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. INTRODUCTION
Rao (the first author of this paper) and Murthy [3] proved results on common fixed point of four self maps on Quasi-

Gauge space, using continuity of mappings. Recently, Sharma and Tilwankar [5] pointed out that the continuity of
mappings is not required to prove the results. Unfortunately their observation is not valid.

Now in this paper, we extended the results of Rao and Murthy [3] under weaker conditions.

Definition 1.1 ([4]): A Quasi pseudo metric on a non-empty set X is a non-negative real valued function p on X x X such
that

(i) p(x,x)=0forall xe X,

(i) p(x,2) < p(x,y)+ p(y,z) forall x,y,z e X.
Definition 1.2 ([4]): A Quasi-Guage structure for a topological space (X ,S) is a family P of quasi pseudo metrics on X
such that the family {B(X, p,e):xe X,peP,e> 0} is a subbase for JI. (B(X,p,e) is the set
{y e X:p(xy) <e}) . If a topological space (X , S) has a Quasi- Gauge structure P, then it is called a Quasi-Gauge space
and is denoted by(X,P).

(In the topological space (X , S) we have the usual convergence of a sequence {x,} in X ).

Definition 1.3([4]): Let (X,P) be a Quasi-Gauge space. A sequence {x,} in X is left P -Cauchy iff for each p € P and
e>0, thereisa point X € X and a positive integer K such that p(X, X, ) <€ forall m>Kk (X and K depend on € and

p).

(X , P) is left sequentially complete if every left P -Cauchy sequence in X is convergent.
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Let (X , P) be a Quasi-Gauge space. A sequence {x,} in X is right P -Cauchy iff foreach pePand >0, there is
apoint X € X and apositive integer K such that p(X,,X) <€ forall m>Kk (x and k dependon € and p).

(X,P) is right sequentially complete if every right P -Cauchy sequence in X is convergent.
A sequence {x,} in X isP-Cauchy iff for each pePande>0, there is a positive integer K such that

p(X,,X,)<e forall m,n>K.

Result 1.4([4]): Let (X,P) be a Quasi-Gauge space. Then X is a To-space iff p(X,y) = p(y,x)=0 forall peP
implies x = y.
Definition 1.5([1]): Let (X , P) be a Quasi-Gauge space. The self maps f and g on X are said to be (f, g) weak compatible

if limgfx, = fz  whenever {x,} is sequence in X  such that lim fx, =limgx,=2z and

n—ow n—oo n—oo

lim fgx, =lim ffx = fz.

N N>
f and g are said to be weak compatible to each other if (,g)and (g, f) are weak compatible.
Now, we give the following:
Definition 1.6: Let (X, P) be a Quasi-Gauge space. The pair of self maps {f,g} is said to be weakly compatible iff fgx =gfx
whenever fx = gx for some X € X..

This is weaker than the previous one, in view of the following example.
Example 1.7:  Let X = [0,1).(with the usual metric) Define self maps f and g on X by
1
X 0 if 0<x< E,
fx== and gx= l_f 1
2 2 Z<x<u.
2
Then the pair {f, g} is weakly compatible but not (f,g) weak compatible.
X 1 . .
For, fX=gX<:>E=OOI’E<:>X=O since x <1 in X.

Now fg0 = 0 = gf0. Therefore, {f, g} is weakly compatible.

Now we prove that self maps f and g are not (f, g) weak compatible.

1
Take X, =1-—, for ne N.
n

fx, = f(l—ijzi(l—ijei asn — oo;
n) 2 n 2

1) 1 1
for n>2, gx, =g(1——j=§ and so gx, —>Easn—>oo.
n
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Now lim,  fgx = lim__ f(ijzlzf(lj
2)7a '\2

and lim, . ffx =Ilim_ f l 1—1 =Iimn%£ 1—l =£=f l }
2 n 4 n 2

Consider, gfx, = g{% (1—£D =0; implies that
n

. 1
lim fx =0 f|=|.
n—oo g n [2)

Thus the claims follow.

The following is useful in establishing our results.

Lemma 1.8: ([2]) Let w :[0,00) — [0,90) be non decreasing and upper semi continuous from the right . If y(t) <t for
every t >0, then limy "(t) =0.
n—oo

Rao and Murty [3] proved the following two theorems.
Theorem1.9: Let A, B, S and T be self maps on a left (right) sequentially complete Quasi-Gauge To-space (X, P) such
that

(i)  the ordered pairs (A,S) and (B, T) are weak compatible maps ;

(i) T(X) < A(X)and S(X) < B(X);

(iii) A and B are continuous ;

max {p?(Sx,Ty), p*(Ty, Sx)} < ¢{p(Ax, Sx) p(By,Ty), p(Ax,Ty) p(BY, SX),
(iv) P(AX, SX) p(Ax,Ty), p(By, Sx) p(BY, Ty),
P(BY, Sx) p(AX, Sx), p(BY, Ty) p(Ax, Ty)}

for all X,y € X andforall peP; where ¢ :[0,00)° —[0,0) satisfies the following:

(v) ¢ isnon-decreasing and upper semi continuous in each coordinate variable and foreach t >0,

w (t) = max{g{t,0,2t,0,0,2t},4{t,0,0,2t,2t,0}, ${0,1,0,0,0,0}} < t.

Then A, B, S and T have a unique common fixed point.
Theorem 1.10: Let A, B, S and T be self maps on a left (right) sequentially complete Quasi-Gauge To-space (X, P) with
conditions (iv) and (v) of Theorem(1.9). Further,

(i) the ordered pairs (A,S), (S, A), (B, T) and (T, B) are weak compatible maps;

(i) T(X) < A(X) and S(X) < B(X);

(iii) One of A, B, S, Tis continuous ;
Then the same conclusion of Theorem (1.9) holds.

Sushal Sharma and Tilwakar [5] claimed the following, stating that the continuity of the mappings is not necessary in
Theorems (1.9) and (1.10).
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Theorem 1.11([5]). Let A, B, S and T be self maps on a left (right) sequentially complete Quasi-Gauge T,- space (X, P)
such that

(i) the pairs {A, S} and {B, T} are weak compatible maps;

(i) T(X) < A(X) and S(X) < B(X);

max {p*(Sx,Ty), p*(Ty, )} < ¢{p(Ax, Sx) p(By. Ty), p(Ax, Ty) p(BY, Sx),
(i) P(AX, SX) p(Ax, Ty), p(BY, Sx) p(By,TY),
P(BY, Sx) p(AX, Sx), p(By, Ty) p(AX, Ty)}

forall X,y € X andforall peP; where ¢:[0,00)° —[0,0) satisfies the following:

(iv) ¢ isnon-decreasing and upper semi continuous in each coordinate variable and  for each t > 0,

w(t) = max{@{t,0,2t,0,0,2t}, 4{t,0,0,2t,2t,03, ¢{0,1,0,0,0,0, ${0,0,0,0,0, t}, ¢{0,0,0,0,t, 03} < t.

Then A, B, Sand T have a unique common fixed point.

Unfortunately in the proof they assumed that S(X) is complete which is not in the hypothesis.
Now we establish a common fixed point theorem of six self maps on a sequentially complete Quasi-Gauge T,-space

which generalizes Theorem (1.11) with the extra hypothesis of the completeness of a subspace of X.

2. MAIN RESULTS
Theorem 2.1: Let A, B, S, T, L and M be self maps on a left (right) sequentially complete Quasi-Gauge To-space (X, P )
such that
(i) the pairs {AL, S} and {BM, T} are weakly compatible ;
(i) TX) < AL(X) and S(X) < BM(X);
(iii) One of AL(X), BM(X), S(X) and T(X) is a complete subspace of X;
(ivy AL=LAand BM = MB;
(v) “either TB =BT or TM = MT” and “either SA= ASor SL=LS";
max {p?(Sx,Ty), p*(Ty, Sx)} < ¢{p(ALx, Sx) p(BMy, Ty), p(ALx,Ty) p(BMy, Sx),
(vi) P(ALX, Sx) p(ALX,Ty), p(BMy, Sx) p(BMy, Ty),
p(BMy, Sx) p(ALX, Sx), p(BMy, Ty) p(ALx, Ty)}

forall X,y € X andforall peP; where ¢ :[0,00)° —[0,0) satisfies the following:

(vii) ¢ is non-decreasing and upper semi continuous in each coordinate variable and for each t > 0,

w(t) = max{${t,0,2t,0,0,2t}, ¢{t,0,0,2t,2t,0}, ¢{0,1,0,0,0,0%, #{0,0,0,0,0, t},#{0,0,0,0,t, 0} < t.

Then A, B, S, T, L and M have a unique common fixed point.

Proof :
Let X, € X . By (ii) we can construct sequences {x.} and {y.} in X such that

SXan = BMXons1 = Yon (S2Y)
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and
TXons1 = AlXonsz = Yanua (S2Y), for n=0,1,2,. ...

Let dy = p(Yn, Yas1) and €, = p(Yns1, Yo)-
Taking X = Xon and y = Xans1 in (vi), we get that

max {p* Yz, Yania)s P* Vanazs Vo) < S{PVzn 10 Y2u) PYans Yanis)s POzt Yanes) PYans Vo),
p(yZn—ll y2n) p(yZn—ll y2n+1)’ p(yZn' yZn) p(yZn' y2n+1)v
p(yZn' yZn) p(yZn—l’ yZn)' p(yZn' y2n+1) p(yZn—li y2n+1)}

i'e" maX{dZZn ' eZZn} S ¢{d2n—1d2n 'O' d22n—1 + d2n—1d2n 'O'O' danZn—l + d22n}
If dypy < dy, then max{dzzn , ezzn}é o{d 2 ,0,2d22n ,0,0,2d22n}< d22n , which is a contradiction; hence don.1 = dan .
By taking X=Xon+2 and Y= Xon+1 in (i), we get that

Max {p* (Yaniz: Yania)s P° Vaneas Yani2)} < HPVanas Vaniz) POans Yanin)s POznens Yonis) POzns Vani2),
p(y2n+1' y2n+2) p(y2n+1' y2n+1)’ p(yZn' y2n+2) p(yZn' y2n+1)v
p(yZn' y2n+2) p(y2n+1' y2n+2)' p(yZn' y2n+1) p(y2n+1' y2n+1)}

i'e" maX{eZZnﬂ' dZZn+1}S ¢{d2n+1d2n 'O'O' d22n + d2nd2n+1' d2ndZn+1 + d22n+1lo}'

If don < dones then max{es .,,d2 .} < @{d?20.1,0,0,2d2. ,,2d *2n1,0} < dZ, ., which is a contradiction by (vii);
hence d,, = doper.

Now, maX{dZZn ! eZZn}S ¢{d22”‘11012(:122n—1'O'O'ZdZZn—l}S l//(dZZn—l) = l//( pz(yZn—ll y2n)
and maX{eZZn+1' dZZn+1}S ¢{d 22” 'O'O'2d22n '2d22” 'O}S l//(dZZn) = l//( pz(yan y2n+1))'

S0, 7 = P*(Yor Vo) W (P*(Yoas Yo )) < <w " (P* (Yo, Y1) (211)
and €5 = P (Vo1 Yo) SW (P (Vor Vo)) < <" (P* (Vs ¥o)) - (2.1.2)
By Lemma (1.8) and from (2.1.1) & (2.1.2), we get

limd = lime =0 2.13)

Now we prove {y,} is a P-Cauchy sequence. For this, it is enough to show that {y»} is P -Cauchy. Suppose not ; then

there is an e>0 such that for each positive integer 2k there exist positive integers 2m(k) and 2n(k) such that for some

peP
P(Yangkys Yamexy) >€ for 2m(k) > 2n(k) > 2k (2.1.4)
and p(yzm(k) , y2n(k)) >e for 2m(k) > 2n(k) > 2k. (2.1.5)

For each positive even integer 2k, let 2m(k) be the least positive even integer exceeding 2n(k) and satisfying (2.1.3); hence

p(an(k) , yzmm_z) <e.

Then for each even integer 2k,

€< PVangy Yam@ey)
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P(Yanys Yamy-2) T PWYamgo-20 Yamao-1) T PYamwy 1 Yameo)
< P(Yanys Yamy-2) T Hamey-2 + omeya (2.1.6)
From (2.1.3) and (2.1.5), ||<im P(Yanqiyr Yamgo) =€ 2.17)

By triangle inequality,
P(Yanty Yom) < PYanky Yom(io - 1) + PYam@o - 10 Yom(io)
P(Yanys Yomeio-1 ) + Gome - 1

and

IA

P(Yan(kys Yam() + P(Yam@) » Yam(-1)
P(Yangys Yom@) + €2m@g - 1.

These imply that |p(y2n(k) +Yame) — P(Yanck)» y2m(k)—l)| < max{dny-1s €ampey1t (2.1.8)

P(Yangq: Yomi-1)

Similarly, we get that
‘ p ( Yon(kya y2m(k)—1) -p ( Yonwyr Yom) )‘ <max{d,, .y + damwy1sCanmy + ameiy 1t (219
From equations (2.1.8) and (2.1.9), by virtue of (2.1.3), we get that ||<im P(Yangys Yamy 1) =€
-0

and Il(m P(Yantkysas Yomgey1) =€ -

If p(Yamek), Ynge) > €, proceeding as above, we get that

I'(E[l PVamewys Yangey) = Lm P(Vamyar Yongy) = Lm P(Yam@y-1s Yanik)) =€ -

By taking X = Xom(ky @and Y = Xongg+1 in (Vi), we get that
€ < Py, Yam)
= P(Yang, Yonio+1)+ P(Yan(io+1r Yom(io)

= Aangg + Max{P(Yangi+1:Yamei)» P(Yomir Yonii+1)}
dangy + Max{P(TXango+1, SXomeiy)s P(SXamkys TX2n(iy+1)

= dongotl @ {P(Yamm-1, Yamm)P(Yanto: Yanos1),
P(Yam(io-1: Yangrt) P(Yanar Yam(g)s P(Yam(g-1: Yam()P(Yamo-1,Y2n(+1),
P(Yankys Yom()P(Yan@ys Yon@+1)s P(Yany-10 Yam)P(Yam)-1,Yam))s
P(Yzn()» y2n(k)+l)p(yZm(k)-11y2n(k)+l)]1/2-

Since ¢ is upper semi continuous, ask — oo

1
we get e<[p{0,€%,0,0,0,0}]2 <€ which is a contradiction.

Therefore, {y,} is a P-Cauchy sequence in X.

Since X is sequentially complete, there exists a point Z € X such that

limy =z
n —ow
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Hence, lim ALx,,=Ilim Tx,, ,=z
n—ow n— oo

and lim BMx,,,,=lim Sx, ., =z
n—ow n— oo

Case I: Suppose S(X) or BM(X) is a complete subspace of X.

Since {yn}g S(X)(g BM (X)) there exists a pointU € X such that z =BMu.

We now show that Tu = z. If not

taking X =X, and y=u in (vi), we get that

max {p?(Sx,,, Tu), p*(Tu, Sx,,)} < { p(ALX,,, SX,,) p(z,Tu), p(ALX,,,Tu) p(z,SX,,),
P(ALX,,,SX,,) p(ALX,,,Tu), p(z,SX,,) p(z,Tu),
p(z,SX,,) P(ALX,,,SX,,), P(z,Tu) p(ALX,,,Tu)}

i.e., max{p*(Y,n, Tu), P*(TU, ¥,,)} < $LP(Van 15 Yon) P(2,TU), P(Y2r 1, TU) P(Z, V1),
P(Vanss Yon ) P(Vanas TU), P(Z,Y,,) P(2,TU),
P(Z Yan) P(Yonss Yan)s P(Z,TU) P(Vnas TU)}
Letting N —> 00, we get that

max {p®(z,Tu),p’(Tu,z)} < ¢{0,0,0,0,0, p(z,Tu) p(z,Tu)}
< p(z,Tu)p(z,Tu)
which is a contradiction.
So, Tu=2z. Thus, Tu=z=BMu.
Since {BM, T} is weakly compatible, TBMu= BMTu. i.e., Tz = BMz.
We now show that Tz =z. If not
taking X =x,, and y =z in (vi), we get that
max {p° (Y0, T2), P*(TZ, Y2, )} < {0 (Van-1: You) P(BMY, T2), P(¥z4 1, TZ) P(BMY, ¥,,),
P(Yanas Yon) P(Yan 1, T2), P(BMZ, y,,) p(BMZ,T2),
P(BMZ,Y,,) P(Yan-11 Yan): P(BMZ,T2) p(Y,, 1, T2)}

i.e., max{p*(Y,,,72), P*(TZ, ¥o0)} < #LP(Yan 11 Yon) P(2,T2), P(Y20 1, T2) P(Z, V30)
P(Yan1 Yon) P(Yan0:T2), P(Z, Y,,) P(2,T2),
P(Z Y2n) P(Yan 1 Yan )s P(2,T2) P00, T2Z)}
Letting N —> 00, we get that

max {p’(z,7z),p*(Tz,2)} < ${0,0,0,0,0, p(z,Tz) p(2,T2)}
< p(z,Tz2)p(z,Tz)

which is a contradiction. So, Tz = z.
Hence, Tz =BMz = z.
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Suppose TM = MT. Since BM = MB, BMMz = MBMz = Mz and TMz = MTz = Mz.
We now show that Mz =z, If not

taking x =X, and y = Mz in (vi), we get that

max {p?(Sx,,, Mz), p’(Mz, Sx,, )} < ¢{p(ALX,,, SX,,) p(Mz, Mz), p(ALX,,, Mz) p(Mz, SX,,),
P(ALX,,, SX,,) P(ALX,,, Mz), p(Mz, SX,,,) p(Mz, Mz),
p(Mz,Sx,,) p(ALX,,, SX,,), p(Mz, Mz) p(ALX,,, Mz)}.
Letting N —> 00, we get that

max {p?(z,Mz), p>(Mz, 2)} < ¢{p(z, ) p(Mz, Mz), p(z, Mz) p(Mz, 2),
p(z,2) p(z,Mz), p(Mz,z) p(Mz,Mz),
p(Mz,2)p(z,z), p(Mz,Mz) p(z,Mz)}.

This implies that

max{p2 (z, Mz),pZ(Mz,z)} < ¢{0, p(z,Mz) p(Mz, z),0,0,0, 0}
< p(z,Mz)p(Mz,2).

We first show that p(z, Mz) = p(Mz, z) and then = 0. Suppose not;

either p(z,Mz) > p(Mz,z) = 0 or p(Mz, z) > p(z, Mz) = 0.

Without loss of generality, we assume that p(z,Mz) > p(Mz, z) = 0.

Now, max{p*(z, Mz), p’(Mz, z)} < p?(z, Mz), which is a contradiction.

Therefore, p(z, Mz) = p(Mz, z). If the common value is not 0 then the above inequality is not valid.

Hence the common value is 0.

Since X is T, — space, follows that Mz = z.

Since z=BMz, wehave Bz=z. Hence Bz=Mz=Tz=z

Suppose TB = BT.

Since BM = MB, BMBz = BBMz =Bz and TBz =BTz = Bz.

We now show that Bz = z. If not

taking x =x,, and y = Bz in (vi), we get that

max {p*(Sx,,, Bz), p*(Bz,SX;,)} < ¢{P(ALX,,, SX,,) P(BZ, Bz), p(ALX,,, Bz) p(Bz,SX,,),
p(ALXZn ! SXZn) p(ALXZn' BZ)! p(BZ' SXZn) p(BZv BZ)!
p(BZ’ SXZn) p(ALXZn' SXZn)' p(BZv BZ) p(ALXZn' BZ)}

Letting N —> 00, we get that

max {p°(z,Bz), p°(Bz,2)} < #{p(z,2) p(Bz, Bz), p(z, Bz) p(Bz, 2),
p(z,z)p(z,Bz), p(Bz,z)p(Bz, Bz),
p(Bz,2)p(z,2), p(Bz, Bz) p(z, Bz)}

ie., max{pz(z, Bz),pz(Bz,z)} < ¢{0, p(z, Bz) p(Bz, 2),0,0,0, 0}
< p(z,Bz)p(Bz,2)
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As above, we can prove that p(z, Bz) = p(Bz, z) = 0.

Since X is Ty - space follows that Bz = z.

Since z=BMz, z=BMz=MBz=Mz. Hence z=Bz=Mz=Tz.

Since T(X) < AL (X), thereisa We X such that z= ALw.

We now show that Sw = z. If not;

taking X = W and y = Xzn41 in (i), we get that

max {p°(SW, Txyy.,), P* (TXpp.1, SW)}

< ¢{P(ALW, SW) p(BMX, .1, TX;,.1), P(ALW, TX,, ;) P(BMX,, ;. SW),

P(ALW, SW) p(ALW, T, ), P(BMX,,.;, SW) P(BMX,, 1, TXy.4),
P(BMX,,..., SW) p(ALW, SW), P(BMX,, 1, T,,..) P(ALW, X, )}.

Letting N —> 00, we get that

max {p*(Sw, ), p*(z, SW)} < ¢{p(z,Sw) p(z,2), p(z,2) p(z, SW),
p(z,5wW)p(z,2), p(z,SwW) p(z, 2),
p(z,SwW)p(z,Sw), p(z,2) p(z, 2)}

i.e., max{p’(Sw,z),p’(z Sw)} < ${0,0,0,0, p(z,Sw) p(z, Sw), 0}
< p(z,SwW)p(z,Sw)

which is contradiction. Hence z = Sw.

Thus Sw =z = ALw. Since {AL, S} is weakly compatible, ALSw = SALw.
i.e., ALz=Sz.

We now show that Sz = z. If not ;

taking x =z and y = Xpn+1 in (vi), we get that

max {p* (82, TXyq.1), P* (TXzp,, S2)}
< ¢{p(Asz SZ) p(BMX2n+1’TX2n+1)’ p(ALZ’TX2n+1) p(BMX2n+1’ SZ),
p(Ain SZ) p(ALZ’TX2n+1)’ p(BMX2n+1’ SZ) p(BMX2n+1'TX2n+1)’
p(BMX2n+1’ SZ) p(Ain SZ), p(BMX2n+1’TX2n+1) p(ALZ'TX2n+1)}'

Letting N —> 00, we get that

max {p’ (Sz,2),p*(z,52)} < ¢{0, p(Sz,2) p(z,52),0,0,0,0}
< p(Sz,z)p(z,Sz)

which is a contradiction. So, Sz=z. Thusz =Sz = ALz.
Suppose SL = LS. Since AL =LA, ALLz=LALz=LzandSLz=LSz=Lz.
We now show that Lz = z. If not,

taking x = Lz and y = Xon41 in (Vi) , we get that
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max {pZ(LZ’TX2n+1)’ pZ(TX2n+1' LZ)}
< ¢{ p(LZ’ LZ) p(BMX2n+1'TX2n+1)' p(LZ'TX2n+1) p(BMX2n+1' LZ),
p(in LZ) p(LZ'TX2n+1)' p(BMX2n+1' LZ) p(BMX2n+1’TX2n+1)'

p(BMX2n+1' LZ) p(LZ, LZ), p(BMX2n+1'TX2n+1) p(LZ'TX2n+1)}'

Letting N —> 00, we get that

max {p’(Lz,2),p* (z,Lz)} < ¢{0, p(Lz,2) p(z,12),0,0,0,0}
< p(Lz,z)p(z,Lz)

which is a contradiction. So, Lz=1z. Since z=ALz,wehavez=AlLz=Az. Thus Az=Lz=Sz =z

Suppose AS = SA. Since AL = LA, ALAz = AALz = Az and SAz = ASz = Az.
We now show that Az = z. If not
taking x = Az and y = X1 in (Vi), we get that
max {p* (Az, TXy,1), P*(TXpp.1, AZ)}
< ¢{p(Az, AZ) p(BMXy,. 1, TXon1), P(AZ TXpy,0) P(BMX,, 1, A2),
P(Az, Az) p(Az,TX,n,1), P(BMX,, 1, AZ) P(BMXy,.1, TXop1),
P(BMX,.., AZ) p(Az, Az), p(BMX, .1, TXy,.1) P(AZ, Ty, )}

Letting N —> 00, we get that
max {p®(Az,2),p’(z,Az)} < {0, p(Az,2) p(z, Az),0,0,0,0}
< p(Az,2)p(z, Az)
which is a contradiction. Hence Az = z.

Since z= AlLz,wehavez=AlLz=LAz=Lz. Thusz=Az=Lz=Sz
Hencez=Az=Bz=Lz=Mz=Sz=Tz

Case 2: Suppose T(X) or AL(X) is a complete subspace of X.
In this case, we first get thatz= Az =1Lz =Sz and then z=Bz=Mz =Tz

Thus z is a common fixed pointof A, B, S, T,L and M in X.
Uniqueness: suppose Z* is also a common fixed pointof A, B,S, T, Land M in X.
We now show that ' = z. If not
taking x =z and y=z"in (vi), we get a contradiction, so z* = z.

Hence, z is the unique common fixed pointof A, B, S, T, Land M in X.

We, now, give the following example in support of our Theorem (2.1).
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Example 2.2: Let X = [0, oo ) with the usual metric and let A, B, S, T, L and M be self maps on X. Define A, B, S, T, L and
M by Ax=x, Bx=x%, Lx = Mx = X,
0if x <3,
B {1 if x>3
and Tx=0.
LG G+ T
6

Define ¢ by ¢ (t,,t,,t;,t,,t,t;)

Define p:X x X >0 " U {0} by

X—y if x>y,
p(xy) = %X if x<y.
Clearly ‘0’ is the unique common fixed point of A, B, S, T, L and M.
For,when X< 3 and ye X
L.H.S= max {p*(Sx, Ty), pX(Ty,Sx)} = max {p*(0,0), p*(0,0)} = 0.
When x>3 and Yye X.

L.H.S = max{p*(1, 0), p?(0,1)}= max{1, 1/2}=1.

¢ {p(x.2)p(y%,0), p(x,0), p(¥*1), p(x.1) P(%,0),

RH.S. =
p(v%.1)p(y?,0), p(¥*.1) P(x.1), P(¥*,0) p(x,0)}
= ¢ {(x=Dy*,x(y* -1), (x=Dx,(y* ~D)y*, (y* ~D(x-1), y*x}
_ {(x-1) y* +x(y* 1)+ (x-1)x+(y* =1) y* +(y* -1)(x-1) y*x}
6
i {y? (2x+ y2 —1)+(x—1) y? +(x=1)x+y*x}
) 6
N x(x-1)
B 6
> 32 4
6
Thus L.H.S. £ R.H.S.

All the other conditions are trivially satisfied.

Note 2.3: By taking L = M = | (The identity map on X) in Theorem (2.1), we get the following:
Corollary 2.4: Let A, B,S and T be self maps on a left(right) sequentially complete Quasi gauge To- space (X, P ) such that
(i) the pairs {A,S} and {B, T} are weakly compatible ;
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(i) T(X) < A(X) and S(X) < B(X);
(iii) One of A(X), B(X), S(X) and T(X) is a complete subspace of X;
max {p*(Sx,Ty), p*(Ty, $x)} < ¢{ p(Ax, Sx) p(By, Ty), p(Ax, Ty) p(BY, Sx),

(iv) P(AX, SX) p(Ax, Ty), p(By, Sx) p(By, Ty),
P(BY, Sx) p(Ax, Sx), p(By, Ty) p(AX, Ty)}

for all x,y € X andforall p € P, where (15:[0,00)6 —(0,0) satisfies the following.

(V) ¢ isnon-decreasing and upper semi continuous in each coordinate variable and for each t > 0,

v (t) = max {pft, 0,2t,0,0,2t}, pft, 0,0, 2t,2t, 0}, {0,,0,0,0,0}, ¢{0,0,0,0,0,t},¢{0,0,0,0,t,0}} <t.

Then A, B, S, and T have a unique common fixed point.

Remark 2.5: Corollary (2.3) is a revised version of Theorem (1.11).
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