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ABSTRACT
We investigate the numerical-complete relation to certain type of higher order generalized
difference equation to find the value of n _ multi-series to circular functions in the field of finite
difference methods. We also give an example to illustrate the n_ multi-series.
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1. INTRODUCTION

The Fractional Calculus is currently a very important research field in several different
areas: physics (including classical and quantum mechanics and thermodynamics), chemistry,
biology, economics and control theory ([9], [10], [11]). In 1989, K.S.Miller and Ross [12]
introduced the discrete analogue of the Riemann-Liouville fractional derivative and proved some
properties of the fractional difference operator. The main definition of fractional difference
equation (as done in [12]) is the v fractional sum of f(t) by

t—v F
AVE() = Z ) f(s), 1)
AP Y
where v >0. On the other hand when v =m s a positive integer, if we replace f(t) by u(k)

and A by A,, defined by A,u(k)=u(k+7¢)—-u(k), (1) becomes

ey
u =470 = 3 T uge-m), @

Let ¢, >0, u(k) be real valued function on [0,oo), u(k)=0 for all k e(—x,0], [k/¢] be
the integer part of k/¢,, ¢.(k)=k-[k/¢,]¢; for i=1,2,---,n and 7,(k)=k.

&)
Then for n> 2, (2) induces n_multi —series y (k) = z u (k-=rrz.), 3)
[1 n] [ln 1]
&

where y (k)= Y u(k—re,) (1_series with respectto /,),

‘i1 n=1
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&

u (k)= Z u (k—rt,) (2_multi-series with respectto ¢,,7,),

‘11,21 ry=1 I
Substituting u , u ., -+, u In(3), we get
may  ‘na I1,n-1]

sl [£]
u (=3 X X utk- ), o

[1 n] m=1 4= -1 n=1
which is a numerical solution ofthe generalized difference equation

AvK)=A, (A, A, (v(k))--)=u(k),k=0. ®)
‘L]
We denote R.H.S of (4) as ZU(IZ),which dependson ¢,, ¢,, ---, £, k and u(k). By this
‘[Ln]

notation, (3) and (4)can be expressed as u (K) = ZU(k)
‘Il 11,0

Inparticular,when n =1, u(k) A u(k)|¥ 0" ZU(k) (6)

my  ma i

k—_ 2 rilj
{k}krf {k rnf lfn—l %

\3

-2

Remark1.1 >y (zml(k))_Z Z SO DN TR (AN (S Z 7).

[m n [lm 1] =1 4= o=l =1 [1 m-1]

where £, (k — z () =(k- z { }ml,

When ¢, =¢,=---¢ =/, the above n_multi-series ZU(k) becomes u (k) given
‘L)
in (2). We find that, by expanding the terms, y (k) is independent of the order of the parameters

‘in

(., £, -, £, . There are direct formula to find the n_series when u(k)=k™, k™, a“,

k"a" etc and ¢, =/¢,=--=¢, =1 [2,7].
There is no direct formula to find the value of n_ multi-series in the existing literature.
We find that the n_ multi-series ZU(IZ) is the numerical solution of the generalized difference

‘[Ln]
equation

A v(k) = Z( 1™ D vik+ 2 0}=u(k), (7)

‘in] Aer (L) reA
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where the operator A isgivenin (5)and r(L,) isthe setof all subsets of the size t from the set
?
[1,n]

L, ={¢,,¢,,---,¢,}. The complete solution of equation (7) is denoted by y (k). Hence, in this
‘L]
paper we obtain numerical-complete relation of the equation (7) and arrive the n_ multi-series to

the circular functions.
2. Preliminaries

In this section, we present some notations, basic definitions and preliminary results. Let
J,={12,...n}, 0Q,) = {¢}, ¢ is empty set, 1(J,) = {{1}{2}, ---, {n}}, 2QJ,) =
{{1,2}3{1,3}, ---, {1,n},{2,3}, ---, {2,n}, ---,{n—2,n—1}}. In general, t(J,) = set of all

n

subsets of size t in ascending order fromthe set J, ,¢(J,) = ) t(J,) is power setof J,.
t=0

n t
Let Zf(t):Ofor all integers n<1 Hf(i):l if t<land for 1<p<qg<n, A?tluk)

t=1 i=2 ([p'q]
=N A WE) ) u () = AL u e = AL u (=AY u (4,(K)
P b i1 I1,i-1] I1,i-1] I11,i1]
for i=2,-n, u (K)=A2uk) and u (k)=u(k).
‘ny 101

Now we consider following lemma on circular functions.

Lemma 2.1 [1] Let p and q be any real numbers. Then,

P _sin p(k —¢)—sin pk
A sin pk = . 8
el 2(1-cospr) ®)
and A cosgk = COSq(k_K)_COquJrc 9)

2(1-cosq/) a

Remark 2.2 (i) Hereafter, we take P = p(n,—2r,)+q(n, -2r,) andP = p(n,—2r)—-q(n, -2r,)
and hence Pand P are varying with respectto n, n,, r,, r,, p and q,
n® =n(n-1)(n-2)---(n—(r-1)).

(if) Péi,ﬁéi{P;Pin,{P;PJzi are not multiple of 27z, for i=1,2,---,n

Corollary 2.3 [1] (i) If n, and n, are odd positive integers, then

n1 ln1 ln2 -1

(r1 <r2>

- n n _( 1) 2 r
sin"s pk cos' ok = - 5 Z Z( 1l {sm Pk -+ sin Pk | (10)

I’l 0 I’2

(i) If n, and n, are even positive integers, then
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n1 2 n2—2
1 v n(rl) 2 “2)

=N n —_

Slnlpkcoszqk—w Z( 1)? T Z

r!
=0 1

(cos Pk +cos Pk)

g 4 3,3
2 2 2 2
L COS(P_PJK + cos{PJerk P | (11)
L1 | 2 Ny ! 2 20N 1 n, I
2 2 2 S 2
Lemma 2.4 [3]If s’ and S are the Stirling numbers of the first and second kinds, and
k™ = K(k - £)(k —20)-- (k—(n—1)¢), then
n n k(v+l)
k(n) — Sngn—rkr1 k" = Sngn—rk(r) and A—lk(v) — ) . 12
K ; r ; r ' (v (12)

3. Main Results

Here we introduce Stirling numbers of third kind and express the polynomial factorial k™ in
‘a

terms of kég), r=1,2,---n and Stirling numbers of third kind. Also we derive the Bernoulli’s

multi-series and n_ multi-series to circular functions.
Definition 3.1 Let 1< p<n, The Stirling number of third kind for the positive reals ¢, and 7,
is defined by

Sy = Zs SLentetr, (13)

Lemma 3.2 The expression of k™ in terms of k‘p) is given by

k= Zs” k(. (14)

Proof. The proof follows from (13) and first, second terms of (12).

Theorem 3.3 Let p, =1, ¢,,7,,---¢, be aset of positive reals and Al = A, Al -A;ln . Then

‘ILn]

fl) n-11+p, 4 Sp+pr et /(:Hpn 1)
A, k‘°) =—1 and Al k© = o n . (15)
El [1 n] 1_12: FJZI (1+ prfl)ﬁr £1(1+ pn—l)ﬁn
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)
- 1 - - _
Proof. Since 1= kéf) =k® and k,? = ké? from (12), we get Ajlkff) :71. Again taking Aylz,
1
k@

we get A1k =2 Again taking A;ls on both sides of the above and applying (14), we
I12] 12
2 (1+p2)
obtain A1 k© 1 e 1 A 23 () = N g2 s .
1.3] ZEIEZ R 255 P =1 Fatfa s py=1 Pt 2515253(1"‘ pz)

Now the proof is completed by taking A;li and applying third relation of (12) for
i =45,---,n respectively.

The following theorem gives the complete solution of the equation (7).
Theorem 3.4 Consider the functions y (k), ¢,(k) for i=1,2,---,n, given in the notations
‘il
and above. Assume that for each i, 1<i<n, Alu(k) be any closed form solution of the
‘il

difference equation A v(k) =u(k). Then, for k> max/;,
([l,i] I<i<n

b F o= AU+ Y A (e, ()

“ILn] ‘1,n] t=1 mg Yo et@y) I, m, ]
. 0 0
XH I (3) R (16)
i=1 ! [Lemg,m; 4] [1+mt n]

is the complete solution of equation (7).
Proof. Since 1=k, applying the limit from ¢,(k) to k for A;llu(k), we have

SR [ o= Au(k) — AU (e, (KK,

which is a complete form solution of equation (7) for n=1.
Taking A;lz on both sides and applying the limits from /¢,(k) to k and keeping A;llu(ﬁl(k)) as

a constant, we obtain
(A U(k) |/1(k))|/ ® = A u(k) [s 5 (k) —A, U(fl(k))A k@ 1} 5 ()
‘2]
which is the complete solution of the equation (7) and it can be expressed as
u (k)IEZ<k)‘ u(k) = A u (KA KD — At u(,(K)) + ATu (e, (K)A, (4,(K)©.
I2] ‘11,21 [1 2]
In the right hand side of the above expression, second term is associated to {m}={1}<1(J,),

third termto {m }={2}<1(J,) and the fourth termto {m,, m,}={1,2}<2(J,). Taking A’l on
u,(k), applying the limits /,(k) and k, and as A; u(ﬁl(k)) A (4, (k)® and Alu(ﬁ (K))
‘n2

are constants, we get y (k)| S = ;13 u (k)- Al u (¢;(k)) and is same as
‘11.3] 2 11,21
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0 0= A+ Y A U ()] A () At KO

‘3 ‘113] t=1 m et Lm] i=1 remg ;] ‘lemg 3]
which is a complete solution of the equation (7) for n=3.
As all the lower limit values are constants, the proof is completed by taking A, and
1
applying the limit from ¢.(k) to k on y (k) successively for i=4,5,---,n.
[L.3]
The following theorem gives a numerical solution of the equation (7).

Theorem 3.5 Consider the assumptions of Theorem 3.4. Then, for k > Z& ,
i=1

V=SS U (k) (17)

M=t o) 11,m-1]

is the numerical solution of the difference equation (7).

Proof. From equation (6), we have
Au(K) [} o= 2uk) = u (k)= u (¢4(K) = z,(k), (say) (18)
{[1.1] 11,11 111

is a numerical solution of the equation (7) for n=1. Again taking A;lz on z,(k) and applying

equation (6), we get
K a®l,0= 2ak) =20, () (19)
122]
which is a numerical solution of the equation (7) for n=2.
Replacing k by k—r,/, in(18), we obtain

z,(k—1l,)= u (k=nt)— u (£(k=rt))). (20)
‘. ‘.
Substituting (20) in (19), we find that
,(K)= D u (K)= D u (£,(k)) (21)
2.2 11] ‘2.2 11]
which is the same as
,(K)= u ()= u ()= u (¢, (k). (22)
11,2) 11,2) 2.2 1111

Applying the numerical solution z,(k) = ZU(IZ) on (22), we get

)

u (K[ 0= 2uk)+ > u (4(Kk)), (23)

‘1.2 ‘[1.2] /2.2 L]
where the values uy (¢,(k—r,¢,)) can be evaluated by replacing k by /¢,(k—r,¢,) in the

‘na
closed form solution y (k) |§1(k) given in Theorem 3.4 for n=1.
‘L

Taking A;ls on z,(k) and applying equation (7) yield

A2 () 0= D 2,(K) = 25(K) (say). (24)

B3]
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Replacing k by k—r/, in (22), we have

Z,(k—103) = u (k=n)— u (Lk=1))— D u (L(k—rl,—1L,)). (25)
1,21 1,21 r,=1 L]

Substituting (25) in (24), we obtain
Zs(k)_z u (k)- Z u (£,(k))- Z u (4, (k)
’13,3] L2 I3.3] 121 /23] 111
which is the same as
z,(k)= u (K)— u (¢;(k))- Z u (2,(k))- Z u (4,(k)).
‘1.3 ‘1.3 ’I3,3] ‘1,21 12,3] ‘L1
Since z,(k) is a solution of the equation (7), taking the numerical solution for it, then for n=3,
we find that

u (k) g= zu<k>+ pagt N+ u (1K) (26)
11,3] ‘1.3] 23] 11,11 ‘[33] I11,2]
where the values u (¢,(k—-rl,—-r,/,)) and u (/,(k—r/;)) can be evaluated by replacing
‘. ‘na

k by ¢,(k—rly—r0,) and /,(k—r/;) in the closed form solutions u (k)[; ,, given in
/[1,n] n

Theorem 3.4 for n=1,2.

The proof is completed by taking A;li on z,(k) and applying the numerical solution mentioned

in (7) successively for i=4,5,---,n
The following theorem is the n_ multi-series of u(k).
Theorem 3.6 The numerical-complete relation of the difference equation (7) is given by

ZZ u (fml(k)) = A*1U(k)+i > (-

m=10pp gy T ‘) Clmyt 1etu )
AU O[] A (e () ar KO @D
[1 m ] i=1 ! [Lemg,m; ] é[1+mt,n]

Proof. The proof follows by equating the numerical solution given in Theorem 3.5 and the
complete solution given in Theorem 3.4.

Theorem 3.7 If n, and n, are odd positive integers, then

n:L -1 n:L ln2 -1
/A*l sin™ pk cos™ gk = (nlm)zm T Z ZZ Z ("
‘[1,n] 1= 052 =0t= OAet(L )
(s) (s9) S
I sin P(k—A) sin P(k — A) (28)

Sos! H(l cosP/,) H(l—cosﬁﬁi).

i=1 i=1

Proof. Applying A;ll to equation (10), we get
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n -1 ny -1

nl—l

=(n—t)+sl (s1) _(s,)
2 2 (_1) 2 n 1 n 2
Afl in k ny k: 1 2
sin® phoos’zak = 2, 3 2" s! s,

=0s,=0
$1=08;

(29)

sinP(k—¢,)—sin P(k) sin P(k—¢ ,)—sin P(k)
x +
(1-cosPt,) (L—cosPr,)
Similarly we find A1sin™ pkcos™ gk

‘n2
nl lrl2 -1
Z ZZ 5 (- 1) ERas () ple2) sinP(k-A)  sin P(k—A)
ShSaaT, 2t s! s,! =\
17057 = 2 H(l cosP/,) H(l—cos Pfi)

i=1 i=1

Proceeding like this, we get (28).
Remark 3.8 Alsin™ pk and Al cos™ pk can be obtained by putting n, =0 and n, =0 in
‘L] ‘L]

(28) respectively.

Theorem 3.9 If n, isanoddand n, isan even positive integers, then

n171 n171 nz,l
2 2 &) 2 A(89)
1 N n — (_1) n, (n-t)+s; n,
At sin™ pkcos™ gk = TR 22 2 (D) 2 o1
‘1] $;=0 S t=0Aet(L,) 5,=0 92°

| - %) sin[”ﬂ(k—A)
sin P(k — A) L _sin P(k - A) L 2 ~(30)

x [1@-cosPr,) [[@-cosPr,) [r]ZZJ!ﬁ[l‘C"S[P;EinJ

i=1 i=1 i

Theorem 3.10 If n, isanevenand n, isan odd positive integers, then

" nz—l n, -1
2 2 a6 | 2 6D
1 win D n — (_1) n, n (n-t)+s;
A sin™ pk cos 2 qk T pmny+n-1 z s z z z s ( )
‘i, 2 $,=0 927 [ t=0Aet(L,)s;=0 S1-

cosP(k—A)  cos P(k — A)

T cospr) TT0-cosr,) (ZJH@(

i=1 i=1
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Theorem 3.11 If n, and n, are even positive integers, then

n n2—2 n- 2

2 2 n2) ] n 2 nG0)
R n — (_1) nz n (n—t)+s;
A% sin™ pkeos™ 0k = —mr | 20| X0 20 2 (D)
‘i, 2 5,=0 927 | t=0Act(L)s;=0 °1°

cos P(k-A)  cos P(k - A)

nZ
y —
[]@-cos Pt;) H(l—cosﬁfi) (nzzj' : {l—COS(P_l—P
i=1 i=1 1

ﬁhi,l S?fr 1-r+1 k;?pn—l)
= 1+ p,)l, |6+ p,)l,

pp=1

(32)

Note 3.12 The n_multiseries to sin™ pk cos™2gk for the four cases can be obtained by applying
(28), (30), (31) and (32) to equation (27) respectively.

Remark 3.13 If wetake ¢, =/,=/¢,=---=/(_ =/(,weget A?u(k)=A"u(k). and all
‘L]
n_multi-series becomes m-series denoted in [1].
The following example illustrates a 2_multi-series for sin™ pk cos™ gk
Example 3.14 Consider the case n=2 inequation (27), n,=4, n, =4, k=103, ¢, =3.1,
t,=42, p=7,q=3,then ¢,(k)=1, ¢,(k)=1.9.Let P= (7(2—251)+3(2—252)) and
P=(7(2-2s,)-3(2-2s,)).

ZZ‘,Z U (Coa(k) = Atu)+d, > (L)

Mm=L/[ 5] 11,m-1] ‘1,21 =Lt et(d,)
x AU, (k))H N O 1(k))(°) L (33)
n, m ] i=1 [1+m Ml [1+mt n]

LHS of equation (33) is the sum of the terms

zu(E).
1.2]
m=2; Z u (ﬁ (k)= A, (3)+ u (19)
‘22l
RHS of equation (33) is the sum of the terms
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4-2
2 4% (2-t)+s;

2 || 2 22)
(i) &7 sin* pkcos'ak = - y: Yy 2?( 1

2° 5,50 Sy | 120 Act(Ly)s; =0

4-2

cos P(10.3 ~ A) , cos P(10.3 - A) s 4[2

H(l cos P/;) f[(l—cosﬁfi) [;’j'

i=1 i=1

P+P . P-P A
cos[ : j(lO.S—A) 4[5] cos[ 5 j(lOB—A) 4@ . 1030

el ) Tl

i=1

(the terms for 1(J,) = {{L},{2})

10.
(i) A7, sin* P/ cos *qly x — 2°

5 cosP(l—A)+cosﬁ(1—A) +42
(1-cosP?;)  (1-cosPe,) (

cos PA9-A) | cos P(1.9 - A)

H(l cos Pz) (1—cosﬁzi) +(:)!ﬁ[1‘COS[P;EJAJ

i=1 i=1 i=1

4 P_B : ;
e ) IVCPCIT
+

{77

i=1

Page 106
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(the terms for 2(J,) = {2} )
4-2
(1) ? 4(52) 1 4(51)

1.9 2
(iv) A/ sin® plicos'qly x—= _( 1) Z Z Z Z—

T8
l, 2 5,20 S,! 120 Act(L,)s, =0 s,!

(L—cosPr,) (L - cos P,

y (_1)(1t)+51{005 P(1-A) cosP(1- A)J . 4[2]
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