$n_{\text {_ }}$ Multi-Series of the Generalized Difference Equations to Circular Functions
G.Britto Antony Xavier ${ }^{1}$, S.Sathya ${ }^{2}$
and S.U.Vasantha Kumar ${ }^{3}$
${ }^{1,2,3}$ Department of Mathematics, Sacred Heart College, Tirupattur-635601, Vellore District Tamil Nadu, S.India.

Abstract

We investigate the numerical-complete relation to certain type of higher order generalized difference equation to find the value of n_{-}multi-series to circular functions in the field of finite difference methods. We also give an example to illustrate the $\mathrm{n}_{\text {_ }}$ multi-series.

Key words: Complete solution, Circular function, Generalized difference operator, Numerical solution.
AMS Subject classification: 39A70, 47B39, 39A10.

1. INTRODUCTION

The Fractional Calculus is currently a very important research field in several different areas: physics (including classical and quantum mechanics and thermodynamics), chemistry, biology, economics and control theory ([9], [10], [11]). In 1989, K.S.Miller and Ross [12] introduced the discrete analogue of the Riemann-Liouville fractional derivative and proved some properties of the fractional difference operator. The main definition of fractional difference equation (as done in [12]) is the v fractional sum of $f(t)$ by

$$
\begin{equation*}
\Delta^{-v} f(t)=\frac{1}{\Gamma_{(v)}} \sum_{s=a}^{t-v} \frac{\Gamma_{(t-s)}}{\Gamma_{(t-s-(v-1))}} f(s), \tag{1}
\end{equation*}
$$

where $v>0$. On the other hand when $v=m$ is a positive integer, if we replace $f(t)$ by $u(k)$ and Δ by Δ_{ℓ}, defined by $\Delta_{\ell} u(k)=u(k+\ell)-u(k)$, (1) becomes

$$
\begin{equation*}
\underset{n(\ell)}{\mathrm{u}}(k)=\Delta_{\ell}^{-n} u(k)=\sum_{r=n}^{\left[\frac{k}{\ell}\right]} \frac{(r-1)^{(n-1)}}{(n-1)!} u(k-r \ell) . \tag{2}
\end{equation*}
$$

Let $\ell_{i}>0, u(k)$ be real valued function on $[0, \infty), u(k)=0$ for all $k \in(-\infty, 0],\left[k / \ell_{i}\right]$ be the integer part of $k / \ell_{i}, \ell_{i}(k)=k-\left[k / \ell_{i}\right] \ell_{i}$ for $i=1,2, \cdots, n$ and $\ell_{0}(k)=k$.
Then for $\mathrm{n} \geq 2$, (2) induces n_multi - series $\underset{\ell_{[1, n]}}{\mathrm{u}}(k)=\sum_{r_{n}=1}^{\left[\frac{k}{r_{n}}\right]} \mathrm{u}\left(k-r_{n} \ell_{n}\right)$,
where $\underset{\ell_{[1,1]}}{u}(k)=\sum_{r_{1}=1}^{\left[\frac{k}{\tau_{1}}\right]} u\left(k-r_{1} \ell_{1}\right) \quad\left(1_{-}\right.$series with respect to $\left.\ell_{1}\right)$,
${ }^{1}$ Research Supported by University Grants Commission, SERO, Hyderabad, India.
$\underset{\ell_{[1,2]}}{\mathrm{u}}(k)=\sum_{r_{2}=1}^{\left[\frac{k}{\ell_{2}} \ell_{[1,1]}\right.} \mathrm{u}\left(k-r_{2} \ell_{2}\right)\left(2_{-}\right.$multi-series with respect to $\left.\ell_{1}, \ell_{2}\right)$,
...
Substituting $\underset{\ell_{[1,1]}}{\mathbf{u}}, \underset{\ell_{[1,2]}}{\mathbf{u}}, \cdots, \underset{\ell_{[1, n-1]}}{u}$ in (3), we get
which is a numerical solution of the generalized difference equation

$$
\begin{equation*}
\underset{\ell_{11, n]}}{\Delta} v(k) \equiv \Delta_{\ell_{1}}\left(\Delta_{\ell_{2}} \cdots \Delta_{\ell_{n}}(v(k)) \cdots\right)=u(k), k \geq 0 . \tag{5}
\end{equation*}
$$

We denote R.H.S of (4) as $\sum_{\ell_{[1, n]}} u(\tilde{k})$, which depends on $\ell_{1}, \ell_{2}, \cdots, \ell_{n}, k$ and $u(k)$. By this notation, (3) and (4)can be expressed as $\underset{\ell_{[1, n]}}{u}(k)=\sum_{\ell_{[1, n]}} u(\tilde{k})$.

where $\ell_{m-1}\left(k-\sum_{i=m}^{n} r_{i} \ell_{i}\right)=\left(k-\sum_{i=m}^{n} r_{i} \ell_{i}\right)-\left[\frac{k-\sum_{i=m}^{n} r_{i} \ell_{i}}{\ell_{m-1}}\right] \ell_{m-1}$,
When $\ell_{1}=\ell_{2}=\cdots \ell_{n}=\ell$, the above n_{-}multi-series $\sum_{\ell_{[1, n]}} u(\tilde{k})$ becomes $\underset{n(\ell)}{u}(k)$ given in (2). We find that, by expanding the terms, $\underset{\ell_{[1, n]}}{\mathrm{u}}(k)$ is independent of the order of the parameters $\ell_{1}, \ell_{2}, \cdots, \ell_{n}$. There are direct formula to find the n_{-}series when $u(k)=k^{m}, k_{\ell}^{(m)}, a^{k}$, $k^{m} a^{k}$ etc and $\ell_{1}=\ell_{2}=\cdots=\ell_{n}=\ell$ [?, ?].

There is no direct formula to find the value of n_{-}multi-series in the existing literature. We find that the n_{-}multi-series $\sum_{\ell_{[1, n]}} u(\tilde{k})$ is the numerical solution of the generalized difference equation

$$
\begin{equation*}
\ell_{[1, n]}^{\Delta} v(k) \equiv \sum_{r=0}^{n}(-1)^{n-r}\left\{\sum_{A \in r\left(L_{n}\right)} v\left(k+\sum_{\ell \in A} \ell\right)\right\}=u(k), \tag{7}
\end{equation*}
$$

where the operator ${\underset{\ell[1, n]}{ }}_{\Delta}$ is given in (5) and $r\left(L_{n}\right)$ is the set of all subsets of the size t from the set $L_{n}=\left\{\ell_{1}, \ell_{2}, \cdots, \ell_{n}\right\}$. The complete solution of equation (7) is denoted by $\underset{\ell_{[1, n]}}{\mathrm{u}}(k)$. Hence, in this paper we obtain numerical-complete relation of the equation (7) and arrive the n_{-}multi-series to the circular functions.

2. Preliminaries

In this section, we present some notations, basic definitions and preliminary results. Let $J_{n}=\{1,2, \ldots, n\}, \quad 0\left(J_{n}\right)=\{\phi\}, \phi$ is empty set, $1\left(J_{n}\right)=\{\{1\},\{2\}, \cdots,\{n\}\}, 2\left(J_{n}\right)=$ $\{\{1,2\},\{1,3\}, \cdots,\{1, n\},\{2,3\}, \cdots,\{2, n\}, \cdots,\{n-2, n-1\}\}$. In general, $t\left(J_{n}\right)=$ set of all subsets of size t in ascending order from the set $J_{n}, \wp\left(J_{n}\right)=\bigcup_{t=0}^{n} t\left(J_{n}\right)$ is power set of J_{n}.
Let $\sum_{t=1}^{n} f(t)=0$ for all integers $n<1, \prod_{i=2}^{t} f(i)=1$ if $t \leq 1$ and for $1 \leq p<q \leq n, \quad{ }_{\ell} \Delta^{-1} u(k)$ $=\Delta_{\ell_{p}}^{-1}\left(\Delta_{\ell_{p+1}}^{-1} \cdots \Delta_{\ell_{q}}^{-1}(u(k)) \cdots\right), \underset{\ell_{[1, i]}}{\mathrm{u}}(k)=\left.\Delta_{\ell_{i^{\prime}}}^{-1} \mathrm{u}(k)\right|_{\left.\ell_{i 11}, i-1\right]} ^{k}(k)=\Delta_{\ell_{i}}^{-1} \underset{\ell_{[1, i-1]}}{\mathrm{u}}(k)-\Delta_{\ell_{i_{i}}}^{-1} \underset{\ell_{[1, i-1]}}{\mathrm{u}}\left(\ell_{i-1}(k)\right)$ for $i=2, \cdots, n, \underset{\ell_{[1,1]}}{\mathrm{u}}(k)=\Delta_{\ell_{1}}^{-1} u(k)$ and $\underset{\ell_{[1,0]}}{\mathrm{u}}(k)=u(k)$.
Now we consider following lemma on circular functions.
Lemma 2.1 [1] Let p and q be any real numbers. Then,

$$
\begin{align*}
\Delta_{\ell}^{-1} \sin p k & =\frac{\sin p(k-\ell)-\sin p k}{2(1-\cos p \ell)}+c_{j} . \tag{8}\\
\text { and } \Delta_{\ell}^{-1} \cos q k & =\frac{\cos q(k-\ell)-\cos q k}{2(1-\cos q \ell)}+c_{j} . \tag{9}
\end{align*}
$$

Remark 2.2 (i) Hereafter, we take $P=p\left(n_{1}-2 r_{1}\right)+q\left(n_{2}-2 r_{2}\right)$ and $\bar{P}=p\left(n_{1}-2 r_{1}\right)-q\left(n_{2}-2 r_{2}\right)$ and hence P and \bar{P} are varying with respect to $n_{1}, n_{2}, r_{1}, r_{2}, p$ and q, $n^{(r)}=n(n-1)(n-2) \cdots(n-(r-1))$.
(ii) $P \ell_{i}, \bar{P} \ell_{i},\left(\frac{P+\bar{P}}{2}\right) \ell_{i},\left(\frac{P-\bar{P}}{2}\right) \ell_{i}$ are not multiple of 2π, for $i=1,2, \cdots, n$.

Corollary 2.3 [1] (i) If n_{1} and n_{2} are odd positive integers, then

$$
\begin{equation*}
\sin ^{n_{1}} p k \cos ^{n_{2}} q k=\frac{(-1)^{\frac{n_{1}-1}{2}}}{2^{n_{1}+n_{2}-1}} \sum_{r_{1}=0}^{\frac{n_{1}-1}{2}} \sum_{r_{2}=0}^{2}(-1)^{r_{1}} \frac{n_{1}^{\left(r_{1}\right)}}{r_{1}!} \frac{n_{2}^{\left(r_{2}\right)}}{r_{2}!}\{\sin P k+\sin \bar{P} k\} . \tag{10}
\end{equation*}
$$

(ii) If n_{1} and n_{2} are even positive integers, then

$$
\begin{gather*}
\sin ^{n_{1}} p k \cos ^{n_{2}} q k=\frac{1}{2^{n_{1}+n_{2}-1}}\left\{\left(\sum _ { r _ { 1 } = 0 } ^ { \frac { n _ { 1 } - 2 } { 2 } } (- 1) ^ { \frac { n _ { 1 } } { 2 } + r _ { 1 } } \frac { n _ { 1 } ^ { (r _ { 1 }) } } { r _ { 1 } ! } \left(\sum_{r_{2}=0}^{\frac{n_{2}-2}{2}} \frac{n_{2}^{\left(r_{2}\right)}}{r_{2}!}(\cos P k+\cos \bar{P} k)\right.\right.\right. \\
\left.\left.\left.\quad+\frac{n_{1}^{\left(\frac{n_{1}}{2}\right)}}{\left(\frac{n_{1}}{2}\right)!} \cos \left(\frac{P-\bar{P}}{2}\right) k\right)+\frac{n_{2}^{\left(\frac{n_{2}}{2}\right)}}{\left(\frac{n_{2}}{2}\right)!} \cos \left(\frac{P+\bar{P}}{2}\right) k\right)+\frac{1}{2} \frac{n_{1}^{\left(\frac{n_{1}}{2}\right)}}{\left(\frac{n_{1}}{2}\right)!\left(\frac{n_{2}}{\left(\frac{n_{2}}{2}\right)}\right.} \frac{n_{2}}{2}\right)! \tag{11}
\end{gather*}
$$

Lemma 2.4 [3] If s_{r}^{n} and S_{r}^{n} are the Stirling numbers of the first and second kinds, and $k_{\ell}^{(n)}=k(k-\ell)(k-2 \ell) \cdots(k-(n-1) \ell)$, then

$$
\begin{equation*}
k_{\ell}^{(n)}=\sum_{r=1}^{n} s_{r}^{n} \ell^{n-r} k^{r}, k^{n}=\sum_{r=1}^{n} S_{r}^{n} \ell^{n-r} k_{\ell}^{(r)} \text { and } \Delta_{\ell}^{-1} k_{\ell}^{(v)}=\frac{k_{\ell}^{(v+1)}}{(v+1) \ell} . \tag{12}
\end{equation*}
$$

3. Main Results

Here we introduce Stirling numbers of third kind and express the polynomial factorial $k_{\ell_{a}}^{(n)}$ in terms of $k_{\ell_{b}}^{(r)}, r=1,2, \cdots n$ and Stirling numbers of third kind. Also we derive the Bernoulli's multi-series and n_{-}multi-series to circular functions.
Definition 3.1 Let $1 \leq p \leq n$, The Stirling number of third kind for the positive reals ℓ_{a} and ℓ_{b} is defined by

$$
\begin{equation*}
S_{p_{-}}^{n_{-} \ell}{ }_{a}=\sum_{t=p}^{n} s_{t}^{n} S_{p}^{t} \ell_{a}^{n-t} \ell_{b}^{t-p} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
k_{\ell_{a}}^{(n)}=\sum_{p=1}^{n} S_{p_{-} \ell}^{n_{-} \ell} k_{\ell_{b}}^{(p)} . \tag{14}
\end{equation*}
$$

Proof. The proof follows from (13) and first, second terms of (12).

Theorem 3.3 Let $p_{1}=1, \ell_{1}, \ell_{2}, \cdots \ell_{n}$ be a set of positive reals and ${ }_{\ell_{[1, n]}}^{\Delta_{\ell_{1}}^{-1}}=\Delta_{\ell_{2}}^{-1} \Delta_{\ell_{n}}^{-1} \cdots \Delta_{\ell_{n}}^{-1}$. Then $\Delta_{\ell_{1}}^{-1} k^{(0)}=\frac{k_{\ell_{1}}^{(1)}}{\ell_{1}}$ and $\Delta_{\ell_{[1, n]}}^{-1} k^{(0)}=\left[\prod_{r=2}^{n-1} \sum_{p_{r}=1}^{1+p_{r-1}} \frac{S_{p_{r-}}^{1+p_{r-1} \ell_{r}}{ }_{r+1}}{\left(1+p_{r-1}\right) \ell_{r}}\right] \frac{k_{\ell_{n}}^{\left(1+p_{n-1}\right)}}{\ell_{1}\left(1+p_{n-1}\right) \ell_{n}}$.

Proof. Since $1=k_{\ell_{1}}^{(0)}=k^{(0)}$ and $k_{\ell_{1}}^{(1)}=k_{\ell_{2}}^{(1)}$ from (12), we get $\Delta_{\ell_{1}}^{-1} k_{\ell_{1}}^{(0)}=\frac{k_{\ell_{1}}^{(1)}}{\ell_{1}}$. Again taking $\Delta_{\ell_{2}}^{-1}$, we get $\underset{\ell_{[1,2]}}{\Delta^{-1}} k^{(0)}=\frac{k_{\ell_{2}}^{(2)}}{2 \ell_{1} \ell_{2}}$. Again taking $\Delta_{\ell_{3}}^{-1}$ on both sides of the above and applying (14), we obtain ${\Delta^{-1}}_{\Lambda_{[1,3]}} k^{(0)}=\frac{1}{2 \ell_{1} \ell_{2}} \Delta_{\ell_{3}}^{-1} k_{\ell_{2}}^{(2)}=\frac{1}{2 \ell_{1} \ell_{2}} \Delta_{\ell_{3}}^{-1} \sum_{p_{2}=1}^{2} S_{p_{2}-\ell_{2}}^{2-\ell_{3}} k_{\ell_{3}}^{\left(p_{2}\right)}=\sum_{p_{2}=1}^{2} S_{p_{2}-\ell_{2}}^{2-\ell_{3}} \frac{k_{\ell_{3}}^{\left(1+p_{2}\right)}}{2 \ell_{1} \ell_{2} \ell_{3}\left(1+p_{2}\right)}$.

Now the proof is completed by taking $\Delta_{\ell_{i}}^{-1}$ and applying third relation of (12) for $i=4,5, \cdots, n$ respectively.

The following theorem gives the complete solution of the equation (7).
Theorem 3.4 Consider the functions $\underset{\ell_{[1, i]}}{\mathrm{u}}(k), \ell_{i}(k)$ for $i=1,2, \cdots, n$, given in the notations and above. Assume that for each $i, 1 \leq i \leq n, \Delta_{\ell_{[1, i]}}^{-1} u(k)$ be any closed form solution of the difference equation $\underset{\ell_{[1, i]}}{\Delta} v(k)=u(k)$. Then, for $k \geq \max _{1 \leq i \leq n} \ell_{i}$,

$$
\begin{align*}
& \left.\underset{\ell_{[1, n]}}{\mathrm{u}}(k)\right|_{\ell_{n}(k)} ^{k}=\Delta_{\ell_{[1, n]}}^{-1} u(k)+\sum_{t=1}^{n}(-1)^{t} \sum_{\left\{m_{s} t_{s=1}^{t} \in t\left(J_{n}\right)\right.} \Delta_{\ell_{\left[1, m_{1}\right]}^{-1}} u\left(\ell_{m_{1}}(k)\right) \\
& \times \prod_{i=1}^{t} \underset{\ell_{\left[1+m_{i}, m_{i+1}\right]}}{\Delta^{-1}}\left(\ell_{m_{i+1}}(k)\right)^{(0)}{\underset{\ell_{\left[1+m_{t}, n\right]}}{\Delta^{-1}} \quad k^{(0)}}^{(0)} \tag{16}
\end{align*}
$$

is the complete solution of equation (7).
Proof. Since $1=k^{(0)}$, applying the limit from $\ell_{1}(k)$ to k for $\Delta_{\ell_{1}}^{-1} u(k)$, we have

$$
\left.\Delta_{\ell_{1}}^{-1} u(k)\right|_{\ell_{1}(k)} ^{k}=\Delta_{\ell_{1}}^{-1} u(k)-\Delta_{\ell_{1}}^{-1} u\left(\ell_{1}(k)\right) k^{(0)},
$$

which is a complete form solution of equation (7) for $n=1$.
Taking $\Delta_{\ell_{2}}^{-1}$ on both sides and applying the limits from $\ell_{2}(k)$ to k and keeping $\Delta_{\ell_{1}}^{-1} u\left(\ell_{1}(k)\right)$ as a constant, we obtain

$$
\left.\Delta_{\ell_{2}}^{-1}\left(\left.\Delta_{\ell_{1}}^{-1} u(k)\right|_{\ell_{1}(k)} ^{k}\right)\right|_{\ell_{2}(k)} ^{k}=\left.\Delta_{\ell_{[1,2]}}^{-1} u(k)\right|_{\ell_{2}(k)} ^{k}-\left.\Delta_{\ell_{1}}^{-1} u\left(\ell_{1}(k)\right) \Delta_{\ell_{2}}^{-1} k^{(0)}\right|_{\ell_{2}(k)} ^{k}
$$

which is the complete solution of the equation (7) and it can be expressed as

$$
\left.\underset{\ell_{[1,2]}}{u}(k)\right|_{\ell_{2}(k)} ^{k}=\Delta_{\ell_{[1,2]}}^{-1} u(k)-\Delta_{\ell_{1}}^{-1} u\left(\ell_{1}(k)\right) \Delta_{\ell_{2}}^{-1} k^{(0)}-\Delta_{\ell_{[1,2]}}^{-1} u\left(\ell_{2}(k)\right)+\Delta_{\ell_{1}}^{-1} u\left(\ell_{1}(k)\right) \Delta_{\ell_{2}}^{-1}\left(\ell_{2}(k)\right)^{(0)} .
$$

In the right hand side of the above expression, second term is associated to $\left\{m_{1}\right\}=\{1\} \in 1\left(J_{2}\right)$, third term to $\left\{m_{1}\right\}=\{2\} \in 1\left(J_{2}\right)$ and the fourth term to $\left\{m_{1}, m_{2}\right\}=\{1,2\} \in 2\left(J_{2}\right)$. Taking $\Delta_{\ell_{3}}^{-1}$ on $u_{2}(k)$, applying the limits $\ell_{3}(k)$ and k, and as $\Delta_{\ell_{1}}^{-1} u\left(\ell_{1}(k)\right), \Delta_{\ell_{2}}^{-1}\left(\ell_{2}(k)\right)^{(0)}$ and $\Delta_{\ell_{[1,2]}}^{-1} u\left(\ell_{2}(k)\right)$ are constants, we get $\left.\underset{\ell_{[1,3]}}{\mathrm{u}}(k)\right|_{\ell_{3}(k)} ^{k}=\Delta_{\ell_{3}}^{-1} \underset{\ell_{[1,2]}}{\mathrm{u}}(k)-\Delta_{\ell_{3}}^{-1} \underset{\ell_{[1,2]}}{\mathrm{u}}\left(\ell_{3}(k)\right)$ and is same as
which is a complete solution of the equation (7) for $n=3$.
As all the lower limit values are constants, the proof is completed by taking $\Delta_{\ell_{i}}^{-1}$ and applying the limit from $\ell_{i}(k)$ to k on $\underset{[1,3]}{u}(k)$ successively for $i=4,5, \cdots, n$.

The following theorem gives a numerical solution of the equation (7).
Theorem 3.5 Consider the assumptions of Theorem 3.4. Then, for $k \geq \sum_{i=1}^{n} \ell_{i}$,

$$
\begin{equation*}
v(k)=\sum_{m=1}^{n} \sum_{[m, n]} \mathbf{u}_{\ell_{[1, m-1]}}\left(\ell_{m-1}(\tilde{k})\right) \tag{17}
\end{equation*}
$$

is the numerical solution of the difference equation (7).
Proof. From equation (6), we have
is a numerical solution of the equation (7) for $n=1$. Again taking $\Delta_{\ell_{2}}^{-1}$ on $z_{1}(k)$ and applying equation (6), we get

$$
\begin{equation*}
\left.\Delta_{\ell_{2}}^{-1} z_{1}(k)\right|_{\ell_{2}(k)} ^{k}=\sum_{\ell_{[2,2]}} z_{1}(k)=z_{2}(k), \text { (say) } \tag{19}
\end{equation*}
$$

which is a numerical solution of the equation (7) for $n=2$.
Replacing k by $k-r_{2} \ell_{2}$ in (18), we obtain

$$
\begin{equation*}
z_{1}\left(k-r_{2} \ell_{2}\right)=\underset{\ell_{[1,1]}}{u}\left(k-r_{2} \ell_{2}\right)-\underset{\ell_{[1,1]}}{\mathrm{u}}\left(\ell_{1}\left(k-r_{2} \ell_{2}\right)\right) . \tag{20}
\end{equation*}
$$

Substituting (20) in (19), we find that

$$
\begin{equation*}
z_{2}(k)=\sum_{\ell_{[2,2]} \ell_{[1,1]}} \mathrm{u}(\tilde{k})-\sum_{\ell_{[2,2]}{ }^{\ell}[1,1]} \mathrm{u}\left(\ell_{1}(\tilde{k})\right) \tag{21}
\end{equation*}
$$

which is the same as

Applying the numerical solution $z_{2}(k)=\sum_{\ell_{[1,2]}} u(\tilde{k})$ on (22), we get

$$
\left.\underset{\ell_{[1,2]}}{\mathbf{u}}(k)\right|_{\ell_{2}(k)} ^{k}=\sum_{\ell_{[1,2]}} u(\tilde{k})+\sum_{\ell_{[2,2]}\left[\begin{array}{l}
{[1,1]} \tag{23}
\end{array}\right.} \mathbf{u}_{1}\left(\ell_{1}(\tilde{k})\right),
$$

where the values $\underset{[1,1]}{\mathrm{u}}\left(\ell_{1}\left(k-r_{2} \ell_{2}\right)\right)$ can be evaluated by replacing k by $\ell_{1}\left(k-r_{2} \ell_{2}\right)$ in the closed form solution $\left.\underset{\ell_{[1,1]}}{\mathrm{u}}(k)\right|_{\ell_{1}(k)} ^{k}$ given in Theorem 3.4 for $n=1$.
Taking $\Delta_{l_{3}}^{-1}$ on $z_{2}(k)$ and applying equation (7) yield

$$
\begin{equation*}
\left.\Delta_{\ell_{3}}^{-1} z_{2}(k)\right|_{\ell_{3}(k)} ^{k}=\sum_{\ell_{[3,3]}} z_{2}(k)=z_{3}(k) \text { (say) } \tag{24}
\end{equation*}
$$

Replacing k by $k-r_{3} \ell_{3}$ in (22), we have

$$
\begin{equation*}
z_{2}\left(k-r_{3} \ell_{3}\right)={\underset{\ell_{[1,2]}}{u}\left(k-r_{3} \ell_{3}\right)-{\underset{\ell}{[1,2]}}_{u}^{u}\left(\ell_{2}\left(k-r_{3} \ell_{3}\right)\right)-\sum_{r_{2}=1}^{\left[\frac{k-3 / 3}{\ell}\right]} \ell_{[1,1]}}_{u}\left(\ell_{1}\left(k-r_{3} \ell_{3}-r_{2} \ell_{2}\right)\right) . \tag{25}
\end{equation*}
$$

Substituting (25) in (24), we obtain

$$
z_{3}(k)=\sum_{\ell_{[3,3]} \ell_{[1,2]}} \mathrm{u}(\tilde{k})-\sum_{\ell_{[3,3]}} \mathrm{u}_{[1,2]}\left(\ell_{2}(\tilde{k})\right)-\sum_{\ell_{[2,3]}} \mathrm{u}\left(\ell_{[1,1]}(\tilde{k})\right)
$$

which is the same as

Since $z_{3}(k)$ is a solution of the equation (7), taking the numerical solution for it, then for $n=3$, we find that

$$
\begin{equation*}
\left.\underset{\ell_{[1,3]}}{\mathrm{u}}(k)\right|_{\ell_{3}(k)} ^{k}=\sum_{\ell_{[1,3]}} u(\tilde{k})+\sum_{\left.\ell_{[2,3]}\right]} \mathrm{u}_{[1,1]}\left(\ell_{1}(\tilde{k})\right)+\sum_{\left.\ell_{[3,3]}\right]} \mathrm{u}_{[1,2]}\left(\ell_{2}(\tilde{k})\right) \tag{26}
\end{equation*}
$$

where the values $\underset{\ell_{[1,1]}}{\mathrm{u}}\left(\ell_{1}\left(k-r_{3} \ell_{3}-r_{2} \ell_{2}\right)\right)$ and $\underset{\ell_{[1,2]}}{\mathrm{u}}\left(\ell_{2}\left(k-r_{3} \ell_{3}\right)\right)$ can be evaluated by replacing k by $\ell_{1}\left(k-r_{3} \ell_{3}-r_{2} \ell_{2}\right)$ and $\ell_{2}\left(k-r_{3} \ell_{3}\right)$ in the closed form solutions $\left.\underset{\ell[1, n]}{u}(k)\right|_{\ell_{n}(k)} ^{k}$ given in Theorem 3.4 for $n=1,2$.
The proof is completed by taking $\Delta_{\ell_{i}}^{-1}$ on $z_{3}(k)$ and applying the numerical solution mentioned in (7) successively for $i=4,5, \cdots, n$.

The following theorem is the n_{-}multi-series of $u(k)$.
Theorem 3.6 The numerical-complete relation of the difference equation (7) is given by

$$
\begin{align*}
& \sum_{m=1}^{n} \sum_{[m, n]} \underset{l_{[1, m-1]}}{u}\left(\ell_{m-1}(\tilde{k})\right)=\Delta_{\ell_{[1, n]}^{-1}} u(k)+\sum_{t=1}^{n} \sum_{\left\{m_{s} t_{s=1}^{t} \in t\left(J_{n}\right)\right.}(-1)^{t} \\
& \times \underset{\ell_{\left[1, m_{1}\right]}}{\Delta^{-1}} u\left(\ell_{m_{1}}(k)\right) \prod_{i=1}^{t} \underset{\ell_{\left[1+m_{i}, m_{i+1}\right]}}{\Delta^{-1}}\left(\ell_{m_{i+1}}(k)\right)^{(0)} \Delta_{\left[1+m_{t}, n\right]}^{\Delta^{-1}} k^{(0)} . \tag{27}
\end{align*}
$$

Proof. The proof follows by equating the numerical solution given in Theorem 3.5 and the complete solution given in Theorem 3.4.

Theorem 3.7 If n_{1} and n_{2} are odd positive integers, then

$$
\begin{align*}
\Delta^{-1} \sin ^{n_{1}} p k \cos ^{n_{2}} q k=\frac{(-1)^{\frac{n_{1}-1}{2}}}{2^{n_{1}+n_{2}+n-1}} \sum_{s_{1}=0}^{\frac{n_{1}-1}{} n_{2}-1} \sum_{2}=0 & \sum_{t=0}^{2} \sum_{A \in t\left(L_{n}\right)}(-1)^{(n-t)+s_{1}} \\
& \quad \times \frac{n_{1}^{\left(s_{1}\right)}}{s_{1}!} \frac{n_{2}^{\left(s_{2}\right)}}{s_{2}!}\left(\frac{\sin P(k-A)}{\prod_{i=1}^{n}\left(1-\cos P \ell_{i}\right)}+\frac{\sin \bar{P}(k-A)}{\prod_{i=1}^{n}\left(1-\cos \bar{P} \ell_{i}\right)}\right) . \tag{28}
\end{align*}
$$

Proof. Applying $\Delta_{\ell_{1}}^{-1}$ to equation (10), we get

$$
\begin{align*}
\Delta_{\ell_{1}}^{-1} \sin ^{n_{1}} p k \cos ^{n_{2}} q k= & \sum_{s_{1}=0}^{\frac{n_{1}-1 n_{2}-1}{2}} \sum_{s_{2}=0}^{2} \frac{(-1)^{\frac{n_{1}-1}{2}+(n-t)+s_{1}}}{2^{n_{1}+n_{2}}} \frac{n_{1}^{\left(s_{1}\right)}}{s_{1}!} \frac{n_{2}^{\left(s_{2}\right)}}{s_{2}!} \\
& \times\left(\frac{\sin P\left(k-\ell_{1}\right)-\sin P(k)}{\left(1-\cos P \ell_{1}\right)}+\frac{\sin \bar{P}\left(k-\ell_{1}\right)-\sin \bar{P}(k)}{\left(1-\cos \bar{P} \ell_{1}\right)}\right) . \tag{29}
\end{align*}
$$

$$
\sum_{s_{1}=0}^{\frac{n_{1}-1}{2} \frac{n_{2}-1}{2}} \sum_{2}=0 \sum_{t=0}^{2} \sum_{A \in t\left(L_{2}\right)} \frac{(-1)^{\frac{n_{1}-1}{2}+(2-t)+s_{1}}}{2^{n_{1}+n_{2}+1}} \frac{n_{1}^{\left(s_{1}\right)}}{s_{1}!} \frac{n_{2}^{\left(s_{2}\right)}}{s_{2}!}\left(\frac{\sin P(k-A)}{\prod_{i=1}^{2}\left(1-\cos P \ell_{i}\right)}+\frac{\sin \bar{P}(k-A)}{\prod_{i=1}^{2}\left(1-\cos \bar{P} \ell_{i}\right)}\right)
$$

Proceeding like this, we get (28).
Remark $3.8 \Delta_{\ell_{[1, n]}}^{\Delta^{-1}} \sin ^{n_{1}} p k$ and $\Delta_{\ell_{[1, n]}}^{-1} \cos ^{n_{2}} p k$ can be obtained by putting $n_{2}=0$ and $n_{1}=0$ in (28) respectively.

Theorem 3.9 If n_{1} is an odd and n_{2} is an even positive integers, then

$$
\begin{align*}
{\ell_{[1, n]}^{-1}}_{\sin ^{n_{1}}} p k \cos ^{n_{2}} q k= & \frac{(-1)^{\frac{n_{1}-1}{2}}}{2^{n_{1}+n_{2}+n-1}} \sum_{s_{1}=0}^{\frac{n_{1}-1}{2}} \frac{n_{1}^{\left(s_{1}\right)}}{s_{1}!} \sum_{t=0}^{n} \sum_{A \in t\left(L_{n}\right)}(-1)^{(n-t)+s_{1}}\left\{\begin{array}{l}
\frac{n_{2}-1}{\sum_{s_{2}=0}^{2}} \frac{n_{2}^{\left(s_{2}\right)}}{s_{2}!} \\
\\
\end{array} \quad \times\left(\frac{\sin P(k-A)}{\prod_{i=1}^{n}\left(1-\cos P \ell_{i}\right)}+\frac{\sin \bar{P}(k-A)}{\prod_{i=1}^{n}\left(1-\cos \bar{P} \ell_{i}\right)}\right)+\frac{n_{2}^{\left(\frac{n_{2}}{2}\right)}}{\left(\frac{n_{2}}{2}\right)!} \frac{\sin \left(\frac{P+\bar{P}}{2}\right)(k-A)}{\prod_{i=1}^{n}\left(1-\cos \left(\frac{P+\bar{P}}{2}\right) \ell_{i}\right)}\right\} .
\end{align*}
$$

Theorem 3.10 If n_{1} is an even and n_{2} is an odd positive integers, then

$$
\begin{align*}
\Delta^{-1} \sin ^{n_{1}} p k \cos ^{n_{2}} q k= & \frac{(-1)^{\frac{n_{1}}{2}}}{2^{n_{1}+n_{2}+n-1}} \sum_{s_{2}=0}^{\frac{n_{2}-1}{2}} \frac{n_{2}^{\left(s_{2}\right)}}{s_{2}!}\left\{\sum_{t=0}^{n} \sum_{A \in t\left(L_{n}\right) s s_{1}=0}^{\sum_{1}^{\frac{n_{1}-1}{2}} \frac{n_{1}^{\left(s_{1}\right)}}{s_{1}!}(-1)^{(n-t)+s_{1}}}\right. \\
& \left.\times\left(\frac{\cos P(k-A)}{\prod_{i=1}^{n}\left(1-\cos P \ell_{i}\right)}+\frac{\cos \bar{P}(k-A)}{\prod_{i=1}^{n}\left(1-\cos \bar{P} \ell_{i}\right)}\right)+\frac{n_{1}^{\left(\frac{n_{1}}{2}\right)}}{\left(\frac{n_{1}}{2}\right)!} \frac{\cos \left(\frac{P-\bar{P}}{2}\right)(k-A)}{\prod_{i=1}^{n}\left(1-\cos \left(\frac{P-\bar{P}}{2}\right) \ell_{i}\right)}\right\} . \tag{31}
\end{align*}
$$

Theorem 3.11 If n_{1} and n_{2} are even positive integers, then

$$
\begin{align*}
& \Delta_{\ell_{[1, n]}}^{-1} \sin ^{n_{1}} p k \cos ^{n_{2}} q k=\frac{(-1)^{\frac{n_{1}}{2}}}{2^{n_{1}+n_{2}+n-1}}\left\{\left(\sum _ { s _ { 2 } = 0 } ^ { \frac { n _ { 2 } - 2 } { 2 } } \frac { n _ { 2 } ^ { (s _ { 2 }) } } { s _ { 2 } ! } \left(\sum_{t=0}^{n} \sum_{A \in t\left(L_{n}\right)} \frac{\sum_{s_{1}=0}^{\frac{n_{1}-2}{2}} \frac{n_{1}^{\left(s_{1}\right)}}{s_{1}!}(-1)^{(n-t)+s_{1}}}{}\right.\right.\right. \\
&\left.\times\left(\frac{\cos P(k-A)}{\prod_{i=1}^{n}\left(1-\cos P \ell_{i}\right)}+\frac{\cos \bar{P}(k-A)}{\prod_{i=1}^{n}\left(1-\cos \bar{P} \ell_{i}\right)}\right)+\frac{n_{2}}{\left(\frac{n_{2}}{2}\right)} \frac{\cos \left(\frac{P+\bar{P}}{2}\right)!}{\prod_{i=1}^{n}\left(1-\cos \left(\frac{P+\bar{P}}{2}\right) \ell_{i}\right)}\right) \\
&\left.\left.+\frac{n_{1}^{\left(\frac{n_{1}}{2}\right)}}{\left(\frac{n_{1}}{2}\right)!} \frac{\cos \left(\frac{P-\bar{P}}{2}\right)(k-A)}{\prod_{i=1}^{n}\left(1-\cos \left(\frac{P-\bar{P}}{2}\right) \ell_{i}\right)}\right)+2^{n-1} \frac{n_{1}}{\left(\frac{n_{1}}{2}\right)} \frac{n_{2}}{\left(\frac{n_{2}}{2}\right)}\left[\frac{n_{2}}{2}\right)!\left[\prod_{r=2}^{n-1} \sum_{p_{r}=1}^{1+p_{r-1}} \frac{S_{p_{r-1}}^{1+p_{r-1} \ell_{r} e_{r+1}}}{\left(1+p_{r-1}\right) \ell_{r}}\right] \frac{k_{\ell_{n}}^{\left(1+p_{n-1}\right)}}{\ell_{1}\left(1+p_{n-1}\right) \ell_{n}}\right\} . \tag{32}
\end{align*}
$$

Note 3.12 The n_multiseries to $\sin ^{n_{1}} p k \cos ^{n_{2}} q k$ for the four cases can be obtained by applying (28), (30), (31) and (32) to equation (27) respectively.
 n_multi-series becomes m-series denoted in [1].

The following example illustrates a $2 _$multi-series for $\sin ^{n_{1}} p k \cos ^{n_{2}} q k$
Example 3.14 Consider the case $n=2$ in equation (27), $n_{1}=4, n_{2}=4, k=10.3, \ell_{1}=3.1$, $\ell_{2}=4.2, p=7, q=3$, then $\ell_{1}(k)=1, \ell_{2}(k)=1.9$. Let $P=\left(7\left(2-2 s_{1}\right)+3\left(2-2 s_{2}\right)\right)$ and $\bar{P}=\left(7\left(2-2 s_{1}\right)-3\left(2-2 s_{2}\right)\right)$.

$$
\begin{align*}
& \sum_{m=1}^{2} \sum_{[m, 2]} \mathrm{u}\left(\ell_{[1, m-1]}(\tilde{k})\right)=\Delta_{\ell_{[1,2]}^{-1}} u(k)+\sum_{t=1}^{2} \sum_{\left\{m_{s} t_{s=1}^{t} \in t\left(J_{2}\right)\right.}(-1)^{t} \\
& \times \underset{\ell_{\left[1, m_{1}\right]}}{\Delta^{-1}} u\left(\ell_{m_{1}}(\tilde{k})\right) \prod_{i=1}^{t} \underset{\ell_{\left[1+m_{i}, m_{i+1}\right]}}{\Delta^{-1}}\left(\ell_{m_{i+1}}(k)\right)^{(0)}{ }_{\ell_{\left[1+m_{t}, n\right]}}^{\Delta^{-1}} k^{(0)} . \tag{33}
\end{align*}
$$

LHS of equation (33) is the sum of the terms

$$
\begin{array}{ll}
m=1 ; & \sum_{\ell(1,2]} u(\tilde{k}) . \\
m=2 ; & \left.\sum_{\ell_{[2,2]}} \mathbf{u} \mathbf{u} 1,1\right]
\end{array}\left(\ell_{1}(\tilde{k})\right)=\operatorname{u}_{\ell[1,1]}(3)+\underset{\ell[1,1]}{\mathbf{u}}(1.9) . .
$$

RHS of equation (33) is the sum of the terms
(i) $\Delta_{\ell_{2}}^{-1} \sin ^{4} p k \cos ^{4} q k=\frac{(-1)^{\frac{4}{2}}}{2^{9}}\left\{\left(\sum_{s_{2}=0}^{\frac{4-2}{2}} \frac{4^{\left(s_{2}\right)}}{s_{2}!}\left(\sum_{t=0}^{2} \sum_{A \in t\left(L_{2}\right)} \sum_{s_{1}=0}^{\frac{4-2}{2}} \frac{4^{\left(s_{1}\right)}}{s_{1}!}(-1)^{(2-t)+s_{1}}\right.\right.\right.$

$$
\times\left(\frac{\cos P(10.3-A)}{\prod_{i=1}^{2}\left(1-\cos P \ell_{i}\right)}+\frac{\cos \bar{P}(10.3-A)}{\prod_{i=1}^{2}\left(1-\cos \bar{P} \ell_{i}\right)}\right)+\frac{4^{\left(\frac{4}{2}\right)}}{\left(\frac{4}{2}\right)!}
$$

$$
\left.\left.\left.\times \frac{\cos \left(\frac{P+\bar{P}}{2}\right)(10.3-A)}{\prod_{i=1}^{2}\left(1-\cos \left(\frac{P+\bar{P}}{2}\right) \ell_{i}\right)}\right)+\frac{4^{\left(\frac{4}{2}\right)}}{\left(\frac{4}{2}\right)!\prod_{i=1}^{2}\left(1-\cos \left(\frac{P-\bar{P}}{2}\right)(10.3-A)\right.}\right) 2 \frac{4^{\left(\frac{4}{2}\right)}}{\left(\frac{4}{2}\right)!\left(\frac{4}{2}\right)!} \frac{4^{\left(\frac{4}{2}\right)}}{\frac{10.3^{(2)}}{2 \ell_{1} \ell_{2}}}\right\}
$$

(the terms for $1\left(J_{4}\right)=\{\{1\},\{2\}\}$)
(ii) $\Delta_{\ell_{1}}^{-1} \sin ^{4} p \ell_{1} \cos ^{4} q \ell_{1} \times \frac{10.3_{\ell_{2}}^{(1)}}{\ell_{2}}=-\frac{(-1)^{\frac{4}{2}}}{2^{8}}\left\{\left(\sum_{s_{2}=0}^{\frac{4-2}{2}} \frac{4^{\left(s_{2}\right)}}{s_{2}!}\left(\sum_{t=0}^{1} \sum_{A \in t\left(L_{2}\right)} \sum_{s_{1}=0}^{\frac{4-2}{2}} \frac{4^{\left(s_{1}\right)}}{s_{1}!}(-1)^{(1-t)+s_{1}}\right.\right.\right.$

$$
\begin{aligned}
& \quad \times\left(\frac{\cos P(1-A)}{\left(1-\cos P \ell_{i}\right)}+\frac{\cos \bar{P}(1-A)}{\left(1-\cos \bar{P} \ell_{i}\right)}\right)+\frac{4^{\left(\frac{4}{2}\right)}}{\left(\frac{4}{2}\right)!\left(1-\cos \left(\frac{P+\bar{P}}{2}\right) \ell_{i}\right)}\left(\frac{P+\bar{P}}{2}\right)(1-A) \\
& \left.+\frac{4^{\left(\frac{4}{2}\right)}}{\left(\frac{4}{2}\right)}\right)!\left(1-\cos \left(\frac{P-\bar{P}}{2}\right)(1-A)\right. \\
&
\end{aligned}
$$

(iii) $\Delta_{\ell_{2}}^{-1} \sin ^{4} p \ell_{2} \cos ^{4} q \ell_{2}=-\frac{(-1)^{\frac{4}{2}}}{2^{9}}\left\{\left(\sum_{s_{2}=0}^{\frac{4-2}{2}} \frac{4^{\left(s_{2}\right)}}{s_{2}!}\left(\sum_{t=0}^{4} \sum_{A \in t\left(L_{2}\right) s_{1}=0} \sum_{s_{1}}^{\frac{4-2}{2}} \frac{4^{\left(s_{1}\right)}}{s_{1}!}(-1)^{(4-t)+s_{1}}\right.\right.\right.$

$$
\begin{aligned}
& \left.\times\left(\frac{\cos P(1.9-A)}{\prod_{i=1}^{2}\left(1-\cos P \ell_{i}\right)}+\frac{\cos \bar{P}(1.9-A)}{\prod_{i=1}^{2}\left(1-\cos \bar{P} \ell_{i}\right)}\right)+\frac{4^{\left(\frac{4}{2}\right)}}{\left(\frac{4}{2}\right)!} \frac{\cos \left(\frac{P+\bar{P}}{2}\right)(2.1-A)}{\prod_{i=1}^{2}\left(1-\cos \left(\frac{P+\bar{P}}{2}\right) \ell_{i}\right)}\right) \\
& +\frac{4^{\left(\frac{4}{2}\right)}}{\left(\frac{4}{2}\right)!} \frac{\cos \left(\frac{P-\bar{P}}{2}\right)(1.9-A)}{\prod_{i=1}^{2}\left(1-\cos \left(\frac{P-\bar{P}}{2}\right) \ell_{i}\right)}+2 \frac{4^{\left(\frac{4}{2}\right)}}{\left(\frac{4}{2}\right)!\left(\frac{4}{2}\right)!} \frac{4^{\left(\frac{4}{2}\right)}}{1.9_{\ell_{2}}^{(2)}} 2{ }_{1} \ell_{2}
\end{aligned},
$$

(the terms for $2\left(J_{4}\right)=\{1,2\}$)
(iv) $\Delta_{\ell_{1}}^{-1} \sin ^{4} p \ell_{1} \cos ^{4} q \ell_{1} \times \frac{1.9_{\ell_{2}}^{(1)}}{\ell_{2}}=\frac{(-1)^{\frac{4}{2}}}{2^{8}}\left\{\left(\sum_{s_{2}=0}^{\frac{4-2}{2}} \frac{4^{\left(s_{2}\right)}}{s_{2}!}\left(\sum_{t=0}^{1} \sum_{A \in t\left(L_{2}\right) s_{1}=0}^{\frac{4-2}{2}} \frac{4^{\left(s_{1}\right)}}{s_{1}!}\right.\right.\right.$

$$
\begin{aligned}
& \left.\times(-1)^{(1-t)+s_{1}}\left(\frac{\cos P(1-A)}{\left(1-\cos P \ell_{i}\right)}+\frac{\cos \bar{P}(1-A)}{\left(1-\cos \bar{P} \ell_{i}\right)}\right)+\frac{4^{\left(\frac{4}{2}\right)}}{\left(\frac{4}{2}\right)!} \frac{\cos \left(\frac{P+\bar{P}}{2}\right)(1-A)}{\left(1-\cos \left(\frac{P+\bar{P}}{2}\right) \ell_{i}\right)}\right) \\
& \left.\left.\quad+\frac{4^{\left(\frac{4}{2}\right)}}{\left(\frac{4}{2}\right)!\left(1-\cos \left(\frac{P-\bar{P}}{2}\right) \ell_{i}\right)} \frac{\cos \left(\frac{P-\bar{P}}{2}\right)(1-A)}{\left(\frac{4}{2}\right)!\left(\frac{4}{2}\right)!} \frac{4^{\left(\frac{4}{2}\right)}}{\ell_{1}}\right\} \times \frac{1}{\ell_{2}}\right)
\end{aligned}
$$

References

[1] G.Britto Antony Xavier, S.Sathya, S. U. Vasanthakumar, m-Series of the Generalized Difference Equation to Circular Functions,International Journal of Mathematical Archive-4(7), (2013), 200-209.
[2] Kwakernak, H., Sivan, R., Strubos, R.C.W., Modern Signals and Systems, New Jersey: Prentice Hall, 1991.
[3] M.Maria Susai Manuel, G.Britto Antony Xavier and E.Thandapani, Theory of Generalized Difference Operator and its Applications, Far East Journal of Mathematical Sciences, 20(2) (2006), 163-171.
[4] M.Maria Susai Manuel, G.Britto Antony Xavier and E.Thandapani, Generalized Bernoulli Polynomials Through Weighted Pochhammer Symbols, Far East Journal of Applied Mathematics, 26(3) (2007), 321-333.
[5] M.Maria Susai Manuel, V.Chandrasekar and G.Britto Antony Xavier, Some Applications of the Generalized Difference Operator of the $n^{\text {th }}$ Kind, Far East Journal of Applied Mathematics, 66(2) (2012), 107-126.
[6] Mitra, S.K. Digital Signal Processing: A Computer Based Approach, Fourth Edition., New York: McGraw-Hill, 2006.
[7] Smekal, Z., Sysel, P. Digital Signal Processors and their Applications, Prague: Sdelovací technika s.r.o, 2006 (In Czech).
[8] Zdenek Smekal, Difference Equations with Forward and Backward Differences and their Usage in Digital Signal Processor Algorithms, Radio Engineering, Vol. 15, No. 2, June 2006.
[9] A.A.Kilbas, H.M.Srivastava and J.J.Trujillo, Theory and application of fractional differential equations, Elsevier, Amsterdam, 2006.
[10] K.S.Miller,B.Ross , An introduction to the fractional calculus and fractional differential equations, Wiley, New york, 1993.
[11] S.G.Samko, A.A.Kibas and O.I.Marichev, Fractional integrals and derivatives, Translated from the 1987 Russian original, Gordon and Breach, Yverdon, 1993.
[12] K.S.Miller,B.Ross , Fractional difference calculus, in "Univalent functions,fractional calculus, and the applications (Koriyama, 1988)", 139-152, Horwood, Chichester, 1989.

