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Abstract— This paper presents numerical analysis of the fuzzy integro-differential equations (FIDE) using Single Term Haar Wavelet 
Series (STHWS) method [6-9] is considered. The obtained discrete solutions using STHWS are compared with the exact solutions of 
the FIDE and Trapezoidal quadrature rules (TQR) method [10 ] with suitable example. Table and graph is presented to show the 
efficiency of this method.  
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I. INTRODUCTION 

The topics of fuzzy differential equations (FDE) and fuzzy integral equations (FIE) in both theoretical 
and numerical points of view have been developed in recent years. Prior to discussing fuzzy integro-
differential equations (FIDE) and their numerical treatments, it is necessary to present a brief introduction 
of the previous works about FDE and FIE. When a physical system is modelled under the differential 
sense; it finally gives a fuzzy differential equation, a fuzzy integral equation or a fuzzy integro-differential 
equation and hence, the solution of integro-differential equations have a major role in the fields of science 
and engineering. Nonlinear integro-differential equations are usually hard to solve analytically and exact 
solutions are scarce. Therefore, they have been of great interest by several authors [1-3].  

The technique that we used is the single-term Haar wavelet series method (STHWS), which is based on 
Haar wavelet series expansion. STHWS method is different from the traditional high order Haar wavelet 
series method. When requires symbolic computation of necessary derivatives of the data function and is 
computationally expensive for higher order. Intrinsically, the STHWS method evaluates the approximate 
solution by the finite Haar wavelet series. But, in the STHWS method the derivative is not computed 
directly. Instead, the relative derivatives are calculated by an iteration procedure. It is introduced by Sekar 
and his team of researchers [4-9] in a study about electrical circuits. In this way, Allahviranloo et al. [2] 
proposed FDTM for solving first order fuzzy differential equation under strongly H-differentiability. 
Moreover, Arikoglu et al. [3] has been proposed differential transform method for solving integro-
differential equations. 

The structure of paper is organized as follows; In section 2, some basic definitions of Haar wavelets 
and STHWS which will be used later are brought. In section 3, we discuss the properties of the Haar 
wavelets. In section 4, we discuss the remarks of the STHWS. We shall propose general form of FIDE in 
section 5. The proposed method is implemented to a suitable example in section 6 and finally, conclusion 
is drawn in section 7.  

II. HAAR WAVELET SERIES AND SINGLE-TERM HAAR WAVELET SERIES 

Any function )(ty which is square integrable in the interval )1,0(  can be expanded into a Haar series of 
infinite terms.   
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Using the orthogonality relationship of Haar wavelets, 
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The Haar coefficients ic  can be determined by  
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Usually, the series expansion equation (1) contains infinite terms for a general function )(ty   If )(ty is 
either piecewise constant or may be approximated by piecewise constant segments then equation (1) will 
be terminated at a finite number of terms; that is, 
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Where the subscript T  means transposition and   
T

mm cccc ],......,,[~
110 

                                                   (3)
 

T
mm thththh )](),......,(),([~

110                                                (4) 

m is chosen to be j2 for the positive integer j . Define the square Haar matrix of dimension as mm as 

)].2/)12((~),......,/3(~),2/1(~[ mmhmhmhH mmmmm                           (5) 

Therefore, equation (2) can be represented as 
.~)]2/)12((~),......,/3(~),2/1(~[ mm

T
m Hcmmymymy                    (6) 

It obvious that  
.)]2/)12((~),......,/3(~),2/1(~[~ 1

mm
T

m Hmmymymyc 
              (7) 

Equation (7) called the forward transform, transforms the time function )(ˆ ty into the coefficient vector T
mc~ ; 

Equation (6) called the inverse transform, recovers )(ˆ ty from T
mc . Since mmH  and 1

mmH  contain many 
zeros, the Haar transform is much faster than the Fourier transform, and even faster than the Walsh 
transform. 

For example, consider the case 4m . The Haar wavelets can be expressed as  
1,1,1,1)( tho  

1,1,1,1)( tho  

,0011)(0 th  

,1,1,0,0)(0 th  

Where ,,......, ,1,1,0 m means that the function has the value i  at       

1,.....,2,1,0,)/)1.(/[  mimimit .Suppose that 3,7,6,8)(~ ty .  Then it can be represented 
by 

 ,~)(2)()()(6)(ˆ 4443210  Hcththththty T  
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The Haar coefficient ic , can be obtained by applying equation (3.10) directly, 
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In practical applications, a small number of terms increases the calculation speed and saves memory 
storage; a large number of terms improve resolution accuracy. Therefore, a trade-off between calculation 
speed, memory saving, and resolution accuracy must be considered in this analysis. 

 

III. PROPERTIES OF HAAR WAVELETS 

In the wavelet analysis for a dynamic system, all relevant functions need to be transformed into Haar 
series. Since differentiation of Haar wavelets results always in impulse functions, this must be avoided; 
instead, integration of Haar wavelets is preferred. In turn the integration of Haar wavelets   should be 
expandable into Haar series with Haar coefficient matrix  P  
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The mm square matrix P  is called the operational matrix of integration and )(~ thm  is defined in 
equation (4), with 
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And mmH  defined in equation (5) 

In the integration of the adjoint equations, it is necessary to integrate Haar wavelets from 1 to t. Figure 

1 shows the backward integration functions  dh
t
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With mmH    defined in equation (5).  From the comparison of mmP  in equation (8) with mmS  in 
equation (9), it is seen that these two matrices are the same for any m , except 2m ; indeed, 2/111 P , 
while 2/111 S . mmS  called the operational matrix of backward integration. Figure 1 also shows that 
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In the study of time-varying systems via Haar wavelets, it is need to evaluate )(~)(~ thth T
m m

. Let the 

product of )(~ thm and )(~ th T
m

be called the Haar product matrix )(tM mm That is, 
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T
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                                                 (10) 

The basic multiplication properties of Haar wavelets are as follows: 
(i) For any two Haar wavelets )(thn and )(thl , with ln  , 

)()()( ththth lln  ,                                                             (11) 
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ii) The square of any Haar wavelet is a block pulse with magnitude of 1 during both the positive 
and negative half waves of the Haar wavelet 

 

IV. REMARKS OF THE SINGLE-TERM HAAR WAVELET SERIES 

Equation (11) means that, when ln   the product  )()( thth ln equals )(thl if )(thl occurs during the 
first positive half wave of )(thn ; and it equals )(thl if )(thl occurs during the second negative half   wave 
of )(thn . The product )()( thth ln must be zero when these two wavelets have no overlaps. 

In the case of n and l  defined in equation (12), with ji  but kq  , meaning that )(thn and 
)(thl have the same dilations but different shifts, then 

0)()( thth ln . 
For notation simplification, let  
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The matrix )(tM mm in equation (10) can be derived easily as follows  
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With the above recursive formulas, one can evaluate )(tM mm for any jM j ,2 a positive integer. The 
matrix )(tM mm satisfies 

)(~)(~)( thtCctM mmmmmm                                                   (14) 
where the coefficient vector Cm is defined in equation (3). By equation (13) and equation (14), the 
coefficient matrix Cm x m has the following form 
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Equation (14) is an important relationship for the study of time-varying systems.  
 
 
 
 
 

Figure 1 First Haar function and corresponding integral 

 
Figure 2 Second Haar function and corresponding integral 

 
Figure 3 Third Haar function and corresponding integral 
 
 
 

 
 
Figure 4 Fourth Haar function and corresponding integral 

  
Figure 5 Fifth Haar function and corresponding integral 
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Figure 6 sixth Haar function and corresponding integral 

 
 

 
Figure 7 Seventh Haar function and corresponding integral 

 
 
 

 
Figure 8 Eighth Haar function and corresponding integral 
 

In STHWS, the operational matrix P in equation (8) becomes P = 1/2. The single-term Haar wavelets 
method is an extension of the single-term algorithm 2/111 P , which avoid the inverse of the big matrix 
induced by the Kronecker product. This approach is applicable for any transform with piecewise constant 
basis and one can take the advantages of its fast, local, and multiplicative properties to solve any kind of 
problems. 

 

V. FUZZY INTEGRO-DIFFERENTIAL EQUATIONS 
We consider the fuzzy integro-differential equations is of the form  
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Where ,: 222 LLLTf   22
2: LLTk  are m.s. continuous fuzzy mappings with respect to ,,,, 0 Rbtst   

20 LX  . 
   

VI. NUMERICAL RESULTS 
In this section, the exact solution and approximated solution obtained by STHWS method and trapezoidal 

quadrature rules method with n=10. To show the efficiency of the STHW, we have considered the following 
problem taken from [10], with step size 20/ along with the exact solutions. The absolute errors between 
them are tabulated and are presented in Table 1. To distinguish the effect of the errors in accordance with 
the exact solutions, graphical representations are given for selected step size and are presented in Fig. 9 for 
the following problem, using three dimensional effects.   
Example 6.1 

Consider the fuzzy number A along with the r-cuts    rrrrA r  32 4,  for  1,0r . Let the functions 
    Rk  1,01,0:  and   FRf 1,0:  be given by 
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Then the fuzzy integro-differential equation 
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Has the exact solution   ..
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TABLE I 

 
x Example 6.1 

TQR Error STHWS Error 
20/  0.3178E-06 0.5356E-11 

20/2  0.2964E-05 0.9213E-10 

20/3  0.9982E-05 0.6001E-10 

20/4  0.2287E-04 0.9991E-09 

20/5  0.4241E-04 0.5862E-09 

20/6  0.6849E-04 0.1634E-09 

20/7  0.1003E-03 0.9268E-08 

20/8  0.1356E-03 0.7567E-08 

20/9  0.1724E-03 0.4327E-08 

2/  0.2077E-03 0.1002E-08 

 

     
Fig. 9 Error estimation of Example 6.1 

 

VII. CONCLUSIONS 

The obtained results (approximate solutions) of the FIDE show that the STHWS works well for finding 
the solution. From the table 1, we can observe that for most of the time intervals, the absolute error is less 
(almost no error) in the STHWS when compared to the TQR, which yields a little error, along with the 
exact solutions. From the figure 9, it can be predicted that the error is very less in STHWS when compared 
to the TQR method discussed by Zeinali et al. [10]. Hence the STHWS is more suitable for studying the 
FIDE.   
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