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Abstract-The closed-form analytical expressions for the 

displacements and strains due to centre of dilatation 

located in a homogeneous, isotropic poroelastic half-

space are obtained. The variation of the radial 

displacement and strains with epicentral distance for the 

various materials Ruhr Sandstone, Tennessee Marble, 

Charcoal Granite, Berea Sandstone, Westerly Granite 

are discussed. 
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I. INTRODUCTION 

 Analytic expressions for various nuclei of strain in an 

elastic half-space, including a centre of dilatation as in 

[1]. Reference [2] shows the problem of strains in an 

elastic half-space under the action of concentrated force. 

Using the Galerkin vector, they obtained the formula for 

calculating the displacement vector and the stresses for 

various dipolar sources. Reference [3] shows a centre of 

dilatation in an elastic half-space to interpret the ground 

deformation produced in volcanic areas. This model is 

often called Mogi’s model and has been used very 

extensively since then. A complete solution for the 

fundamental type of nuclei of strain as in [4] in which 

the two Lamé parameters  and µ are equal (Poisson’s 

ratio = 0.25). Reference [7]  shows an analytic solution 

for the displacement and stress fields due to centre of 

dilatation and pressure source in a viscoelastic half-space. 

The results obtained were applied to the volcanic areas 

of Campi Flegrei. Reference [8] shows the deformation 

of two welded elastic half-spaces caused by point 

dislocation sources. Reference [11] shows the 

displacements and stresses due to a single force in an 

elastic half-space in welded contact with another half-

space. Reference [12] shows the displacements and stress 

fields produced by a centre of explosion in a viscoelastic 

half-space in welded contact with another elastic half-

space. 

 A poroelastic half space is an important model for its 

geophysical and engineering applications. Therefore, the 

response of a poroelastic half space to the external loads 

has been studied for a very long time both in the 

frequency  

domain and in the time domain. There are many kinds 

of analytical and numerical methods that can be used 

to solve the response of a poroelastic half-space. The 

problem of a point source in a poroelastic media has 

been discussed by several researchers ( e.g. [9],  [10],  

[5] & [6] ). 

 Reference [13] shows the deformation of a 

homogeneous, isotropic poroelastic half-space due to a 

concentrated force. In that paper he has considered viz. 

(1) force normal to the boundary and (2) force parallel 

to the boundary. The displacement vector in terms of 

the Galerkin vector was presented. In the present paper, 

we study displacement and strains for poroelastic half-

space due to centre of dilatation. 

II. THEORY 
A centre of dilatation is equivalent to three equal 

mutually orthogonal dipoles. 

 

 
Fig. 1. Geometry of the centre of explosion in two 

Welded half-spaces 

 

Using displacement field as in [13] we obtained the 

expressions for the displacement components due to 

centre of dilatation of magnitude P acting at the point 

(0, 0, c) in a poroelastic half-space. 
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u2 can be obtained by replacing x1 to x2 in eqn. (1) 
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Case 1: When 0z  

Using zxrxrx  321 ;sin;cos  in eqn (3) 

we get 
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The displacements components in cylindrical co-

ordinates are given as 
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strains in cylindrical co-ordinates can be calculated  

Using 
























i

j

j

i

ji
x

u

x

u
e

2

1

 
 


















































































































9

2

2

7

2

2

5

2

5

2

5

2

5

1

2

3

2

3

1

35

51
2

6

24

11
3

11
ˆ

8

R

czzr

R

r

R
czc

R

cz

RR
r

RR

P
e

rr











 (7) 

 

    

  

 

  

 































































































































9

2

2

7

22

5

2

5

2

5

1

2

3

2

3

1

7

3~2

30

~418

63

311

ˆ

8

R

czz

R

zcz

czc

R

cczc

R

czccz

R

cz

RR

P
e

zz











 (8) 

   

 
 

















































 






9

2

7

2

5

2

5

2

5

1

74
5

1
2

ˆ

8

Pr3

R

z

R

cz
cz

R
c

R

cz

R

cz

e
zr







 (9) 

0,0

0,0

,0 ,













rr

zz

rzzr

ee

ee

eee

   (10) 

 

Case 2: When 0z  

Displacements components are given as 
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Strains components are given as 
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III. NUMERICAL RESULTS 

We define dimensionless epicentral distance D, 

dimensionless radial displacement U, dimensionless 

vertical displacement (uplift) W and dimensionless radial 

strain E by the  relations 

rrzr eQEu
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Where Q is a dimensionless constant for each source, 

chosen in such a manner that 01  ratW  
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IV. DISCUSSION & CONCLUSION 
 Analytical expressions for the displacement and strain 

components for drained behaviour due to five materials, 

namely, Ruhr Sandstone, Tennessee Marble, Charcoal 

Granite, Berea Sandstone, and Westerly Granite for 

Centre of dilatation in a poroelastic medium have been 

obtained. 

For numerical computations, we assume different values 

of c, r=1 in equations (16)-(18), and using Table 1. 

 

TABLE 1. 

MATERIAL PROPERTY 

Materials Poisson ratio 

(
~

) 

Ruhr Sandstone(RS) 0.12 

Tennessee  Marble(TM) 0.25 

Charcoal Granite(CG) 0.27 

Berea Sandstone(BS) 0.20 

Westerly Granite(WG) 0.25 

 

Numerical result presented shows the variation of the 

radial displacement, vertical displacement i.e. uplift 

and radial strain with epicentral distance. The source 

and material consider in this paper serve as useful 

models to describe various geophysical phenomenon. 

A centre of dilatation has been used very extensively 

to model spherical inflation of magma (Mogi [3]). 

Fig (1) shows the variation of dimensionless radial 

displacement with epicentral distance for drained 

behaviour of five materials i.e. RS, CG, TM, BS, WG. 

For all these materials we observe that as we move 

away from epicentre the displacement decrease 

gradually. The rate of decrease is more in case of RS 

as compared to CG. 

Fig (2) shows the variation of dimensionless vertical 

displacement (uplift) with epicentral distance. For all 

these materials, variation in vertical displacement 

(uplift) doesn’t vary with the material i.e. response is 

quite similar for all materials. However vertical 

displacement shows variation near to epicentre and 

after that it shows constant behaviour. 

Fig (3) shows the variation of dimensionless radial 

strain with epicentral distance for drained behaviour. 

We observe that radial strain first increases, reaches its 

maximum (2.62) after that it decreases. Rate of 

decrease is more in case of CG as compared to RS. 

Hence CG shows more variation as compared to 

RS .Value of poisson ratio (~ ) is same for TM & WG. 

 

 
Fig. 1: Variation of radial displacement with 

epicentral distance 
 

 
Fig. 2: Variation of vertical displacement with 

epicentral distance 
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Fig. 3. Variation of radial strain with 

epicentral distance 
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