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ABSTRACT 
We investigate the numerical-complete relation to certain type of higher order generalized 

difference equation to find the value of n _  multi-series to circular functions in the field of finite 
difference methods. We also give an example to illustrate the n _ multi-series. 
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1. INTRODUCTION 
 

 The Fractional Calculus is currently a very important research field in several different 
areas: physics (including classical and quantum mechanics and thermodynamics), chemistry, 
biology, economics and control theory ([9], [10], [11]). In 1989, K.S.Miller and Ross [12] 
introduced the discrete analogue of the Riemann-Liouville fractional derivative and proved some 
properties of the fractional difference operator. The main definition of fractional difference 
equation (as done in [12]) is the   fractional sum of )(tf  by  
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where 0> . On the other hand when m=  is a positive integer, if we replace )(tf  by )(ku  
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  Let 0>i , )(ku  be real valued function on )[0, , 0=)(ku  for all ,0](k , ]/[ ik   be 
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 which is a numerical solution of the generalized difference equation  
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 given 

in (2). We find that, by expanding the terms, )(u
][1,

k
n

 is independent of the order of the parameters 

1 , 2 ,  , n . There are direct formula to find the _n series when mkku =)( , )(mk , ka , 
kmak  etc  and  ==== 21 n  [?, ?].  

 There is no direct formula to find the value of _n multi-series in the existing literature. 
We find that the _n multi-series )~(

][1,
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 is the numerical solution of the generalized difference 

equation  
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where the operator 
][1,n
 is given in (5) and )( nLr  is the set of all subsets of the size t from the set 

 nnL  ,,,= 21 . The complete solution of equation (7) is denoted by )(u
][1,

k
n

. Hence, in this 

paper we obtain numerical-complete relation of the equation (7) and arrive the _n multi-series to 
the circular functions.  
 

2. Preliminaries 
 

   In this section, we present some notations, basic definitions and preliminary results. Let 
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Now we consider following lemma on circular functions.  
 
Lemma 2.1 [1] Let p and q be any real numbers. Then,  
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Corollary 2.3 [1] (i) If 1n  and 2n  are odd positive integers, then  
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 (ii) If 1n  and 2n  are even positive integers, then  
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Lemma 2.4 [3] If n
rs  and n

rS  are the Stirling numbers of the first and second kinds, and 
)1)(()2)((=)(   nkkkkk n , then  
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3. Main Results 

 
     Here we introduce Stirling numbers of third kind and express the polynomial factorial )(n

a
k  in 

terms of )(r

b
k , nr 1,2,=  and Stirling numbers of third kind. Also we derive the Bernoulli’s 

multi-series and _n multi-series to circular functions.  
Definition 3.1 Let np 1 , The Stirling number of third kind for the positive reals a  and b  
is defined by  
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Proof. Since (0)(0)
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Now the proof is completed by taking 1
i

 and applying third relation of (12) for 

ni ,4,5,=   respectively.  
  
 The following theorem gives the complete solution of the equation (7).  
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 is the complete solution of equation (7).  
Proof. Since (0)=1 k , applying the limit from )(1 k  to k  for )(1
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which is a complete solution of the equation (7) for 3=n . 
As all the lower limit values are constants, the proof is completed by taking 1

i
 and 

applying the limit from )(ki  to k  on )(u
[1,3]
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 The following theorem gives a numerical solution of the equation (7).  
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 Replacing k  by 33rk   in (22), we have  
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Proof. The proof follows by equating the numerical solution given in Theorem 3.5 and the 
complete solution given in Theorem 3.4.  
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 Proof. Applying 1

1

  to equation (10), we get  
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!
1)(

!2
1)(=cossin

2

)2(
2

2

12

0=2

1)(

)(0=1

)1(
1

2

11

0=1
121

2

11

211

][1, s
n

s
nqkpk

s
n

s

stn

nLtA

n

t

s
n

s
nnn

n

nn

n

 

         
   

.

2
cos1

)(
2

sin

!
2

cos1

)(sin

cos1

)(sin

=1

2

2
2

2

=1=1 




























 









 




















































i

n

i

n

i

n

i
i

n

i

PP

AkPP

n
n

P

AkP

P

AkP



 (30) 

  
 
Theorem 3.10 If 1n  is an even and 2n  is an odd positive integers, then  
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Theorem 3.11 If 1n  and 2n  are even positive integers, then  
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 (32) 
  

Note 3.12  The n_multiseries to qkpk nn cossin 21  for the four cases can be obtained by applying 
(28), (30), (31) and (32) to equation (27) respectively.  

  
Remark 3.13 If we take  ===== 321 n , we get ).(=)(1

][1,

kuku m

n

  


 and all 

n_multi-series becomes m-series denoted in [1].  
 The following example illustrates a 2_multi-series for qkpk nn cossin 21   

Example 3.14 Consider the case 2=n  in equation (27), 4=1n , 4=2n , 10.3=k , 3.1=1 , 
4.2=2 , 7=p , 3=q , then 1=)(1 k , 1.9=)(2 k . Let  )23(2)27(2= 21 ssP   and 
 )23(2)27(2= 21 ssP  . 
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  (33) 

 LHS of equation (33) is the sum of the terms  
1=m ;  )~(

[1,2]

ku


. 

2=m ; (1.9).u(3)u=))~((u
[1,1][1,1]

1
[1,1]

[2,2]


  k  

RHS of equation (33) is the sum of the terms  
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