On b[#]-Open Sets R.Usha Parameswari¹, P.Thangavelu²

¹Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur-628215, India.

²Department of Mathematics, Karunya University, Coimbatore-641114, India.

Abstract : Andrijivic introduced and studied the concept of b-open sets. Following this Bharathi et.al. introduced the concept of b**-open sets. Recently Indira et.al. studied the notions of *b-open sets and **b-open sets. In this paper, it has been shown that b**-open sets are precisely semi-pre-open sets or β -open sets and **b-open sets are nothing but α -open sets. Further the notion of a b[#]-open set is introduced and its basic properties are discussed.

Keywords: b-open sets, b[#]-open sets, b-continuity, b[#]-continuity, b[#]-irresoluteness.

AMS Subject Classification Nos. 2000: 54A05, 54A10.

1. Introduction

In the year 1996, Andrijivic introduced[3] and studied b-open sets. Following this Bharathi et.al.[6] introduced the concept of b**-open sets. Recently Indira et.al.[12] studied the notions of *b-open sets and **b-open sets. However investigations have shown that b**-open sets are precisely semi-pre-open

sets[4](β -open sets in sense of [1]) and **b-open sets are nothing but α -open sets[14]. In this paper notion of a b[#]-open set is introduced and its basic properties are discussed.

2. Preliminaries

Throughout this paper X denotes a topological space on which no separation axiom is assumed. For any subset A of X, cl(A) denotes the closure of A and *int*(A) denotes the interior of A in the topological space X. Further X \ A denotes the complement of A in X. The following definitions and results are very useful in the subsequent sections.

Definition 2.1. A subset A of a space X is called

- (i) α -open[14] if A \subseteq *int*(*cl*(*int* (A))) and α -closed if *cl*(*int*(*cl*(A))) \subseteq A,
- (ii) semi-open[13] if $A \subseteq cl(int(A))$ and semi-closed if $int(cl(A)) \subseteq A$,
- (iii) pre-open[14] if $A \subseteq int(cl(A))$ and pre-closed if $cl(int((A)) \subseteq A)$,
- (iv) semi-pre-open[4] or β -open [1] if $A \subseteq cl(int(cl(A)))$ and semi-pre-closed or

 β -closed if $int(cl(int(A))) \subseteq A$,

(v) regular open[9] if A = int(cl(A)) and regular closed if A = cl(int(A)).

For a subset A of a space X, the semi-closure (resp. pre-closure, α -closure, semipre-closure) of A, denoted by *scl* A (resp. *pcl* A, resp. α *cl* A, resp.*spcl* A) is the intersection of all semi-closed (resp. pre-closed, resp. α -closed, resp.semi-pre-closed) subsets of X containing A. Dually, the semi-interior (resp. pre-interior, resp. α -interior, resp. semi-preinterior) of A, denoted by *sint* A, (resp.*pint* A, resp. α *int* A, resp. *spint* A), is the union of all semi-open (resp. pre-open, resp. α -open, resp. semi-pre-open) subsets of X contained in A. We recollect some of the relations that, together with their duals, we shall use in the sequel.

Lemma 2.2[4]. Let A be a subset of a space X. Then

(i)
$$\alpha cl(A) = A \bigcup cl(int(cl(A))),$$

(ii)
$$\alpha int(A) = A \cap int(cl(int(A))),$$

(iii)
$$scl(A) = A \bigcup int(cl(A)),$$

(iv)
$$sint(A) = A \bigcap cl(int(A)),$$

(v)
$$pcl(A) = A \bigcup cl(int(A)),$$

(vi)
$$pint(A) = A \bigcap int(cl(A)),$$

(vii)
$$spcl(A) = A \bigcup int(cl(int(A))),$$

(viii) *spint* (A) = A \cap *cl*(*int*(*cl*(A))),

(ix)
$$scl(sint(A)) = sint(A) \bigcup int(cl(int(A))),$$

```
(x) pcl(pint(A)) = pint(A) \bigcup cl(int(A)),
```

```
(xi) spcl(spint(A)) = spint(spcl(A)),
```

(xii) int(scl(A)) = pint(cl(A)) = pint(scl(A)) = scl(pint(A)) = int(cl(A)),

(xiii) int(pcl(A)) = scl(int(A)) = spcl(int(A)) = int(spcl(A)) = int(cl(int(A))).

Definition 2.3. A subset A of a space X is called

```
(i) b-open[3] if A \subseteq cl(int(A)) \bigcup int(cl(A)),
```

- (ii) *b-open [12] if $A \subseteq cl(Int(A)) \cap int(cl(A))$,
- (iii) b**-open [6] if $A \subseteq int(cl(int(A))) \cup cl(int(cl(A)))$,
- (iv)**b-open [12] if $A \subseteq int(cl(int(A))) \cap cl(int(cl(A)))$,
- (v) b-semi-open[2] if $A \subseteq cl(bint(A))$,
- (vi) b-pre-open[2] if $A \subseteq int (bcl(A))$,
- (vii) a p-set[19] if $cl(int(A)) \subseteq int(cl(A))$,

- (viii) a q-set[20] if $int(cl(A)) \subseteq cl(int(A))$,
- (ix) a t-set[21] if int(A) = int(cl(A)),
- (x) a t*-set[12] if cl(A) = cl(int(A)),
- (xi) a D(c, b) set [2] if int(A) = bint(A).
- (xii) a D(c, α) set [18] if $int(A) = \alpha int(A)$.
- (xiii) a D(c, p) set [18] if int(A) = pint(A).
- (xiv) a D(c, β) set [8] if $int(A) = \beta int(A)$.

The complements of b-open, *b-open, b**-open, **b-open, b-semi-open and b-pre-open sets are respectively called the corresponding closed sets. However the complement of a t-set is a t*-set, the complement of a p-set is again a p-set and that of a q-set is a q-set.

Definition 2.4. A function $f : X \rightarrow Y$ is called

- (i) semi-continuous [13] if $f^{-1}(V)$ is semi-open in X for each open set V of Y.
- (ii) pre-continuous [14] if $f^{-1}(V)$ is pre-open in X for each open set V of Y.
- (iii) semi-pre- continuous [4]if $f^{-1}(V)$ is semi-pre-open in X for each open set V of Y .
- (v) p-continuous [19] if $f^{-1}(V)$ is a p-set in X for each open set V of Y.
- (vi) q-continuous [20] if $f^{-1}(V)$ is a q-set in X for each open set V of Y.
- (vii) b-continuous [17] if $f^{-1}(V)$ is b-open in X for each open set V of Y.
- (ix) D(c, b)-continuous [2] if f^{-1} (V)is D(c,b)-set in X for each open set V of Y.
- (x) D(c, p)-continuous [18] if f^{-1} (V)is D(c,p)-set in X for each open set V of Y.
- (xii)D(c, β)-continuous [8] if f⁻¹ (V)is D(c, β)-set in X for each open set V of Y.

Lemma 2.5[3]: Let A be a sub set of a space X. Then

- (i) int(bcl(A))=bcl(int(A))=int(cl(int(A))).
- (ii) cl(bint(A)) = bint(cl(A)) = cl(int(cl(A))).
- (iii) $bint(A) = sint(A) \cup pint(A)$.

Lemma 2.6[5]: α *cl* (α *int*(A))= *cl*(*int*(A)) and α *int*(α *cl*(A))= *int*(*cl*(A)) for any sub set A of X.

Definition 2.7[11]: A space X is called extremally disconnected if cl(A) is open for every open sub set A of X.

Definition 2.8: A sub set A is co-dense if the complement $X \setminus A$ is dense or equivalently $int(A)=\phi$. It is nwd(=nowhere dense) if $int(cl(A))=\phi$ that is if cl(A) is co-dense.

3. Some useful properties

In this section it is established that b^{**} -open sets are precisely semi-pre-open sets, **b-open sets are precisely α -open sets, t^* -open sets are precisely semi-open sets, t-open sets are precisely semi-closed sets, b-semi-open sets are precisely β -open sets and b-pre-open sets are precisely α -open sets.

Proposition 3.1. Let A be a sub set of a topological space X. Then the following are equivalent.

- (i) A is b^{**} -open.
- (ii) A is semi-pre-open.
- (iii) A is β -open.
- (iv) A is b-semi-open.

Proof. For any subset A of X, $int(A) \subseteq A \subseteq cl(A)$. This implies $cl(int(A)) \subseteq cl(A)$ that implies $int(cl(int(A))) \subseteq int(cl(A))$. This proves that for any subset A of X, the relation $int(cl(int(A))) \subseteq cl(int(cl(A)))$ always holds that implies

 $int(cl(int(A))) \cup cl(int(cl(A))) = cl(int(cl(A)))$. Then using Definition 2.1(iv) and

Definition 2.3(iii) we get (i) \Leftrightarrow (ii) \Leftrightarrow (iii).

Now A is b-semi-open if and only if $A \subseteq cl(bint(A))$. By using Lemma 2.5(ii), cl(bint(A)) = cl(int(cl(A))) that implies A is b-semi-open if and only if $A \subseteq cl(int(cl(A)))$ if and only if A is semi-pre-open. This proves the proposition.

Proposition 3.2. Let A be a sub set of a topological space X. Then the following are equivalent.

- (i) A is **b -open.
- (ii) A is α -open.
- (iii) A is b-pre-open.

Proof. For any subset A of X, from the proof of Proposition 3.1, it follows that $int(cl(int(A))) \subseteq cl(int(cl(A)))$ always holds that implies

 $int(cl(int(A))) \cap cl(int(cl(A))) = int(cl(int(A))).$

Then using Definition 2.1(i) and Definition 2.3(iv) we get (i) \Leftrightarrow (ii).

Now A is b-pre-open if and only if $A \subseteq int(bcl(A))$. By using Lemma 2.5(i),

int(*bcl*(A))= *int*(*cl*(*int*(A))) that implies A is b-pre-open if and only if $A \subseteq int(cl(int(A)))$ if and only if A is α -open that imples(ii) \Leftrightarrow (iii). This proves the proposition.

Proposition 3.3: Let A be a sub set of a topological space X. Then A is t*-open if and only if it is semi-open.

Proof: A sub set A is semi-open if and only if $A \subseteq cl(int(A))$ that is if and only if $cl(A) \subseteq cl(int(A)) \subseteq cl(A)$ that is if and only if cl(A) = cl(int(A)) that is if and only if A is a t*-set.

Corollary 3.4: Let A be a sub set of a topological space X. Then A is t-open if and only if it is semi-closed.

Proposition 3.5: Suppose A is a q-set. Then (i) pcl(pint(A)) = cl(int(A)) and (ii) pint(pcl(A)) = int(cl(A)).

Proof: By using Lemma 2.2(x), $pcl(pint(A)) = pint(A) \bigcup cl(int(A))$

= $(A \cap int(cl(A))) \bigcup cl(int(A)).$

Since A is a q-set, $int(cl(A))) \subseteq cl(int(A))$ that implies $=A \cap int(cl(A)) \subseteq cl(int(A))$ so that pcl(pint(A)) = cl(int(A)). This proves (i). If A is a q-set then X\A is also a q-set that implies, by using (i), $pcl(pint(X\setminus A)) = cl(int(X\setminus A))$. This proves that pint(pcl(A)) = int(cl(A)).

4. b[#]-open sets.

In this section $b^{\#}$ -open sets are introduced and their properties are investigated.

Definition 4.1. A subset A of a space X is called $b^{\#}$ -open if $A = cl(int(A)) \bigcup int(cl(A))$.

It is note worthy to see that every $b^{\#}$ -open set is b-open set. However the converse is not true as shown in the following example.

Example 4.2. Let X={a, b, c, d} and $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b, c\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c\}, X\}$. {c} is b-open but not b[#]-open.

Proposition 4.3. For a subset A of a space X , the following are equivalent:

- (i) A is $b^{\#}$ -open.
- (ii) A is *b-closed and b-open.
- (iii) A is pre-closed, semi-closed and $A = pint(A) \bigcup sint(A)$.
- (iv) A is semi-closed and

 $A \equiv pcl(pint(A)).$

Proof: A is b[#]-open \Leftrightarrow $cl(int (A)) \cup int(cl(A)) = A \Leftrightarrow cl(int (A)) \cup int(cl(A)) \subseteq A$ and $A \subseteq cl(int (A)) \cup int(cl(A)) \Leftrightarrow A$ is *b-closed and b-open. This proves (i) \Leftrightarrow (ii).

To prove (ii) \Rightarrow (iii), let A be *b-closed and b-open. Since A is *b-closed, $cl(int (A)) \cup int(cl(A)) \subseteq A$. It follows that $cl(int(A)) \subseteq A$ and $int(cl(A)) \subseteq A$. Thus A is pre-closed and semi-closed. Now since A is b-open, $A \subseteq cl(int(A)) \cup int(cl(A))$. Then by using Lemma 2.2, $pint(A) \cup sint(A) = (A \cap int(cl(A)) \cup (A \cap cl(int(A))))$ $= A \cap (int(cl(A)) \cup (cl(int(A)))) = A$.

This proves (ii) \Rightarrow (iii). Now to prove (iii) \Rightarrow (iv). Suppose (iii) holds.

$$A = pint(A) \cup sint(A) = pint(A) \cup (A \cap cl(int(A))) = (pint(A) \cup A) \cap (pint(A) \cup cl(int(A))) = (pint(A) \cup cl(int(A))) =$$

$$A \cap (pint(A) \cup cl(int(A)) = pint(A) \cup (A \cap cl(int(A))).$$

Since A is pre-closed it follows that $A = pint(A) \cup cl(int(A)) = pcl(pint(A))$.

This proves (iii) \Rightarrow (iv).

To prove (iv) \Rightarrow (i). Suppose (iii) holds. Since A is semi-closed that is $int(cl(A)) \subseteq A$. Using Lemma 2.2, A = pcl(pint(A))= $pint(A) \bigcup cl(int(A))$ = $(A \bigcap int(cl(A))) \bigcup cl(int(A))$

 $= int(cl(A)) \bigcup cl(int(A))$. This completes the proof.

Proposition 4.4. (i) If A is b[#]-open and co-dense then A is regular open.

(ii) If A is $b^{\#}$ -open and nowhere dense then A is regular closed.

Proof. Suppose A is $b^{\#}$ -open and co-dense. Then $\mathbf{A} = cl(int(A)) \cup int(cl(A)) = \phi \cup int(cl(A))$ = int(cl(A)) that implies A is regular open. This proves (i). Now suppose A is $b^{\#}$ -open and nowhere dense. Then $\mathbf{A} = cl(int(A)) \cup int(cl(A)) = cl(int(A)) \cup \phi = cl(int(A))$ that implies A is regular closed. This proves (ii).

Proposition 4.5. Let (X, τ) be a topological space and τ^{α} be a collection of α -open sets in

 (X, τ) . Then for a subset A of X A is b[#]-open in (X, τ) if and only if A is b[#]-open in (X, τ^{α}) .

Proof: Follows from Definition 4.1 and Lemma 2.6.

Proposition 4.6: Suppose A is $b^{\#}$ -open in (X, τ). Then

(i) A is open \Rightarrow A is closed,

- (ii) A is α -open \Rightarrow A is regular closed and regular open.
- (iii) A is α -closed \Rightarrow A is closed,
- (iv) A is semi-open \Rightarrow A is regular closed and a q- set.
- (v) A is semi-closed \Rightarrow A is closed,
- (vi) A is pre-open \Rightarrow A is regular open and a p- set.
- (vii) A is *b-open \Rightarrow A is both regular open and regular closed.
- (viii) A is β -open \Rightarrow *cl*(A) is regular closed.
- (ix) A is a p-set \Rightarrow A is regular open and β -closed.
- (x) A is a q-set \Rightarrow A is regular closed and β -open.
- (xi) A is a D(c, b) set \Rightarrow A is both open and closed.
- (xii) A is a D(c, α) set \Rightarrow *int*(A) is regular open.
- (xiii) A is a D(c, p) set \Rightarrow A is β -open.
- (xiv) A is a D(c, β) set \Rightarrow A is both open and β -open.

Proof: Let A be b[#]-open. Then

 $A_{=} cl(int(A)) \bigcup int(cl(A)).$

Suppose A is open. Then $A = cl(int(A)) \bigcup int(cl(A)) = cl(A) \bigcup int(cl(A)) = cl(A)$ that implies A

is closed. This proves (i). Now to prove (ii). Suppose A is α -open. Then

 $cl(int(A)) \bigcup int(cl(A)) = A \subseteq int(cl(int(A))) \subseteq cl(int(A)) \subseteq cl(int(A)) \bigcup int(cl(A)) = A$. This shows

that $A = cl(int(A)) \cup int(cl(A)) = cl(int(A)) = int(cl(int(A)))$ that implies

 $int(cl(A)) \subseteq cl(int(A))$. Further $cl(int(A)) = int(cl(int(A))) \subseteq int(cl(A))$.

This shows that A = cl(int(A)) = int(cl(A)). Therefore A is both regular closed and regular open. This proves (ii). To prove (iii). Suppose A is α -closed. Then

 $cl(int(cl(A))) \subseteq A = cl(int(A)) \bigcup int(cl(A)) \subseteq cl(int(cl(A)))$ that implies A = cl(int(cl(A))). This

proves that A is closed. Thus (iii) is proved. Now suppose A is semi-open. Then

 $A \subseteq cl(int(A))$ that implies cl(A) = cl(int(A)). Therefore

Then $cl(int(A)) \bigcup int(cl(A)) = A \subseteq cl(int(A))$ that implies

 $int(cl(A)) \subseteq cl(int(A))$ which further implies A is a q-set.

Since $cl(int(A)) \subseteq cl(int(A)) \cup int(cl(A)) = A \subseteq cl(int(A))$ it follows that A = cl(int(A)). This shows that A is regular closed. This proves (iv). Now suppose A is semi-closed. Then $int(cl(A)) \subseteq A$ that implies int(A) = int(cl(A)). Since A is b[#]-open,

 $A=cl(int(A)) \cup int(cl(A)) = cl(int(cl(A))) \cup int(cl(A)) = cl(int(cl(A)))$ that implies A is closed. This proves (v).

Suppose A is pre-open. Then $cl(int(A)) \bigcup int(cl(A)) = A \subseteq int(cl(A))$ that implies

 $cl(int(A)) \subseteq int(cl(A))$ which further implies A is a p-set.

Since $int(cl(A)) \subseteq cl(int(A)) \cup int(cl(A)) = A \subseteq int(cl(A))$ it follows that A = int(cl(A)). This shows that A is regular open. This proves (vi). Now suppose A is *b-open. Then $A \subseteq cl(int(A)) \cap int(cl(A))$. It follows that $A \subseteq cl(int(A))$ and $A \subseteq int(cl(A))$. Since A is

b[#]-open we have $A = int(cl(A)) \bigcup cl(int(A))$ that implies

 $A \subseteq cl(int(A)) \subseteq cl(int(A)) \cup int(cl(A)) = A$. This implies A = cl(int(A)) and hence A is regular closed. Now $A \subseteq int(cl(A)) \subseteq cl(int(A)) \cup int(cl(A)) = A$ that proves A is regular open. This proves (vii). Suppose A is β -open. Then $A \subseteq cl(int(cl(A)))$

Since A is b[#]-open we have $A = int(cl(A)) \bigcup cl(int(A))$ that implies $int(cl(A)) \subseteq A$. $A = int(cl(A)) \bigcup cl(int(A)) \subseteq cl(int(cl(A))) \subseteq cl(A)$ that implies cl(int(cl(A))) = cl(A). Therefore cl(A) is regular closed. This proves (viii). Suppose A is a p-set. Then cl(int(A)) $\subseteq int(cl(A))$. Since A is b[#]-open we have $A = int(cl(A)) \bigcup cl(int(A))$ that implies $int(cl(int(A))) \subseteq int(cl(A)) = A$. Therefore A is regular open and β -closed. This proves (ix). Now suppose A is a q-set. Then $int(cl(A))) \subseteq cl(int(A))$. Since A is b[#]-open we have $A = int(cl(A)) \bigcup cl(int(A))$ that implies $A = cl(int(A))) \subseteq cl(int(cl(A)))$ and hence A is regular closed and β -open. This proves (x). Let A be a D(c, b) set. Then int(A) = bint(A). Since A is b[#]open we have $A = int(cl(A)) \bigcup cl(int(A))$. Since int(A) = bint(A), using the Lemma 2.8, we have $int(A) = sint(A) \bigcup pint(A) = (A \cap cl(int(A))) \bigcup (A \cap int(cl(A)))$

$$= A \bigcap [cl(int(A)) \bigcup int(cl(A))] = A.$$

This shows that A is open. Also by using (i) A is closed. This proves (xi).

Now let A be a D(c, α) set then $int(A) = \alpha int(A)$. By Lemma 2.2(ii), $\alpha int(A) = A \bigcap int(cl(int(A)))$. Since A is b[#]-open we have $A = int(cl(A)) \bigcup cl(int(A))$.

 $int(A) = \alpha int(A) = [int(cl(A)) \bigcup cl(int(A))] \cap int(cl(int(A)))$

=[$int(cl(A)) \cap int(cl(int(A)))$] $\bigcup [cl(int(A)) \cap int(cl(int(A)))]$.

= int(cl(int(A))). This proves that int(A) is regular open. This proves (xii).

To prove (xiii). Let A be a D(c, p) set. Then int(A) = pint(A). Since A is b[#]-open we have $A = int(cl(A)) \bigcup cl(int(A))$. Since int(A) = pint(A), using the Lemma 2.2, we have

 $\begin{aligned} A &= int(cl(A)) \bigcup cl(int(A)) = int(cl(A)) \bigcup cl(pint(A)) \\ &= int (cl(A)) \bigcup cl(A \cap int(cl(A))) \subseteq int(cl(A)) \bigcup [cl(A) \cap cl(int(cl(A)))] \\ &= [int(cl(A)) \bigcup cl(A))] \cap [int(cl(A)) \bigcup cl(int(cl(A)))] = cl(A) \cap cl(int(cl(A))) = cl(int(cl(A))). \end{aligned}$ This shows that A is β -open. This proves (xiii). Now let A be a D(c, β) set then $int(A) = \beta$ int(A). By Lemma 2.2(ii), β $int(A) = A \cap cl(int(cl(A)))$. Since A is b[#]-open we have A= $int(cl(A)) \bigcup cl(int(A))$.

 $int(A) = \beta int(A) = [int(cl(A)) \bigcup cl(int(A))] \cap cl(int(cl(A)))$

 $= [int(cl(A)) \cap cl(int(cl(A)))] \bigcup [cl(int(A)) \cap cl(int(cl(A)))]$

 $= int(cl(A)) \bigcup cl(int(A)) = A$. This proves that A is open.

Again A= $int(cl(A)) \bigcup cl(int(A)) = int(cl(A)) \bigcup cl(\beta int(A)) = int(cl(A)) \bigcup cl(A \cap cl(int(cl(A))))$ $\subset int(cl(A)) \bigcup [cl(A) \cap cl(int(cl(A)))] = [int(cl(A)) \bigcup cl(A)] \cap [int(cl(A)) \bigcup cl(int(cl(A))).$

 $=cl(A) \cap cl(int(cl(A))) = cl(int(cl(A)))$. Hence A is β -open. This proves (xiv).

This completes the proof.

Proposition 4.7: Let X be an extremally disconnected space and A be $b^{\#}$ -open in (X, τ). Then A is semi-pre-open \Rightarrow A is a p-set.

Proof: Let A be semi-pre-open. Then $A \subseteq cl(int(cl(A)))$. Since int(cl(int(cl(A)))) = int(cl(A)) and A is b[#]-open we have $A = cl(int(A)) \bigcup int(cl(A)) \subseteq int(cl(A))$ that implies $cl(int(A)) \bigcup int(cl(A)) = int(cl(A))$. Therefore $cl(int(A)) \subseteq int(cl(A))$. This shows that A is a p-set.

Proposition 4.8: Suppose A is a q-set. Then A is $b^{\#}$ -open $\Leftrightarrow A = pint(pcl(A)) \bigcup pcl(pint(A))$.

Proof: By using Proposition 3.5, we get pint(pcl(A))=int(cl(A)) and pcl(pint(A)) = cl(int(A)). This implies that A is $b^{\#}$ -open $\Leftrightarrow A = int(cl(A)) \cup cl(int(A)) \Leftrightarrow A = pint(pcl(A)) \cup pcl(pint(A))$.

Proposition 4.9: Suppose A is $b^{\#}$ -open. Then pcl(pint(A)) = pcl(A). **Proof:** $pcl(pint(A)) = pint(A) \cup cl(int(pint(A))) = pint(A) \cup cl(int(A))$

$$= (A \cap int(cl(A)))) \cup cl(int(A))$$
$$= (A \cup cl(int(A))) \cap (int(cl(A)) \cup cl(int(A)))$$
$$= (A \cup cl(int(A))) \cap A = A \cup cl(int(A)) = pcl(A).$$

Arbitrary union and arbitrary intersection of $b^{\#}$ -open sets need not be $b^{\#}$ -open as shown in the following example.

Example 4.10. In the real line R, each closed interval [a, b], is b[#]-open where a
b and all other intervals are not b[#]-open. Let a < b. For each n =1,2,3., let $A_n = \left[a + \frac{1}{n}, b - \frac{1}{n}\right]$.

Then $\bigcup_{n=1}^{\infty} A_n = (a, b)$. But (a, b) is not $b^{\#}$ -open. For,

 $cl(int(a, b)) \bigcup int(cl(a, b)) = [a, b] \bigcup (a, b) = [a, b] \neq (a, b)$. Therefore arbitrary union of b[#]-open sets need not be b[#]-open.

Now, let
$$B_n = \left[a - \frac{1}{n}, a + \frac{1}{n}\right]$$
. Then $\bigcap_{n=1}^{\infty} B_n = \{a\}$. But $\{a\}$ is not b[#]-open. For,

 $cl(int(\{a\})) \bigcup int(cl(\{a\})) = \phi \bigcup \phi = \phi$. Therefore arbitrary intersection of b[#]-open sets need not be b[#]-open.

Definition 4.11. A family $\{\mathbf{A}_j : j \in \Delta\}$ of subsets of a topological space is called join related with respect to the operator γ on the power set of X if $\bigcup_{j \in \Delta} \gamma(A_j) = \gamma(\bigcup_{j \in \Delta} A_j)$ and is called

meet related with respect to the operator γ if $\bigcap_{j \in \Delta} \gamma(A_j) = \gamma(\bigcap_{j \in \Delta} A_j)$

Theorem 4.12 Let X be a topological space and let $\{A_{\alpha}\}_{\alpha \in \Delta}$ be a join related family of b[#]open sets with respect to the operators cl (int(.)) and int(cl(.)) on the power set of X. Then $\bigcup_{j \in \Delta} A_j$ is b[#]-open.

Proof: Let Δ be a collection of b[#]-open sets. Then by Definition 4.1, for each $j \in \Delta$, $A_j = int(cl(A_j)) \bigcup cl(int(A_j))$. Now, $\bigcup_{j \in \Delta} A_j = \bigcup_{j \in \Delta} [int(cl(A_j)) \bigcup cl(int(A_j))]$

$$= [\bigcup_{j \in \Delta} int(cl(A_j))] \bigcup [\bigcup_{j \in \Delta} cl(int(A_j))].$$
 By Definition 4.11,
$$\bigcup_{j \in \Delta} A_j = int(cl(\bigcup_{j \in \Delta} A_j)) \bigcup cl(int(\bigcup_{j \in \Delta} A_j)).$$
 Hence arbitrary union of b[#]-open sets is b[#]-open.

Remark 4.13. The complement of a p-set is a p-set and that of a q-set is again a q-set. But the complement of a $b^{\#}$ -open set is not $b^{\#}$ -open as shown in the following example.

Example 4.14. In the real line topology R, take $A = (-\infty, a]$. Then $B = (a, \infty]$. It is easy to see that A is b[#]-open but $X \setminus A = B$ is not b[#]-open.

5. b[#]-closed sets

As seen in the previous section, the complement of a $b^{\#}$ -open set need not be $b^{\#}$ -open. This leads to the definition of $b^{\#}$ -closed sets. In this section we define the concept of a $b^{\#}$ -closed set and discuss its basic properties.

Definition 5.1. A sub set A of a space X is called $b^{\#}$ -closed if X\A is $b^{\#}$ -open. That is A is $b^{\#}$ -closed if and only if *int*(*cl*(A)) \cap *cl*(*int*(A))= A.

We see that every $b^{\#}$ -closed set is b-closed. But the converse is not true as shown in the following example.

Example 5.2: Let X={a, b, c, d} and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}.$

Let $A = \{a, c, d\}$. A is b-closed but not $b^{#}$ -closed.

Proposition 5.3. For a subset A of a space X the following are equivalent.

- (i) A is $b^{\#}$ -closed.
- (ii) A is *b-open and b-closed.
- (iii) A is pre-open, semi-open and $A = pcl(A) \cap scl(A)$.
- (iv) A is semi-open and A = pint(pcl((A))).

Proof: Follows from Proposition 4.3 and Definition 5.1.

Proposition 5.4. Let (X, τ) be a topological space. Then for a subset A of X, A is b[#]-closed in

 (X, τ) if and only if A is b[#]-closed in (X, τ^{α}) .

Proof: Follows from Definition 5.1 and Lemma 2.6.

Proposition 5.5: Suppose A is $b^{\#}$ -closed in (X, τ) . Then

- (i) A is closed A is open
- (ii) A is α -closed \Rightarrow A is regular closed and regular open.
- (iii) A is α -open \Rightarrow A is open
- (iv) A is semi-closed \Rightarrow A is regular open and a q- set.
- (v) A is semi-open \Rightarrow A is open

- (vi) A is pre-closed \Rightarrow A is regular closed and a p- set.
- (vii) A is *b-closed \Rightarrow A is both regular open and regular closed.
- (viii) A is β -closed \Rightarrow *int*A) is regular open.
- (ix) A is a p-set \Rightarrow A is regular closed and β -open.
- (x) A is a q-set \Rightarrow A is regular open and β -closed.
- (xi) X\A is a D(c, b) set \Rightarrow A is both open and closed.
- (xii) X\A is a D(c, α) set \Rightarrow *cl*(A) is regular closed
- (**xiii**) X\A is a D(c, p) set \Rightarrow A is β -closed.

(xiv) X\ A is a D(c, β) set \Rightarrow A is closed.

Proof: Follows from Proposition 4.6 and Definition 5.1.

Proposition 5.6: Let X be an extremally disconnected space and A be $b^{\#}$ -closed in (X, τ).

Then A is semi-pre-closed \Rightarrow A is a p-set.

Proof: Follows from Proposition 4.7.

Definition 5.7[15, 10]: A space X is called a partition space (or locally indiscrete) if every open sub set of X is closed.

Proposition 5.8: Let X be a partition space. Then every b[#]-open set is b[#]-closed.

Proof: Let $A \subseteq X$ be $b^{\#}$ -open. $A = int(cl(A)) \bigcup cl(int(A)) = cl(A) \bigcup int(A) = cl(A)$ that

implies A is closed. Since X is a partition space A is also open. Now

 $int(cl(A)) \cap cl(int(A)) = A$ that implies A is b[#]-closed. This proves the proposition.

Proposition 5.9: Suppose A is a q-set. Then A is $b^{\#}$ -closed $\Leftrightarrow A = pint(pcl(A)) \cap pcl(pint(A))$.

Proof: Follows from Proposition 4.8 and Definition 5.1.

Proposition 5.10: Suppose A is $b^{\#}$ -closed. Then pint(pcl(A)) = pint(A).

Proof: Follows from Proposition 4.9 and Definition 5.1.

Arbitrary union and arbitrary intersection of $b^{\#}$ -closed sets need not be $b^{\#}$ -closed as shown in the following examples.

Example 5.11. In the real line R, each open interval (a, b) is b[#]-closed where a < b. All other non empty intervals are not b[#]-closed. Let a < b, For each n =1,2,3., let $A_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$.

Then $\bigcap_{n=1}^{\infty} A_n = \{0\}$. But $\{0\}$ is not b[#]-closed. Therefore arbitrary intersection of b[#]-closed sets is not b[#]-closed.

Example 5.12. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$.

 $\{a\}$ and $\{b, c\}$ are $b^{\#}$ -closed. But $\{a, b, c\}$ is not $b^{\#}$ -closed. Therefore the union of $b^{\#}$ -closed sets need not be $b^{\#}$ -closed.

Theorem 5.13: Let X be a topological space and let $\{A_{\alpha}\}_{\alpha \in \Delta}$ be a meet related family of b[#]closed sets with respect to the operators cl(int(.)) and int(cl(.)) on the power set of X. Then $\bigcap_{j \in \Delta} A_j$ is b[#]-closed.

Proof: Let Δ be a collection of b[#]-closed sets. Then by Definition 6.1, for each $j \in \Delta$,

$$\begin{aligned} A_{j} &= int(cl(A_{j})) \cap cl(int(A_{j})). \text{ Now, } \bigcap_{j \in \Delta} A_{j} = \bigcap_{j \in \Delta} [int(cl(A_{j})) \cap cl(int(A_{j}))] \\ &= [\bigcap_{j \in \Delta} int(cl(A_{j}))] \cap [\bigcap_{j \in \Delta} cl(int(A_{j}))]. \text{ By using Definition 4.11} \\ &\cap_{j \in \Delta} A_{j} = int(cl(\bigcap_{j \in \Delta} A_{j})) \cap cl(int(\bigcap_{j \in \Delta} A_{j})) \text{ that implies } \bigcap_{j \in \Delta} A_{j} \text{ is } b^{\#}\text{-closed. This proves the } \end{aligned}$$

proposition.

6. b[#]-operators

In this section we introduce the concepts of $b^{\#}$ -interior and $b^{\#}$ -closure operators and some of their properties are discussed.

Definition 6.1: The b[#]-interior of A, denoted by b[#]-*int*(A), is defined to be the union of all b[#]-open sets contained in A. That is b[#]-*int*(A)= \bigcup {B: B \subseteq A and B is b[#]-open}. The b[#]- closure of A, denoted by b[#]-*cl*(A), is defined to be the intersection of all b[#]-closed sets containing A. That is b[#]-*cl*(A)= \bigcap {B: A \subseteq B and B is b[#]-closed}.

Remarks 6.2:

- i. $b^{\#}$ -*int*(ϕ)= ϕ ,
- ii. $b^{\#}$ -*int*(X)=X.
- iii. $b^{\#}$ -*int*(A) \subseteq A.

iv. b[#]-interior of a set A is not always b[#]-open.

v. If A is $b^{\#}$ -open then $b^{\#}$ -*int*(A)=A.

vi If $b^{\#}$ -*int*(A)=A then it is not true that A is $b^{\#}$ -open as seen in the following example.

Example 6.3: By Example 4.3, we can easily show that

 $b^{\#}$ -*int*[(a,b)]= $b^{\#}$ -*int*($\bigcup_{n=1}^{\infty} \left[a + \frac{1}{n}, b - \frac{1}{n}\right]$)=(a, b) is not $b^{\#}$ -open.

Proposition 6.4: Let X be a space. Then for any two sub sets A and B of X we have

- (i) If $A \subseteq B$ then $b^{\#}$ -*int*(A) $\subseteq b^{\#}$ -*int*(B).
- (ii) $b^{\#}-int(b^{\#}-int(A)) \subseteq b^{\#}-int(A).$
- (iii) $X \setminus b^{\#}$ -int(A)= $b^{\#}$ -cl(X \setminus A).
- (iv) $X \setminus b^{\#}-cl(A) = b^{\#}-int(X \setminus A).$
- (v) $b^{\#}-int(A \cap B) \subseteq b^{\#}-int(A) \cap b^{\#}-int(B).$
- ^(vi) $b^{\#}$ -*int*(A $\bigcup B$) $\supseteq b^{\#}$ -*int*(A) $\bigcup b^{\#}$ -*int*(B).

Proof: Straight forward proof is omitted.

Remarks 6.5:

- (i) $b^{\#}-cl(\phi) = \phi$,
- (ii) $b^{\#}-cl(X)=X$.

(iii)
$$A \subseteq b^{\#}$$
-cl(A).

- (iv)b[#]-closure of a set A is not always b[#]-closed.
- (v) If A is $b^{\#}$ -closed then $b^{\#}$ -cl(A)=A.

If $b^{#}-cl(A)=A$ then it is not true that A is $b^{#}$ -closed as seen in the following example.

Example 6.6: -By Example 5.11, $b^{\#}-cl(\{0\}) = b^{\#}-cl\left(\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)\right) = \{0\}$ but $\{0\}$ is not

b[#]-closed.

Proposition 6.7: Let X be a space. Then for any sub sets A and B of X we have

- (i) If $A \subseteq B$ then $b^{\#}-cl(A) \subseteq b^{\#}-cl(B)$.
- (ii) $b^{\#}-cl(b^{\#}-cl(A)) \supseteq b^{\#}-cl(A).$
- (iii) $b^{\#}-cl(A \cup B) \supseteq b^{\#}-cl(A) \cup b^{\#}-cl(B).$

(iv) $b^{\#}-cl(A \cap B) \subseteq b^{\#}-cl(A) \cap b^{\#}-cl(B).$

Proof: Straight forward proof is omitted.

7. b[#]-continuity and b[#]-irresoluteness

In this section we introduce b[#]-continuous and b[#]-irresolute functions and their basic properties are studied.

Definition 7.1: Let X and Y are topological spaces. A function $f: X \rightarrow Y$ is called

 $b^{\#}$ -continuous if $f^{-1}(V)$ is $b^{\#}$ -open in X for each open set V of Y.

 $b^{\#}$ -continuity implies b- continuity but the reverse is not true that is shown in the following example.

Example 7.2: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{b\}, \{a, b\}, \{b, c, d\}, X\}$. Then (X, τ) is a topology. Let $Y = \{1, 2, 3\}$ and $\sigma = \{\phi, \{1\}, Y\}$. Then (Y, σ) is a topology.

Now we define a function $f:X \to Y$ by f(a)=2, f(b)=1, f(c)=1, f(d)=3. Then $f^{-1}(1)=\{b, c\}$ is bopen but not b[#]-open. Hence f is b-continuous but not b[#]-continuous.

Proposition 7.3: Let (X, τ) and (Y, σ) be two topological spaces and f be a map from X to Y. Then the following are equivalent.

- (i) f is a b[#]-continuous map.
- (ii) The inverse image of a closed set in Y is a b[#]-closed set in X
- (iii) $b^{\#}-cl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$ for every subset B of Y.

(iv) $f(b^{\#}-cl(A)) \subseteq cl(f(A)$ for every sub set A of X.

(v) $f^{1}(int(B)) \subseteq b^{\#}-int(f^{1}(B))$ for every sub set B of Y.

Proof: (i) \Rightarrow (ii) Let A be a closed set in Y, then Y\A is open Y. Then f¹(Y\A)is b[#]-open in X. It follows that f¹(A) is b[#]-closed in X. To prove (ii) \Rightarrow (iii). Let B be any sub set of Y. Since cl(B) is closed in Y, then f¹(cl(B)) is b[#]-closed in X. Therefore b[#]- $cl(f^{1}(B)) \subseteq$ b[#]- $cl(f^{1}(cl(B))=f^{1}(cl(B))$. To prove (iii) \Rightarrow (iv). Let A be any sub set of X. By (iii), we have f¹(cl(f(A))) \supseteq b[#]- $cl(f^{1}(f(A))$) \supseteq b[#]-cl(A. Therefore f(b[#]-cl(A)) $\subseteq cl(f(A)$. To prove (iv) \Rightarrow (v). Let B be any sub set of Y. By (iv), f(b[#]- $cl(X \setminus f^{1}(B))$) $\subseteq cl(f(X \setminus f^{1}(B))$ that implies f(X \ b[#]- $int(f^{1}(B))$) $\subseteq cl(Y \setminus B) = Y \setminus int(B)$. Therefore we have X \ b[#]- $int(f^{1}(B)) \subseteq f^{1}(Y \setminus int(B))$ that implies f¹(int(B)) \subseteq b[#]- $int(f^{1}(B)$).

To prove $(v) \Rightarrow (i)$. Let B be any open sub set of Y. Then $f^1(int(B)) \subseteq b^{\#}-int(f^1(B))$. Then $f^1(B) \subseteq b^{\#}-int(f^1(B))$. But $b^{\#}-int(f^1(B)) \subseteq f^1(B)$ that implies $f^1(B) = b^{\#}-int(f^1(B))$. This completes the proof.

Proposition 7.4: Let (X, τ) , (Y, σ) and (Z, υ) be three topological spaces. If $f: X \to Y$ is $b^{\#}$ -continuous and $g: Y \to Z$ is continuous, then $g_0 f: X \to Z$ is $b^{\#}$ -continuous. **Proof:** Straight forward.

Proposition 7.5: Let X be an extremally disconnected space. If $f:X \to Y$ is $b^{\#}$ -continuous and semi-pre-continuous then f is p-continuous.

Proof:Follows from Proposition 4.7.

Proposition 7.6: Let $f:X \to Y$ be $b^{\#}$ -continuous. Then

- (i) f is continuous \Rightarrow f is contra continuous.
- (ii) f is semi-continuous⇒f is q-continuous
- (iii) f is pre-continuous \Rightarrow p-continuous.
- (iv) f is q-continuous \Rightarrow f is β -continuous.
- (v) f is D(c, b) continuous \Rightarrow f is both continuous and contra continuous.
- (vi) f is D(c, p) continuous \Rightarrow f is β continuous.
- (vii) f is D(c, β) continuous \Rightarrow f is both continuous and β continuous.

Proof: Follows from Proposition 4.6.

Definition 7.7: Let X and Y be topological spaces. A function f: $X \rightarrow Y$ is called b[#]-irresolute if $f^{-1}(V)$ is b[#]-open in X for each b[#]-open sub set V of Y.

Proposition 7.8: Let (X, τ) and (Y, σ) be two topological spaces and f be a map from X to Y. Then f is b[#]- irresolute if and only if the inverse image of a b[#]-closed set in Y is b[#]- closed in X.

Proof: Straight forward.

References

[1] M.E. Abd El-Monsef, S.N. El-Deeb and R.A. Mahmoud, β -open sets and β -continuous map-pings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77-90.

[2] Ahmad Al-Omari and Mohd.Sahni Md. Noorani, Decomposition of continuity via b-open set, Bol.Soc. Paran. Mat., (38) v26 1-2 (2008):53-64.

International Journal of Mathematics Trends and Technology – Volume 5 Number 3– January 2014

- [3] D. Andrijevi c, On b-open sets, Mat. Vesnik 48 (1996), 59-64.
- [4] D. Andrijevi c, Semi-preopen sets, ibid. 38 (1986), 24-32.
- [5] D.Andrijevi c, Some properties of the topology of α -sets, Mat. Vesnik 36 (1984), 1-10.
- [6] S. Bharathi, K. Bhuvaneshwari, N. Chandramathi, On locally b**-closed sets, International Journal of Mathematical Sciences and Applications, 1(2) (2011)
 636-641.
- [7] H.H. Corson and E. Michael, Metrizability of certain countable unions, Illinois J. Math. 8(1964), 351-360.
- [8] J.Dontchev and M.Przemski, On the various decompositions of continuous and some weakly continuous functions, Acta Math. Hungar. 71(1-2)(1996), 109-120.
- [9] J. Dugundji, Topology, Allyn and Bacon, Boston 1966.
- [10] W.Dunham, Weakly Hausdorff spaces, Kyungpook Math.J.,15(1975), 41-50.
- [11] L. Gillman, M. Jerison, Rings of continuous functions, Univ. Series in Higher Math., Van Nostrand, Princeton, New York, 1960.
- [12] T. Indira and K. Rekha, On locally **b-closed sets, Proceedings of the Heber International Conference on Applications of Mathematics and Statistics (HICAMS) (2012).
- [13] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [14] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.
- [15] T.Nieminen, On ultrapseudocompact and related spaces, Ann. Acad. Sci. Fenn., Ser. AI. Math.,3(1977),185-205.
- [16] O. Njastad, On some classes of nearly open sets, Paci_c J. Math. 15 (1965), 961-970.
- [17] J.H.Park, Strongly θ -b-continuous functions, Acta Math. Hungar. 110(4)(2006), 347-359.
- [18] M.Przemski, A Decomposition of continuous and α-cintinuous, Acta Math. Hungar. 61(1-2)(1993), 93-98.
- [19] Thangavelu P, Rao K. C., p–sets in topological spaces, Bull. Pure and Appl. Sci. 21(E)(2)(2002), 341-345.
- [20] Thangavelu P, Rao K. C., q-sets in topological spaces, Prog of Maths 36(1&2)(2002), 159-165.
- [21] J. Tong, On decomposition of continuity in Topological spaces, *Acta Math.Hungar*, 54 (1-2) (1989) 51-55.