LA-Noetherian and S is any multiplicatively closed subset of R, then $S^{-1}R$ is an LA-Noetherian.

Proof. Let I be any left ideal of nLA-ring R. But R is an LA-Noetherian, so

$$I = \langle x_1, x_2, ..., x_n \rangle$$
 for some $x_1, x_2, ..., x_n \in R$.

It is clear that $S^{-1}I$ is generated by $x_1/1, x_2/1, ..., x_n/1$. Thus all left ideals of $S^{-1}R$ are finitely generated. Hence $S^{-1}R$ is an LA-Noetherian.

Theorem 5. If R is an LA-Noetherian. Then the polynomial ring R[x] is an LA-Noetherian.

Proof. Let I be a left ideal in R[x] and $H = \{\text{leading coefficients of elements in } I\}$. It is easy to show that H is a left ideal of R, so

$$H = \langle a_1, a_2, a_3, ..., a_n \rangle$$
 for some $a_1, a_2, ..., a_n \in R$, (3)

since R is an LA-Noetherian.

For each i = 1, 2, ..., n, let f_i be an element of I whose leading coefficient is a_i and let K be maximum of the degrees of $f_1, f_2, ..., f_n$. For each $d \in \{0, 1, 2, ..., K-1\}$ and let

ISSN: 2231-5373 http://www.ijmttjournal.org Page 288

 $H_d = \{ \text{leading coefficients of polynomials in } I \text{ of degree d together with } 0 \}.$

Clearly H_d is an ideal in R, so

$$H_d = \langle b_{d,1}, b_{d,2}, b_{d,3}, ..., b_{d,n_d} \rangle for some \ b_{d,1}, b_{d,2}, b_{d,3}, ..., b_{d,n_d} \in R,$$

$$(4)$$

since R is an LA-Noetherian. Let $f_{d,i}$ be a polynomial in I of degree d with leading coefficients $b_{d,i}$.

We claim that

$$I = \langle \{f_1, f_2, ..., f_n\} \cup \{f_{d,i} | 0 \le d \le K - 1, 1 \le i \le n_d\} \rangle$$
.

Clearly, I is finitely generated. As I was arbitrary, it follows that R[x] is an LA-Noetherian. By our construction, the ideal $I' \subseteq I$ on the right above, since all the generators were chosen in I. If suppose $I \neq I'$, then \exists a minimum degree polynomial $f \in I$ such that $f \notin I'$. Let I be the degree and I be the leading coefficient of polynomial I be the possibility, the degree of polynomial I is greater than I i.e., I > K - 1. Since I is an LA-Now we have the possibility, the degree of polynomial I is greater than I i.e., I is an LA-Now we have the possibility, the degree of polynomial I is greater than I i.e., I is an LA-Now we have the possibility, the degree of polynomial I is greater than I i.e., I is an LA-Now we have the possibility, the degree of polynomial I is greater than I i.e., I is an LA-Now we have the possibility, the degree of polynomial I is greater than I i.e., I is an LA-Now we have the possibility, the degree of polynomial I is greater than I i.e., I is an LA-Now we have the possibility I is an LA-Now we have I is an

$$a = \sum_{i=1}^{n} r_i a_i.$$

If f_i has degree K_i then $r_i x^{l-K_i} f_i$ is an element of I' of degree l with leading coefficient $r_i a_i$. It follows that $f - \sum_{i=1}^n r_i x^{l-K_i} f_i \in I - I'$ of degree strictly less than l. This contradict the minimality of polynomial f. Thus it implies that degree of polynomial $f \leq K - 1$. $a \in H_d$ for some $d \leq K - 1$. By (4) we may write $a = \sum r_i b_{d,i}$ for some $r_i \in R$. It implies $g = \sum r_i f_{d,i}$ is a polynomial in I' of degree d with leading coefficient a. Thus $f - g \in I - I'$ and degree of polynomial f - g is strictly less than l, again contradict the minimality of polynomial f. Hence R[x] is an LA-Noetherian.

Corollary 3: If R is an LA-Noetherian, so is $R[x_1, x_2, ..., x_n]$ for every $n \ge 1$.

 ${\it Corollary~4:}$ A near almost field (abbreviated as n-almost field) is always an LA-Noetherian.

Acknowledgment: I would like to gratefully thank Central University of Jharkhand, Ranchi, Jharkhand, India for the constant support offered for implementing this work.

References

[1] M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley Series in Math., Westview Press, 1994.

- [2] M. A. Kazim and M. Naseeruddin, On Almost semigroups, The Alig. Bull. Math. 2 (1972) 1-7.
- [3] Q. Mushtaq and M. S. Kamran, Left almost group, Proc. Pak. Acad. of Sciences, **33** (1996) 1-2.
- [4] P. V. Protic and N. Stevanovi, AG-test and some general properties of Abel-Grassmann's groupoid, P. U. M. A. 4(6) (1995), 371-383.
- [5] T. Shah, M. Raees and G. Ali, On LA-modules, Int. J. Contemp. Math. Sciences, **21**(6) (2011), 999-1006.
- [6] T. Shah, Fazal ur Rehman and M. Raees, On Near Left Almost Rings, Int. Math. Forum, 6(23) (2011), 1103-1111.
- [7] T. Shah and I. Rahman, On LA-rings of finitely nonzero functions, Int. J. Contemp. Math. Sciences, **5**(5) (2010), 209-222.
- [8] S. M. Yusuf, On Left Almost Ring, Proc. of 7th Int. Pure Math. Conference (2006).