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Abstract—This paper considered some unsteady helical flows of a generalized Oldroyd-B fluid between two infinite concentrice 
cylinders and an infinite circular cylinder. The flow is due to the cylinders oscillate around their common axis and accelerating slide 
in the direction of the same axis with prescribed velocities. Exact solutions of some unsteady helical flows are obtained by using 
Laplace transform coupled with Hankel transform for fractional calculus. The corresponding solutions for generalized second grade 
fluid, Maxwell fluid, ordinary Oldroyd-B fluid or Newtonian fluid are obtained as limiting cases of general solutions. Finally, the 
influence of the fractional parameters and  on the fluid motion is underlined by graphical illustrations. 
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I. INTRODUCTION 
The interest for motion problems of non-Newtonian fluids has considerably grown because of the wide range of their 

applications, such as extrusion of polymer fluids, exotic lubricants, colloidal and suspension solutions, food stuffs, slurry fuels 
and many others. These fluids have been modeled in a number of diverse manners with their constitutive equations varying 
greatly in complexity. Models of differential type and rate type, which are used to describe the response of fluids that have 
slight memory such as dilute polymeric solutions, have received much attention. Among them the Oldroyd-B fluid has obtained 
a lot of attention for it has been found some success in describing polymeric liquids. 

The fractional derivatives [1] are found to be quite flexible for describing the behaviors of viscoelastic fluids. The starting 
point of the fractional derivative model of a non-Newtonian fluid is usually a classical differential equation which is modified 
by replacing the time derivative of an integer order by the so-called Riemann-Liouville fractional calculus operators. Tan et al. 
[2] and Xu and Tan [3] examined the velocity field, stress field and vortex sheet of a generalized second-order fluid with 
fractional anomalous diffusion. Jiang [4] achieved satisfactory result to apply the constitutive equation with fractional derivative 
to the experimental data of viscoelasticity. Fetecau [5]-[6] considered the motions of a second grade fluid due to the 
longitudinal and torsional oscillations of a circular cylinder. Wang [7] investigated the unsteady axial Couette flow of fractional 
second grade fluid and fractional Maxwell fluid between two infinitely long concentric circular cylinders. Fetecau [8]-[11] 
studied some helical fluids in cylinderical domians. Khan et al. [12]-[13] considered the unsteady flow of a non-Newtonian 
fluid between two infinitely long concentric circular cylinders with fractional derivative model. Tong [14]-[15] investigated the 
helical flows for Oldroyd-B fluid in concentric cylinders and a circular cylinder. The velocity fields and the associated 
tangential stresses are determined in forms of series in terms of Bessel functions. 

Motivated by the above mentioned works, this paper considers some helical flows of a generalized Oldroyd-B fluid with the 
fractional derivative. The flow is due to the cylinders oscillate around their common axis and accelerating slide in the direction 
of the same axis with prescribed velocities. By means of Laplace transform coupled with Hankel transform, the velocity field 
and shear stress are determined. The similar solutions corresponding to the helical flow within an infinite circular cylinder are 
obtained. 

 

II. GOVERNING EQUATIONS 
The constitutive equation of an incompressible, generalized Oldroyd-B fluid is written in the form [16]-[17]: 
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where T is the Cauchy stress tensor, p I denotes the indeterminate spherical stress, S is the extra-stress tensor, T A L L is 
the first Rivlin-Ericksen tensor, L is the velocity gradient, , , r   are material constants, and  
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In the above relations V is the velocity,  is the gradient operator, Dt
 and Dt

 are based on Riemann- Liouville’s definition is 
defined as [1]:  
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where ( )  is the Gamma function.  
  In cylindrical coordinates ( , , )r z , the helical flow velocity is given by [15], [18] 

                ( , ) ( , ) ( , )zr t u r t v r t   V V e e                                                                              (4) 
where ze and e are the unit vectors in the z -and -directions. Since the velocity field is independent of z and , the extra-
stress tensor S will also be independent of z and , and the incompressibility condition is automatically satisfied.  
   Substituting Eq. (4) into Eq. (1) and taking into account the initial condition, we find that 0rrS  and 
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where 1 rzS  and 2 rS   are the shear stress, which are different of zero. 
   In the absence of body forces and pressure gradient, the equations of motion reduce to  
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Eliminating 1 and 2 among Eqs. (5)- (7), we obtain the governing equations 
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where /   is the kinematic viscosity of the fluid.  

III. HELICAL FLOW BETWEEN TWO CONCENTRIC CYLINDERS 

We consider unsteady helical flow between two infinite coaxial cylinders of radius 1R  and 2R  1( )R . The fluid is assumed 

to be at rest at the moment 0t  , when 0t  , the two cylinders begin to oscillate around their common axis ( 0)r   with the 

velocities 1 sin( )R t and 2 sin( )R t and to slide along the same axis with the velocities aUt and bUt , where is the angular 
frequency of velocity, U , a and b are constants. The associated initial and boundary conditions are: 

  Initial condition:  ( ,0) ( ,0) ( ,0) ( ,0) 0t tu r u r v r v r      , 1 2( , )r R R                                                                       (10) 

Boundary conditions: 1( , ) au R t Ut ,  2( , ) bu R t Ut ,                                                                                                        (11) 

1 1( , ) sin( )v R t R t ,   2 2( , ) sin( )v R t R t                                                                                      (12) 

Velocity field  
Applying Laplace transform principle of sequential fractional derivatives to Eqs. (8) and (9), and using initial conditions 

Eq.(10), we obtain 
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In order to obtain an analytical solution of Eq.(13), the Hankel transform [19] method with respect to r is used, and is defined 
as follows 
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The inverse Hankel transform is  
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where 1 1 0 2 1 0 1 0 2 1 0 1( ) ( ) ( ) ( ) ( )n n n n ns r Y R s J s r J R s Y s r   , 1ns is the positive root of 1 1 1( ) 0ns R  . Applying the above 
transform to Eqs. (13) and (14), we obtain 
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Substituting Eq. (19) into Eq. (18), we have   
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   In order to avoid the burdensome calculations of residues and contour integrals, we apply the discrete inverse Laplace 
transform method. We rewrite the last factor from Eq. (20) in series form, and apply the discrete inverse Laplace transform, and 
then we have  

0 1 1 1 1
0 1 2 0 1 12 2

1 0 1 1 0 1 2

0 1 1 1 1
0 1 2 0 1 1 12 2 0

1 0 1 1 0 1 2

( ) ( )( , ) [ ( ) ( ) ]
( ) ( )

( ) ( ) [ ( )( ) ( )( ) ] ( , )
( ) ( )

a bn n
n n

n n n

t a bn n
n n n

n n n

J s R s ru r t U J s R t J s R t
J s R J s R

J s R s r U J s R t s J s R t s G s s ds
J s R J s R















 


   




 
                             (21) 

where 
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In order to obtain an analytical solution of Eq.(15), the Hankel transform with respect to r is used, and is defined as follows 
2
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where 2 2 1 2 2 1 2 1 2 2 1 2( ) ( ) ( ) ( ) ( )n n n n ns r Y R s J s r J R s Y s r   , 2ns is the positive root of 2 2 1( ) 0ns R  . Applying the above 
transform to Eqs. (15) and (16), we obtain 
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Substituting Eq. (25) into Eq. (24), we have   
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And following the same way as before we get 

1 2 1 2 2
1 2 2 1 1 2 1 2 22 2 0

1 1 2 1 1 2 2

( ) ( )( , ) [ ( ) ( ) ][sin( ) sin( ( )) ( , ) ]
( ) ( )

tn n
n n n

n n n

J s R s rv r p J s R R J s R R t t s G s s ds
J s R J s R


  





   
                 (27) 

 



                           International Journal of Mathematics Trends and Technology – Volume 5  – January 2014 
 

ISSN: 2231-5373                         http://www.ijmttjournal.org Page 70 
 

Shear stress 
Title must be in 24 pt Regular font.  Author name must be in 11 pt Regular font.  Author affiliation must 

be in 10 pt Italic.  Email address must be in 9 pt Courier Regular font. 
Apply the Laplace transform to Eqs. (5) and (6), we find that 
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Substituting Eqs. (20) and (26)into Eqs. (28)-(29), we have 
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And following the same way as the velocity field, we obtain 
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Limiting cases  
 (1) Making the limit of Eqs. (21)-(22), (27), (32)-(34), when 0  and 0  , we attain to the similar solution for a 
generalized second grade fluid 
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 (2) When 0  and 0r  in Eqs. (21)-(22), (27), (32)-(34), we can obtain the solutions for a generalized Maxwell fluid.  
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(3) In the special case when 1   , Eqs.(21)-(22), (27), (32)-(34) can be simplified as 
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which correspond to the similar solution for an ordinary Oldroyd-B fluid. 
(4) Setting 0  , 0  in Eqs.(35)-(38) or setting 0  , 0  in Eqs.(39)-(42), we obtain the solutions of Newtonian fluid 
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IV. HELICAL FLOW THROUGH A CIRCULAR CYLINDER 
Taking the limit of Eq.(17) when 1 0R  and 2R R , we find the Hankel transform 
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The boundary conditions must be changes by 
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And the velocity ( , )u r t takes the form 

    0 3 0 3
30

1 13 1 3 3 1 3

( ) ( )2 2( , ) ( ) ( , )
( ) ( )

tb bn n
n
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                                      (54) 

where 3ns is the positive root of 0 3( ) 0nJ s R  , and 
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                        (55) 

where 4ns is the positive root of 0 4( ) 0nJ s R  . The associated shear stresses are 
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V. RESULTS AND DISCUSSION 
In this paper, we considered some unsteady helical flows of a generalized Oldroyd-B fluid between two 

infinite concentric cylinders and an infinite circular cylinder. The fractional calculus approach is used in 
the constitutive relationship model of a viscoelastic fluid. With the help of integral transforms, the 
solutions are obtained in terms of Bessel function and Mittag-Leffler function. The similar solutions for 
generalized second grade, Maxwell fluid, ordinary Oldroyd-B fluid or Newtonian fluid are also given by 
the limiting cases.  
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Fig.1 Velocity profiles ( , )u r t for different values of when 0.8  . 
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Fig.2 Velocity profiles ( , )u r t for different values of  when 0.4  . 
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Fig.3 Velocity profiles ( , )v r t for different values of when 0.8  . 
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Fig.4 Velocity profiles ( , )v r t for different values of  when 0.4  . 
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Fig.5 Shear stress 1( , )r t for different values of when 0.8  . 
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Fig.6 Shear stress 1( , )r t for different values of  when 0.4  . 
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Fig .7 Shear stress 2 ( , )r t for different values of when 0.8  . 
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Fig.8 Shear stress 2 ( , )r t for different values of  when 0.4  . 
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Fig.9 Velocity profiles ( , )u r t  of four kinds fluids. 
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Fig.10 Velocity profiles ( , )v r t  of four kinds fluids. 

 
In the following, we analyze the characteristics of the velocity field and the shear stress by using the 

exact solutions. In the following figures, we take 1U  , 1 1,R  2 2R  , 1, 2a b  , 2, 5r   , 0.165  . Figs. 
1-4 demonstrate the velocity changes with the fractional parameters and  are plotted for 0.5t  . It can be 
seen that the smaller the values of , the more slowly the velocity decays for the flow. However, one can 
see that an increase in material parameter  has quite the opposite effect to that of . Figs. 5-8 show the 
shear stress changes with the fractional parameters and  , are plotted for  , 1.5r  . From Figs. 7-8, 
we can see the smaller the values of , the more steady of the shear stress. And the parameter  has quite 
opposite effect. Thus, it can be speculated that the parameters in the generalized Oldroyd-B fluid model 
have strong effects on velocity and shear stress. Figs. 9-10 demonstrate the velocity of generalized 
oldroyd-B fluid, generalized Maxwell fluid, generalized second grade fluid and Newtonian fluid in z -
direction and  -direction. We can see the velocity of generalized second grade is fastest,and the 
generalized Maxwell fluid is most slowly. 
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