Γ -Semigroups in which Prime **Γ**-Ideals are Maximal

S. Savithri¹, A. Gangadhara Rao², A. Anjaneyulu³, J. M. Pradeep⁴

Dept. of Mathematics ¹ YA Govt Degree College For Women, Chirala, ^{2,3}V S R and N V R College, Tenali, ⁴AC College, Guntur

ABSTRACT: In this paper, the terms, Maximal Γ -ideal, primary Γ -semigroup and Prime Γ -ideal are introduced. It is proved that if S is a Γ - semigroup with identity and if (non zero, assume this if S has zero) proper prime Γ -ideals in S are maximal then S is primary Γ -semigroup. Also it is proved that if S is a right cancellative quasi commutative Γ -emigroup and if S is a primary Γ - semigroup or a Γ - semigroup in which semiprimary Γ - ideals are primary, then for any primary Γ -ideal Q, \sqrt{Q} is non-maximal implies $Q = \sqrt{Q}$ is prime. It is proved that if S is a right cancellative quasi commutative Γ -semigroup with identity, then 1) Proper prime Γ -ideals in S are maximal. 2) S is a primary Γ -semigroup. 3) Semiprimary Γ -ideals in S are primary, 4) If x and y are not units in S, then there exists natural numbers n and m such that $(x \Gamma)^{n-1} x = y\Gamma s$ and $(\gamma\Gamma)^{m-1} \gamma = x\Gamma r$. For some s, $r \in S$ are equivalent. Also it is proved that if S is a duo Γ -semigroup with identity, then 1) Proper prime Γ - ideals in S are maximal. 2) S is either a Γ - group and so Archimedian or S has a unique prime Γ -ideal P such that S = GU P, where G is the Γ -group of units in S and P is an Archimedian sub Γ -semi group of S are equivalent. In either case S is a primary Γ -semigroup and S has atmost one idempotent different from identity. It is proved that if S is a duo Γ -semigroup without identity, then S is a primary Γ -semigroup in which proper prime Γ -ideals are maximal if and only if S is an Archimedian Γ -semigroup. It is also proved that if S is a quasi commutative Γ -semigroup containing cancellable elements, then 1) The proper prime Γ -ideals in S are maximal. 2) S is a Γ -group or S is a cancellative Archimedian Γ -semigroup not containing identity or S is an extension of an Archimedian Γ -semigroup by a Γ -group S containing an identity are equivalent.

Mathematical subject classification (2010): 20M07; 20M11; 20M12.

KEY WORDS: Γ-semigroup, Maximal Γ-ideal, primary Γ-semigroup, commutative Γ-semigroup, left (right) identity, identity, Zero element and Prime Γ -ideal.

1. INTRODUCTION:

 Γ - semigroup was introduced by Sen and Saha [10] as a generalization of semigroup. Anjaneyulu. A [1], [2] and [3] initiated the study of pseudo symmetric ideals, radicals and semi pseudo symmetric ideals in semigroups. Giri and Wazalwar [4] intiated the study of prime radicals in semigroups. Madhusudhana Rao, Anjaneyulu and Gangadhara Rao [5], [6], [7] and [8] initiated the study of prime radicals and semi pseudo symmetric Γ-ideals in Γ -semigroups, primary and semiprimary Γ -ideals and pseudo symmetric Γ -ideals in Γ -semigroups. In this paper we characterize Quasi Commutative Γ -semigroup, semi pseudo symmetric Γ -semigroups and quasi commutative Γ -semigroups containing cancellable elements in which proper prime Γ -ideals are maximal. We first cite a wide class of primary Γ-semigroups.

2. PRELIMINARIES:

DEFINITION 2.1 : Let S and Γ be any two nonempty sets. Then S is said to be a Γ -semigroup if there exist a mapping from $S \times \Gamma \times S$ to S which maps $(a, \gamma, b) \rightarrow a \gamma b$ satisfying the condition : $(a\alpha b)\beta c = a\alpha(b\beta c)$ for all a, b, $c \in S$ and $\alpha, \beta, \gamma \in \Gamma$.

NOTE2.2: Let S be a Γ -semigroup. If A and B are two subsets of S, we shall denote the set { $a\gamma b : a \in$ *A*, *b* \in *B* and $\gamma \in \Gamma$ } by AFB.

DEFINITION 2.3 : A Γ-semigroup S is said to be *commutative* Γ -semigroup provided ayb = bya for all $a, b \in S$ and $\gamma \in \Gamma$.

NOTE 2.4 : If S is a commutative Γ -semigroup then $a \Gamma b = b \Gamma a$ for all $a, b \in S$.

NOTE 2.5 : Let S be a Γ -semigroup and $a, b \in S$ and $\alpha \in \Gamma$. Then $a\alpha a\alpha b$ is denoted by $(a\alpha)^2 b$ and consequently $a \alpha a \alpha a \alpha a \dots (n \text{ terms})b$ is denoted by $(a\alpha)^n b.$

DEFINITION 2.6: A Γ -semigroup S is said to be *quasi commutative* provided for each $a, b \in S$, there natural number n such exists а that $a\gamma b = (b\gamma)^n a \ \forall \gamma \in \Gamma$.

NOTE 2.7 : If a Γ -semigroup S is *quasi commutative* then for each $a, b \in S$, there exists a natural number *n* such that, $a\Gamma b = (b \Gamma)^n a$.

DEFINITION 2.8 : An element *a* of a Γ - semigroup S is said to be a *left identity* of S provided $a \propto s = s$ for all $s \in S$ and $\alpha \in \Gamma$.

DEFINITION 2.9: An element *a* of a Γ - semigroup S is said to be a *right identity of S provided* $s \propto a = s$ for all $s \in S$ and $\alpha \in \Gamma$.

DEFINITION 2.10 : An element a of a Γ -semigroup S is said to be a *two sided identity* or an identity provided it is both a left identity and a right identity of S.

NOTATION 2.11 : Let S be a Γ - semigroup. If S has an identity , let $S^1 = S$ and if S does not have an identity, let S^1 be the Γ - semigroup S with an identity adjoined, usually denoted by the symbol 1.

DEFINITION 2.12 : An element *a* of a Γ - semigroup S is said to be a *left zero* of S provided $a\Gamma s = a$ for all s belongs S.

DEFINITION 2.13 : An element *a* of a Γ -semigroup S is said to be a *right zero* of S provided $s\Gamma a = a$ for all s belongs S.

DEFINITION 2.14 : An element a of a Γ -semigroup S is said to be a *zero* of S provided it is both left and right zero of S.

DEFINITION 2.15 : A nonempty subset A of a Γ -semigroup S is said to be a *left* Γ -*ideal* of S if $s \in S, a \in A, \alpha \in \Gamma$ implies $s\alpha a \in A$.

NOTE 2.16: A nonempty subset A of a Γ -semigroup S is a *left* Γ -*ideal* of S iff S $\Gamma A \subseteq A$.

DEFINITION 2.17: A nonempty subset A of a Γ -semigroup S is said to be a *right* Γ -*ideal* of S *if* $s \in S, a \in A, \alpha \in \Gamma$ implies $a\alpha s \in A$.

NOTE 2.18 : A nonempty subset A of a Γ -semigroup S is a *right* Γ -*ideal* of S iff $A\Gamma S \subseteq A$.

DEFINITION 2.19 : A nonempty subset A of a Γ -semigroup S is said to be a *two sided* Γ -*ideal* or simply a Γ -*ideal* of S if $s \in S$, $a \in A$, $\alpha \in \Gamma$ imply $s\alpha a \in A$, $a\alpha s \in A$.

DEFINITION 2.20 : A Γ -ideal A of a Γ -semigroup S is said to be a *maximal* Γ -*ideal* provided A is a proper Γ -ideal of S and is not properly contained in any proper Γ -ideal of S.

DEFINITION 2.21: A Γ -ideal P of a Γ -semigroup S is said to be a *completely prime* Γ -*ideal* provided $x, y \in S$ and $x\Gamma y \subseteq P$ implies either $x \in P$ or $y \in P$.

DEFINITION 2.22: A Γ - ideal P of a Γ -semigroup S is said to be a *prime* Γ - *ideal* provided A, B are two Γ -ideals of S and $A\Gamma B \subseteq P \Rightarrow$ either $A \subseteq P$ or $B \subseteq P$.

DEFINITION 2.23: A Γ -ideal A of a Γ -semigroup S is said to be a *completely semiprime* Γ - *ideal* provided $x\Gamma x \subseteq A$; $x \in S$ implies $x \in A$.

DEFINITION 2.24: A Γ - ideal A of a Γ -semigroup S is said to be a *semiprime* Γ - *ideal* provided $x \in S$, $x\Gamma S^{l}\Gamma x \subseteq A$ implies $x \in A$.

DEFINITION 2.25: If A is a Γ -ideal of a Γ -semigroup S, then the intersection of all prime Γ -ideals of S containing A is called *prime* Γ -*radical* or simply Γ -*radical* of A and it is denoted by \sqrt{A} or *rad* A.

THEOREM 2.26 [5]: If A is a Γ -ideal of a Γ -semigroup S then \sqrt{A} is a semiprime Γ -ideal of S.

THEOREM 2.27 [5]: A Γ - ideal Q of a Γ -semigroup S is a semiprime Γ - ideal of S iff $\sqrt{(Q)} = Q$ implies $x \Gamma S^{l} \Gamma y \subseteq A$.

DEFINITION 2.28 : An element *a* of a Γ -semigroup S is said to be *left cancellative* provided $a \Gamma x = a \Gamma y$ for all $x, y \in S$ implies x = y.

DEFINITION 2.29: An element *a* of a Γ - semigroup S is said to be *right cancellative* provided $x \Gamma a = y \Gamma a$ for all $x, y \in S$ implies x = y.

DEFINITOIN 2.30: An element a of a Γ - semigroup S is said to be *cancellative* provided it is both left and right cancellative element.

DEFINITOIN 2.31: A Γ -ideal A of a Γ - semigroup S is said to be semiprimary provided \sqrt{A} is a prime Γ -ideal of S.

DEFINITOIN 2.32: A Γ - semigroup S is said to be a semiprimary Γ - semigroup provided every Γ - ideal of S is a semiprimary Γ - ideal.

DEFINITION 2.33 : A Γ -ideal A of a Γ - semigroup S is said be a *left primary* Γ -*ideal* provided

i) If X, Y are two Γ -ideals of S such that $X \Gamma Y \subseteq A$ and $Y \not\subseteq A$ then $X \subseteq \sqrt{A}$.

ii) \sqrt{A} is a prime Γ -ideal of S.

DEFINITION 2.34 : A Γ -ideal A of a Γ - semigroup S is said be a *right primary* Γ -*ideal* provided

i) If X, Y are two Γ -ideals of S such that $X \Gamma Y \subseteq A$ and $X \not\subseteq A$ then $Y \subseteq \sqrt{A}$.

ii) \sqrt{A} is a prime Γ -ideal of S.

EXAMPLE 2.35 : Let $S = \{a, b, c\}$ and $\Gamma = \{x, y, z\}$. Define a binary operation . in S as shown in the following table.

•	а	b	С
а	а	а	а
b	а	а	а
С	а	b	С

Define a maping $S X\Gamma X S \to S$ by $a \ ab = ab$, for all $a, b \in S$ and $a \in \Gamma$. It is easy to see that S is a Γ -semigroup. Now consider the Γ -ideal $\langle a \rangle = S^{l}\Gamma a \ \Gamma S^{l} = \{a\}$. Let $p \ \Gamma q \subseteq \langle a \rangle$, $p \notin \langle a \rangle$ $\Rightarrow q \in \sqrt{\langle a \rangle} \Rightarrow (q \ \Gamma)^{n-1} q \subseteq \langle a \rangle$ for some $n \in N$. Since $b\Gamma c \subseteq \langle a \rangle$, $c \notin \langle a \rangle \Rightarrow b \in \langle a \rangle$. Therefore $\langle a \rangle$ is left primary. If $b \notin \langle a \rangle$ then $(c \ \Gamma)^{n-l} c \notin \langle a \rangle$ for any $n \in N \Rightarrow c \notin \sqrt{\langle a \rangle}$. Therefore $\langle a \rangle$ is not right primary.

DEFINITION 2.36: A Γ -ideal A of a Γ - semigroup S is said to be a **primary** Γ -ideal provided A is both left primary Γ -ideal and right primary Γ -ideal. **DEFINITION 2.37:** A Γ -ideal A of a Γ - semigroup S is said to be a **principal** Γ -ideal provided A is a Γ -ideal generated by a single element **a**. It is denoted by J[a] = <a>.

DEFINITION 2.38: An element *a* of a Γ -semigroup S with 1 is said to be *left invertible* or *left unit* provided there is an element $b \in S$ such that $b \Gamma a = 1$.

DEFINITION 2.39: An element *a* of a Γ -semigroup S with 1 is said to be *right invertible* or *right unit* provided there is an element $b \in S$ such that $a \Gamma b = 1$.

DEFINITION 2.40: An element a of a Γ -semigroup S is said to be *invertible* or a *Unit* in S provided it is both left and right invertible element in S.

DEFINITION 2.41: A Γ -ideal A of a Γ - semigroup S is said to be *pseudo symmetric* provided $x, y \in S$, $x \Gamma y \subseteq A$ implies $x \Gamma s \Gamma y \subseteq A$, for all $s \in S$.

NOTE 2.42: A Γ -ideal A of a Γ - semigroup S is *pseudo symmetric* iff $x, y \in S, x \Gamma y \subseteq A$ implies $x\Gamma S^{1}\Gamma y \subseteq A$.

DEFINITION 2.43: A Γ - semigroup S is said to be *pseudo symmetric* provided every Γ -ideal is a pseudo symmetric Γ -ideal.

DEFINITION 2.44: A Γ -ideal A in a Γ - semigroup S is said to be a **semi pseudo symmetric** Γ -ideal provided for any natural number $n, x \in S$, $(x \Gamma)^{n-1} x \subseteq A \Rightarrow (\langle x \rangle \Gamma)^{n-1} \langle x \rangle \subseteq A$.

DEFINITION 2.45: A Γ - semigroup S is said to be an *Archimedian* Γ - *semigroup* provided for any *a*, *b* \in S, there exists a natural number *n* such that $(a\Gamma)^{n-1}a \subseteq \langle b \rangle$.

DEFINITION 2.46: A Γ -semigroup S is said to be a *strongly Archimedean* Γ -*semigroup* provided for any $a, b \in S$, there is a natural number n such that $(\langle a \rangle \Gamma)^{n \cdot l} \langle a \rangle \subseteq \langle b \rangle$.

DEFINITION 2.47: An element *a* of a Γ - semigroup S is said to be *semisimple* provided *a* $\epsilon < a > \Gamma < a >$, that is, $<a > \Gamma < a > = <a >$.

DEFINITION 2.48: A Γ - semigroup S is said to be *semisimple* Γ - *semigroup* provided every element is a semisimple.

DEFINITOIN2.49: A Γ -semigroup S is said to be a *simple \Gamma-semigroup* provided S has no proper Γ - ideals.

DEFINITION 2.50: An element *a* of a Γ -semigroup S is said to be a *\Gamma*-*idempotent* provided $a \propto a = a$ for all $\alpha \in \Gamma$.

NOTE 2.51: If an element *a* of a Γ - semigroup S is a Γ -idempotent, then $a \Gamma a = a$.

DEFINITION 2.52: A Γ - semigroup S is said to be an **idempotent** Γ - **semigroup** or a **band** provided every element in S is a Γ -idempotent.

DEFINITION 2.53: A Γ - semigroup S is said to be a **globally idempotent** Γ - semigroup provided $S \Gamma S = S$.

DEFINITION 2.54: A Γ - semigroup S is said to be a *left duo* Γ - *semigroup* provided every left Γ - ideal of S is a two sided Γ - ideal of S.

DEFINITION 2.55: A Γ - semigroup S is said to be a *right duo* Γ - *semigroup* provided every right Γ - ideal of S is a two sided Γ - ideal of S.

DEFINITION 2.56: A Γ - semigroup S is said to be a *duo* Γ - *semigroup* provided it is both a left duo Γ - semigroup and a right duo Γ - semigroup.

DEFINITION 2.57: A non empty subset P of a Γ -semigroup S is said to be an **Archimedian** Γ -sub **semigroup** of S provided P is itself an Archimedain Γ -semigroup.

DEFINITOIN 2.58: An element *a* of a Γ - semigroup S is said to be *regular* provided a = a $\alpha x \beta a$ for some $x \in S$, $\alpha, \beta \in \Gamma$. i.e, $a \in a \Gamma S \Gamma a$.

DEFINITION 2.59: A Γ - semigroup S is said to be a *regular* Γ - *semigroup* provided every element is regular.

DEFINITION 2.60: An element *a* of a Γ - semigroup S is said to be *left regular* provided $a = a\alpha a\beta x$, for some $x \in S$, α , $\beta \in \Gamma$. i.e, $a \in a\Gamma a \Gamma S$.

DEFINITION 2.61: An element *a* of a Γ - semigroup S is said to be *right regular* provided $a = x\alpha a\beta a$, for some $x \in S$, α , $\beta \in \Gamma$. i.e, $a \in S\Gamma a\Gamma a$.

DEFINITION 2.62: An element *a* of a Γ - semigroup S is said to be *completely regular* provided there exists an element $x \in S$ such that $a = a\alpha x\beta a$ for some α , $\beta \in \Gamma$ and $a\alpha x = x\beta a$, for all α , $\beta \in \Gamma$. *i.e*, $a \in a \Gamma x\Gamma a$ and $a\Gamma x = x \Gamma a$.

DEFINITION 2.63: A Γ - semigroup S is said to be a *completely regular* Γ - *Semigroup* provided every element is completely regular.

DEFINITION 2.64: An element a of a Γ -semigroup S is said to be *intra regular* provided

 $a = x \alpha a \beta a \gamma y$ for some $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$.

THEOREM 2.65 [5] : If A and B are any two Γ -ideals of a Γ -semigroup S, then

- (1) $A \subseteq B \Rightarrow \sqrt{(A)} \subseteq \sqrt{(B)}.$
- (2) $\sqrt{(\mathbf{A} \ \Gamma \mathbf{B})} = \sqrt{(\mathbf{A} \cap \mathbf{B})} = \sqrt{(\mathbf{A})} \cap \sqrt{(\mathbf{B})}.$
- (3) $\sqrt{(\sqrt{A})} = \sqrt{A}$.

THEOREM 2.66[6]: Let A be a semi pseudo symmetric Γ -ideal in a Γ -semigroup S. Then the following are equivalent.

- 1) A_I = The intersection of all completely prime Γ -ideals in S containing A.
- 2) A_I = The intersection of all minimal completely prime Γ - ideals in S containing A.
- 3) A_1 = The minimal completely semiprime Γ - ideal relative to containing A.
- 4) $A_2 = \{ x \in S : (x \Gamma)^{n-1}x \subseteq A \text{ for some natural number } n \}.$
- 5) A_3 = The intersectin of all prime Γ -ideals containing A.
- 6) A_3' = The intersection of all minimal prime Γ - ideals containing A.
- 7) A_3 " = The minimal semiprime Γ ideal relative to containing A.
- 8) $A_4 = \{ x \in S : (\langle x \rangle \Gamma)^{n-1} \subseteq A \text{ for some natural number } n \}.$

THEOREM 2.67 [6]: If S is a semi pseudo symmetric Γ -semigroup then the following are equivalent.

- 1) S is strongly Archimedian Γ -semigroup.
- 2) S is an Archimedain Γ -semigroup.
- 3) S has no proper completely prime Γ -ideals.
- 4) S has no proper completely semi prime Γ -ideals.
- 5) S has no proper prime Γ -ideals.
- 6) S has no proper semiprime Γ -ideals.

THEOREM 2.68 [7]: Let S be a Γ -semigroup with identity and let M be the unique maximal Γ -ideal of S. If $\sqrt{A} = M$ for some Γ -ideal of S. Then A is a primary Γ -ideal.

THEOREM 2.69 [7]: A Γ -semigroup S is semiprimary iff prime Γ -ideals of S form a chain under set inclusion.

THEOREM 2.70 [7]: If S is a duo Γ -semigroup, then the following are equivalent for any element $a \in S$.

- 1) *a* is completely regular.
- 2) *a* is regular.
- 3) *a* is left regular.
- 4) *a* is right regular.
- 5) *a* is intra regular.
- 6) *a* is semisimple.

THEOREM 2.71 [8]: Every duo Γ-semigroup is a pseudo symmetric Γ-semigroup.

THEOREM 2.72 [6]: Every pseudo symmetric Γ -semigroup is a semi pseudo symmetric Γ -semigroup.

THEOREM2.73 [8]:Every commutativeΓ-semigroupisapseudoΓ-semigroup.

DEFINTION 2.74: A Γ -semigroup S is said to be a Γ -group provided S has no left and right Γ -ideals.

3.<u>PRIME Γ-IDEALS ARE MAXIMAL</u> <u>Γ-IDEALS:</u>

THEOREM 3.1: Let S be a Γ - semigroup with identity. If (non zero, assume this if S has zero) proper prime Γ -ideals in S are maximal then S is primary Γ -semigroup.

Proof: Since S contains identity, S has a unique maximal Γ - ideal M, which is the union of all proper Γ - ideals in S. If A is a (non zero) proper Γ - ideal in S, then $\sqrt{A} = M$ and hence by theorem 2.68, A is primary Γ - ideal. If S has zero and if $\langle 0 \rangle$ is a prime Γ -ideal, then $\langle 0 \rangle$ is primary and hence S is primary. If $\langle 0 \rangle$ is not a prime Γ -ideal, then $\sqrt{\langle 0 \rangle} = M$ and hence by theorem 2.68, $\langle 0 \rangle$ is a primary Γ - ideal. Therefore S is a primary Γ - semigroup.

Note 3.2: If the Γ -semigroup S has no identity, then from example 2.35 we remark that theorem 3.1 is not true even if the Γ -semigroup has a unique maximal Γ -ideal. The converse of the above theorem is not true even if the Γ -semigroup is commutative.

Example 3.3: Let $S = \{a, b, 1\}$ and $\Gamma = S$. Define a binary operation . in S as shown in the following table.

•	а	b	1
а	а	а	а
b	а	b	b
1	а	b	1

Now S is a primary Γ -semigroup in which the prime Γ -ideal $\langle a \rangle$ is not a maximal Γ -ideal.

THEOREM 3.4: Let S be a right cancellative quasi commutative Γ -semigroup. If S is a primary Γ - semigroup or a Γ - semigroup in which semiprimary Γ - ideals are primary, then for any primary Γ -ideal Q, \sqrt{Q} is non-maximal implies $Q = \sqrt{Q}$ is prime.

Proof: Since \sqrt{Q} is non maximal, there exists a Γ - ideal A in S such that $\sqrt{Q} \subseteq A \subseteq S$. Let $a \in A \setminus \sqrt{Q}$ and $b \in \sqrt{Q}$. Now $Q \subseteq Q \cup \langle a \gamma b \rangle \subseteq$ \sqrt{Q} for $\gamma \in \Gamma$. This implies by theorem 2.65, $\sqrt{Q} \subseteq \sqrt{Q} \cup \langle a\Gamma b \rangle \subseteq \sqrt{\sqrt{Q}} = \sqrt{Q}$. Hence $\sqrt{Q} \cup \langle a \rangle \rangle = \sqrt{Q}$, for some $\gamma \in \Gamma$. Thus by hypothesis Q $\cup \langle a\Gamma b \rangle$ is a primary Γ -ideal. Let $s \in S \setminus A$. Then $a \Gamma s \Gamma b \subseteq Q \cup \langle a \Gamma b \rangle$. Since $a \notin \sqrt{Q}$ $= \sqrt{Q} \cup \langle a\Gamma b \rangle$ and $Q \cup \langle a\Gamma b \rangle$ is a primary Γ -ideal, $s\Gamma b \subseteq \mathbb{Q} \cup \langle a\Gamma b \rangle$. If $syb \in \langle a\Gamma b \rangle$, then $s\alpha b = r\beta a\gamma b$ for some $r \in S$ and $\alpha, \beta, \gamma \in \Gamma$ and hence by right cancellative property, we have $s = r\beta a \in A$, implies $s \in A$ it is a contradiction. Thus $s\gamma b \in Q$, which implies, since $s \notin \sqrt{Q}$, $b \in Q$ and hence $\sqrt{Q} = Q$. Therefore $Q = \sqrt{Q}$ and so Q is prime.

THEOREM 3.5: Let S be a right cancellative quasi commutative Γ - semigroup. If S is either a primary Γ - semigroup or a Γ - semigroup in which semiprimary Γ - ideals are primary, then proper prime Γ - ideals in S are maximal.

Proof: First we show that if P is a minimal prime Γ - ideal containing a principal Γ - ideal $\langle d \rangle$, then P is a maximal Γ - ideal. Suppose P is not a maximal Γ - ideal. Write M = S\P and A = { $x \in S$; $xam \in \langle d \rangle$, for some $m \in M$, $\alpha \in \Gamma$ }. Clearly A is a

 Γ - ideal in S. If $x \in A$ then $x \alpha m \in \langle d \rangle \subseteq P$ and hence $x \in P$. So $A \subseteq P$. Let $b \in P$ and suppose N = { $(b\alpha)^{K-1}b\beta m$ such that $m \in M, \alpha, \beta \in \Gamma$ and k is a nonnegative integer}. Now N is a Γ -sub semigroup containing M properly. Since $bam \in N$ and $b\alpha m \notin M$. Since P is a minimal prime Γ - ideal containing $\langle d \rangle$, M is a maximal Γ -sub semigroup not meeting $\langle d \rangle$. Since N contains M properly we have $N \cap \langle d \rangle \neq \emptyset$. So there exists a natural number k such that $(b\gamma)^k m \in \langle d \rangle$ this implies $(b\alpha)^{k-1} b \in A$ implies $b \in \sqrt{A}$ therefore $P \subseteq \sqrt{A} \subseteq \sqrt{P} = P$. So $P = \sqrt{A}$. Now by hypothesis , A is a primary Γ – ideal . Since P is not a maximal Γ -ideal, we have by theorem 3.4, P = A. Now P is also minimal prime Γ -ideal containing $\langle dyd \rangle$. Let $B = \{ y \in S : y \alpha m \in \langle dy d \rangle \text{ for some } m \in M, \alpha \in \Gamma, \}$ $\gamma \in \Gamma$. As before we have P = B. Since $d \in P = A$ = B we have $d\gamma m = s\alpha d\delta d$ for some $s \in S^1$, $\alpha, \delta \in \Gamma$. Since S is a quasi commutative Γ-semigroup, $d\alpha m = (m\alpha)^n d$ for some natural number *n* implies $(m\Gamma)^n d = s \Gamma d\Gamma d$ implies $(m\Gamma)^{n-1} m\Gamma d = s\Gamma d\Gamma d$ implies $(m\Gamma)^{n-1}m = s \ \Gamma d \subseteq \langle d \rangle$. This is a contradiction. So P is a maximal Γ - ideal. Now if P is any proper prime Γ -ideal, then for any $d \in P$, $\langle d \rangle$ is contained in a minimal prime Γ -ideal, which is maximal by the above and hence p is a maximal Γ-ideal.

THEOREM 3.6: If S is a cancellative commutative Γ -semigroup such that S is a primary Γ -semigroup or in S a Γ -ideal A is primary if and only if \sqrt{A} is a prime Γ -ideal, then the proper Γ -ideals in S are maximal.

Proof: The proof of this theorem is a direct consequence of theorem 3.5.

THEOREM 3.7: Let S be a right cancellative quasi commutative Γ -semigroup with identity. Then the following are equivalent.

1) Proper prime Γ-ideals in S are maximal.

2) S is a primary Γ-semigroup.

3) Semiprimary Γ-ideals in S are primary.

4) If x and y are not units in S, then there exists natural numbers n and m such that $(x \ \Gamma)^{n-1} \ x = y\Gamma s$ and $(y\Gamma)^{m-1} \ y = x\Gamma r$. For some s, $r \in S$.

Proof: Combining theorem 3.1 and 3.5 we have 1), 2) and 3) are equivalent; Assume 1). Since S contains identity, then S has a unique maximal Γ -ideal M which is the only prime Γ -ideal in S. If x and y are not units, then x, $y \in M$ implies $\sqrt{\langle x \rangle} = \sqrt{\langle y \rangle} = M$ implies $x \in \sqrt{\langle y \rangle}$, $y \in \sqrt{\langle x \rangle}$, implies $(x \alpha)^{n-1} x \in \langle y \rangle$, $(y \beta)^{m-1} y \in \langle x \rangle$, $\alpha, \beta \in \Gamma$ implies $(x \alpha)^{n-1} x = \gamma \Gamma s$, $(y \Gamma)^{m-1} y = x \Gamma r$, $r, s \in S$. Assume 4). Let $x \Gamma y \subseteq A$. If y is a unit in S then $x \in A$. If $y \notin A$ and $(x \gamma)^{n-1} x = y \gamma s$ implies $(x \gamma)^n x = x \gamma \gamma s \in A$. Therefore if $x \gamma y \in A$, $y \notin A$ implies $x \in \sqrt{A}$. Therefore A is left primary. Similarly A is right primary, Hence A is primary. Therefore S is primary.

THEOREM 3.8: Let S be a right cancellative quasi commutative Γ -Semigroup not containing identity. Then the following are equivalent.

2) Semiprimary Γ-ideals in S are primary Γ-ideals.

3) S has no proper prime Γ-ideals.

4) If $x, y \in S$, there exists natural numbers n, msuch that $(x \Gamma)^{n-1} x = y \Gamma s$, $(y \Gamma)^{m-1} y = x \Gamma r$, for some $s, r \in S$.

Proof: 1) implies 2) is clear. Assume 2), by theorem 3.5, proper prime Γ -ideals in S are maximal and hence if P is any prime Γ -ideal, P is maximal. Now $S \setminus P$ is a Γ - group. Let *e* be the identity of the Γ - group S\P. Now *e* is an idempotent in S and since S is a right cancellative Γ -semigroup, *e* is a right identity of S. Since S is a quasi commutative Γ -semigroup idempotent in S are commutative with every element of S and hence e is the identity of S. It is a contradiction. So S has no proper prime Γ -ideals. Therefore 2) implies 3). Assume 3). Since S has no proper prime Γ -ideals, we have for any Γ -ideal A of S, $\sqrt{A} = S$. Let x, $y \in S$. Now $\sqrt{\langle x \rangle} =$ $\sqrt{\langle y \rangle} = S$, implies $x \in \sqrt{\langle y \rangle}$, $y \in \sqrt{\langle x \rangle}$ implies $(x \alpha)^{n-1}x = y\beta s, (y \gamma)^{m-1}y = x \delta s$, for some $s, r \in S$ and $\alpha, \beta, \gamma, \delta \in \Gamma$. Therefore 3) implies 4). Assume 4). Let A be any Γ -ideal in S. Let $x \alpha y \in A$, for some $\alpha \in \Gamma$, $y \notin A$, $x, y \in S$, implies $(x \Gamma)^{n-1} x =$ y Γs implies $(x \gamma)^n x = x\gamma\gamma\gamma s \in A$ implies $x \in \sqrt{A}$. Therefore if $x \neq y \in A$, $y \notin A$ implies $x \in \sqrt{A}$. Therefore A is left primary. Similarly A is right primary. Hence A is primary. Therefore S is primary

THEOREM 3.9: Let S be a right cancellative quasi commutative Γ - semigroup. Then the following are equivalent.

1) S is a primary Γ -semigroup.

- 2) Semiprimary Γ-ideals in S are primary.
- **3)** Proper prime Γ–ideals in S are maximal.

Proof: 1) \Rightarrow 2): If S has identity by Theorem 3.7, semiprimary Γ -ideals in S are primary. If S has no identity by Theorem 3.8, Semiprimary Γ -ideals in S are primary. 2) implies 3); by theorem 3.5. Assume 3): If S has identity, by theorem 3.7, 3) \Rightarrow 1). If S has no proper Γ - ideals, by Theorem 3.8, (3) implies (1).

NOTE: Furthermore S has no idempotents except identity if it exists.

THEOREM 3.10: Let S be a cancellative commutative Γ - semigroup. Then S is a primary Γ - semigroup if and only if proper prime

 Γ - ideals in S are maximal. Furthermore S has no idempotents except identity, if it exists.

Proof: The proof is a direct consequence of Theorem 3.9.

THEOREM 3.11: Let S be a semi pseudo symmetric Γ -semigroup with identity. Then the following are equivalent.

1) Proper prime Γ -ideals in S are maximal.

2) S is either a simple Γ -semigroup or S has a unique prime Γ -ideal P such that S is a 0-simple extension of the Archimedian sub Γ -semigroup P.

In either case S is a primary Γ -semigroup and S has atmost one globally idempotent principal Γ -ideal.

Proof: Suppose proper prime Γ -ideals in S are maximal. If S is a simple Γ -semigroup then S has no proper Γ -ideals implies S has no proper prime Γ - ideals implies S is an Archimedian semigroup by Theorem 2.67. If S is not a simple Γ -semigroup, then S has a Unique maximal Γ -ideal P, which is also the unique prime Γ -ideal. Since P is a maximal Γ -ideal in S, we have S\P is a 0-simple Γ -semigroup. Let $a, b \in P$. Then $\sqrt{\langle a \rangle} = \sqrt{\langle b \rangle} = P$. So by theorem 2.66, $(\langle a \rangle \Gamma)^{n-1} \langle a \rangle \subseteq \langle b \rangle$, for some natural number n implies $(a \gamma)^{n+1}a \in P\gamma a \gamma P$, $\gamma \in \Gamma$. So P is an Archimedian Γ -sub semigroup of S.Therefore 1) implies 2).

Assume 2):

Case i): If S is simple then S has no proper prime Γ -ideals and hence 1) is true.

Case ii): Suppose S is not simple, then S has a unique proper prime Γ -ideal P such that S is a 0-simple extension of P implies S\P is 0-simple. Therefore there exists no proper Γ -ideals of S containing P. Therefore P is maximal. Therefore 1) holds. By theorem 3.1, S is a primary Γ -semigroup. Suppose $\langle a \rangle$ and $\langle b \rangle$ be two proper globally idempotent principal Γ -ideals. Then $\sqrt{\langle a \rangle} = \sqrt{\langle b \rangle} = P$ by theorem 2.66, $(\langle a \rangle P)^{n \cdot l} \langle a \rangle \subseteq \langle b \rangle$ for some *n*. Since $\langle a \rangle$ is globally idempotent, $\langle a \rangle \subseteq \langle b \rangle$. Similarly we can prove that $\langle b \rangle \subseteq \langle a \rangle$. Therefore $\langle a \rangle = \langle b \rangle$.

THEOREM 3.12: Let S be a duo Γ -semigroup with identity. Then the following are equivalent. 1) Proper prime Γ - ideals in S are maximal.

2) S is either a Γ - group and so Archimedian or S has a unique prime Γ -ideal P such that S = G U P, where G is the Γ -group of units in S and P is an Archimedian sub Γ -semigroup of S.

In either case S is a primary Γ -semigroup and S has atmost one idempotent different from identity.

¹⁾ S is a primary Γ-semigroup.

Proof: If S is a duo Γ - semigroup which is not a Γ - group, then S has a unique maximal Γ - ideal M and hence M is the unique prime Γ - ideal, by assuming 1). Now S\M is the Γ - group of units in S. By the theorem 3.11, 1) and 2) are equivalent. Clearly S is a primary Γ - semigroup. If *e* and *f* are two proper idempotents in S, then $\langle e \rangle$ and $\langle f \rangle$ are two globally idempotent principal Γ -ideals. So by theorem 3.11, *e* = *f*.

THEOREM 3.13: Let S be a commutative Γ - semigroup with identity. Then the following are equivalent.

1) Prime Γ-ideals are maximal.

2) S is either a Γ -group and so Archimedian or S has a unique prime Γ - ideal P such that S = GUP, where G is the Γ -group of units of S and P is an Archimedian Γ -sub semigroup of S.

In either case S is a primary Γ -semigroup and S has atmost one idempotent from identity.

Proof: The proof of this theorem is a direct consequence of theorem 3.12.

THEOREM 3.14: Let S be a semi pseudo symmetric Γ -semigroup without identity. Then the following are equivalent.

- 1) Proper prime Γ -ideals in S are maximal and globally idempotent principal Γ -ideals form a chain.
- 2) S is an Archimedian Γ -semigroup or there exists a unique prime Γ -ideal P in S and S is a 0-simple extention of the Archimedian sub Γ -semigroup P.
- 3) Proper prime Γ-ideals in S are maximal and S has atmost two distinct globally idempotent principal Γ-ideals with one of its Γ-radical is S itself.

Proof: If S has no proper Prime Γ -ideals then by theorem 2.67, S is an Archimedian Γ -semigroup. Suppose S has proper prime Γ -ideals. Let M and N be two proper prime Γ -ideals in S, by assumption M and N are maximal Γ -ideals in S and every element in $S \setminus N$ and $S \setminus M$ is semisimple. Let $a \in S \setminus M$ and $b \in S \setminus N$. Now a and b are semisimple elements implies $\langle a \rangle$ and $\langle b \rangle$ are globally idempotent Principal Γ -ideals. By hypothesis either $\langle a \rangle \subseteq \langle b \rangle$ or $\langle b \rangle \subseteq \langle a \rangle$. Suppose $\langle a \rangle \subseteq \langle b \rangle$. If $b \in M$ then $a \in M$, this is a contradiction. So $b \notin M$ implies $b \in S \setminus M$ and thus $\langle b \rangle = \langle a \rangle$. Similarly we can show that if $\langle b \rangle \subseteq \langle a \rangle$ then also $\langle a \rangle = \langle b \rangle$. From this we can conclude that $S \setminus M = S \setminus N$ and hence M = N. Thus S has a unique prime Γ -ideal. By an argument similar to theorem 3.11, we can prove that P is an Archimedian sub Γ -semigroup of S. Therefore

1) implies 2). If S is an Archimedian Γ -semigroup then clearly S has no proper prime Γ -ideals, by theorem 2.67. Let $\langle a \rangle$ and $\langle b \rangle$ be two globally idempotent principal Γ -ideals. Now since S has no proper prime Γ -ideals, we have $\sqrt{\langle a \rangle} = \sqrt{\langle b \rangle} = S$. By theorem 2.66, $\langle a \rangle^{n-1}$ $\Gamma \langle a \rangle \subseteq \langle b \rangle$ and $\langle b \rangle^{m-1} \Gamma \langle b \rangle \subseteq \langle a \rangle$ for some natural numbers *n* and *m*. Thus we have $\langle a \rangle \subseteq \langle b \rangle$ and $\langle b \rangle \subseteq \langle a \rangle$. So $\langle a \rangle = \langle b \rangle$. Suppose S has a unique prime Γ -ideal P such that S is a 0-simple extension of the Archimedian Γ -sub semigroup P. Since S\P is a 0- simple Γ - semigroup. We have P is a maximal Γ -ideal. Now for every $a, b \in S \setminus P$, we have $\langle a \rangle = \langle b \rangle$ and $\sqrt{\langle a \rangle} = \sqrt{\langle b \rangle} = S$. Let $\langle a \rangle$ and $\langle b \rangle$ be two globally idempotent principal Γ -ideals. Since a, b \in P. Now $\sqrt{\langle a \rangle} = \sqrt{\langle b \rangle} = P$ and hence $\langle a \rangle = \langle b \rangle$. Thus S has at most two proper globally idempotent principal Γ -ideals one of its Γ -radicals is S itself. Therefore 2) implies 3).

Let $\langle a \rangle$ and $\langle b \rangle$ be two globally idempotent principal Γ -ideals in S. Let $\sqrt{\langle b \rangle} = S$, then $a \in \sqrt{\langle b \rangle}$. Therefore $\langle a \rangle \subseteq \sqrt{\langle b \rangle}$ implies $(\langle a \rangle p)^{n-1} \langle a \rangle \subseteq \langle b \rangle$ implies $\langle a \rangle \subseteq \langle b \rangle$. Therefore globally idempotent principal Γ -ideals in S form a chain. Therefore 3) implies 1).

THEOREM 3.15: Let S be a duo Γ -semigroup without identity. Then the following are equivalent.

1) Proper prime Γ-ideals in S are maximal.

2) S is Archimedian or there exists only one prime Γ -ideal P in S and S = P U (S\P) where P is an Archimedian Γ -semigroup and S\P is a

Г-group.

3) Proper prime Γ-ideals in S are maximal and S has atmost two idempotents.

Proof: The proof of this theorem follows from theorem 3.14.

NOTE: Every commutative Γ -semigroup is a duo Γ -semigroup.

THEOREM 3.16: Let S be a commutative Γ -semigroup without identity (1), (2), (3) of theorem 3.15 are equivalent.

Proof: The proof this theorem is an immediate consequence of theorem 3.15.

THEOREM 3.17: Let S be a semi pseudo symmetric Γ -semigroup with S \neq S Γ S. Then S is a primary Γ -semigroup in which proper prime Γ -ideals in S are maximal if and only if S is an Archimedian Γ -semigroup.

Proof: Let S be an Archimedian Γ -semigroup. Then by theorem 2.67, S has no proper prime Γ -ideals. Hence it is trivially true that proper prime Γ -ideals in S are maximal. Let A be any Γ -ideal in S such that $\langle x \rangle \Gamma \langle y \rangle \subseteq A$ and $y \notin A$. Since S is an Archimedian Γ -semigroup there exists a natural number *n* such that $(x\gamma)^{n-1} x \in S\Gamma \gamma \Gamma S$, for $\gamma \in \Gamma$. Now $(x \gamma)^n x \in \langle x \rangle \Gamma \langle y \rangle \subseteq A$. So by theorem 2.66, $x \in \sqrt{A}$. Thus A is left primary. Similarly we can show that A is right primary. Therefore S is a primary Γ -semigroup in which proper prime Γ -ideals in S are maximal.

Conversly suppose that S is a primary Γ -semigroup in which proper prime Γ -ideals in S are maximal. Now S is semiprimary Γ -semigroup and hence by theorem 2.69, prime Γ -ideals in S form a chain. Since prime Γ -ideals are maximal if S has proper prime Γ -ideals, then S has a unique proper prime Γ -ideal which is also the unique maximal Γ -ideal.

Now every element of S\P is semi simple and hence S\P \subseteq S Γ S. Let $a \in$ S\P and $x \in$ P. If $\langle a \rangle \Gamma \langle x \rangle \neq \langle x \rangle$ then since S is a primary Γ -semigroup and $x \notin \langle a \rangle \Gamma \langle x \rangle$, we have $a \in \sqrt{\langle a \rangle} \Gamma \langle x \rangle =$ P. This is a contradiction. So $\langle a \rangle \Gamma \langle x \rangle = \langle x \rangle$ for all $x \in$ P and hence P \subseteq S Γ S. Thus S Γ S = S. So S has no proper prime Γ -ideals and hence by theorem 2.67, S is an Archimedian Γ -semigroup.

THEOREM 3.18: Let S be a duo Γ -semigroup without identity. Then S is a primary Γ -semigroup in which proper prime Γ -ideals are maximal if and only if S is an Archimedian Γ -semigroup.

Proof: If S is an Archimedian Γ -semigroup, then clearly S is a primary Γ -semigroup in which proper prime Γ -ideals are maximal, by theorem 2.67 and by theorem 2.71, S is pseudo symmetric Γ -semigroup, by theorem 2.72, every pseudo symmetric Γ -semigroup is semi pseudo symmetric Γ -semigroup. Therefore duo Γ -semigroup is semi pseudo symmetric Γ -semigroup and by theorem 3.17.

Conversely if S is a primary Γ -semigroup in which proper prime Γ -ideals are maximal, then similar to the theorem 3.17, if S is not an Archimedian Γ -semigroup then S has a unique proper prime Γ -ideal P which is also the unique maximal Γ -ideal. Then S\P is a Γ -group and if *e* is the identity of S\P then as in the above theorem we can show that $\langle e \rangle \Gamma \langle x \rangle = \langle x \rangle$ for all $x \in P$. Since S is a duo Γ -semigroup, we have *e* is the left identity of S. Similarly we get *e* is the right identity of S, this is a contradiction. So S is an Archimedian Γ -semigroup.

THEOREM 3.19: Let S be a commutative Γ -semigroup without identity. Then S is a primary Γ -semigroup in which proper prime Γ -ideals are maximal if and only if S is an Archimedian Γ -semigroup.

Proof: The proof of this theorem is an immediate consequence of theorem 3.18.

THEOREM 3.20: Let S be a quasi commutative Γ -semigroup containing cancellable elements. Then the following are equivalent.

1) The proper prime Γ-ideals in S are maximal.

2) S is a Γ -group or S is a cancellative Archimedian Γ -semigroup not containing identity or S is an extension of an Archimedian Γ -semigroup by a Γ -group S containing an identity.

Proof: Suppose proper prime Γ -ideals in S are maximal. If S contains an identity and S is not a Γ -group, then S contains a unique maximal Γ -ideal, which is also the unique prime Γ -ideal by virtue of the hypothesis. Then $\sqrt{\langle a \rangle} = M$ for every $a \in M$. So for any $b \in M$, $\langle b \rangle^{n-1} \Gamma \langle b \rangle \subseteq \langle a \rangle$ for some natural number *n*. Thus $(b \gamma)^{n+1} b \in M\Gamma a \Gamma M$ and hence M is an Archimedian Γ -sub semigroup, Clearly S\M is a Γ -group.

Assume that S does not contain an identity. If Z, the set of all non cancellable elements is not empty, then Z is a prime Γ -ideal. Hence Z is a maximal Γ -ideal in S. Since S contains cancellable elements. Now for any $b \in S \setminus Z$, we have $S = Z \cup$ $\langle b \rangle = \mathbb{Z} \cup (\langle b \rangle \Gamma \langle b \rangle)$. From this we obtain *b* is semisimple and hence by theorem 2.70, b is completely regular. So there is an element $x \in S$ such that $b = b\alpha x \gamma b$ and $b \alpha x = x \gamma b$ is an idempotent . If $x \in Z$ then since Z is a Γ -ideal, we have $b \in \mathbb{Z}$. So $x \notin \mathbb{Z}$ and hence $x \neq b$ is a cancellable idempotent. Therefore S contains an identity. This is a contradiction. So $Z = \phi$ and hence S is a cancellable Γ -semigroup, by theorem 3.9, S is a primary Γ -semigroup and hence by theorem 3.18, S is an Archimedian Γ -semigroup.

Conversely if S is either a Γ -group or a cancellative Archimedian Γ -semigroup then S has no proper prime Γ -ideals and hence it is trivially true that proper prime Γ -ideals are maximal. Suppose S contains identity and S is an extension of an Archimedian Γ -sub semigroup M by a Γ -group. Since S has identity, M is the unique maximal Γ -ideal. The Archimedian property of M forces that M is the unique prime Γ -ideal of S. Let P be any proper prime Γ -ideal of S. Since M is union of all proper Γ -ideals of S, then P \subseteq M. Let $a \in M, b \in$ P implies $a, b \in M$. Since M is Archimedian Γ -sub semigroup implies $(a\gamma)^{n-1}a \in M\Gamma b\Gamma M \subseteq S \Gamma b \Gamma S \subseteq$ P implies $a \in P$. Therefore M \subseteq P. Therefore M = P. Therefore M is the unique maximal Γ -ideal.

THEOREM 3.21: Let S be a commutative Γ -semigroup containing cancellative elements. Then 1) and 2) of theorem 3.20 are equivalent. *Proof:* The proof of this theorem is an immediate consequence of theorem 3.20.

Acknowledgment:

The Principal Author is thankful to the University Grants Commission for the award of Teacher Fellowship under Faculty Development Programme for College Teachers during the Twelfth Plan Period (2012-2017) and also thankful to the authorities of Acharya Nagarjuna University, Guntur for providing facilities to undertake the research work.

REFERENCES

- Anjaneyulu. A, and Ramakotaiah. D., On a class of semigroups, Simon stevin, Vol.54(1980), 241-249.
- [2] Anjaneyulu. A., Structure and ideal theory of Duosemigroups, SemigroupForum, Vol.22(1981), 257-276.
- [3] Anjaneyulu. A., Semigroup in which Prime dealsaremaximal,SemigroupForum,Vol.22(1981), 151-158.
- [4] Giri. R. D. and Wazalwar. A. K., Prime ideals and prime radicals in non-commutative semigroup, Kyungpook Mathematical Journal Vol.33(1993), no.1,37-48.
- Rao.D, [5] Madhusudhana Anjaneyulu. A and GangadharaRao. A. Prime Γ -radicals in Γ -semigroups, International e-Journal of Engineering138(2011) 1250 Mathematics and - 1259.
- [6] Madhusudhana Rao. D, Anjaneyulu. A and GangadharaRao. A, Semipseudo symmetric Γ-idealsinΓ-semigroups,, International Journal of Mathematical Sciences, Technology and Humanities 18 (2011) 183-192.
- Madhusudhana Rao. [7] D, Anjaneyulu. A and Gangadhara Rao. A, Primary and Γ -ideals Semiprimary Γ -semigroup, in International Journal of Mathematical Sciences, Technology and Humanities 29 (2012) 282-293.
- [8] MadhusudhanaRao. D,Anjaneyulu. А and A, GangadharaRao. Pseudo symmetric Γ -semigroups, International Γ-ideals in e-Journal of Mathematics and Engineering 116(2011) 1074-1081.
- [9] **Petrich. M.,** *Introduction to semigroups*, Merril Publishing Company, Columbus, Ohio, (973).
- [10] Sen. M.K. and Saha. N.K., On Γ –Semigroups -I, Bull.Calcutta Math. Soc. 78(1986),No.3, 180-186.
- [11] Sen. M.K. and Saha. N.K., On Γ - Semigroups-II, Bull. Calcutta Math. Soc. 79(1987),No.6, 331-335
- [12] Sen. M.K. and Saha. N.K., On Γ - Semigroups-III, Bull. Calcutta Math. Soc. 80(1988), No.1, 1-12.

* * * * *