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1. INTRODUCTION 

The  theory  of   probabilistic  metric  spaces   is  an  important  part  of  stochastic Analysis, 

and  so it  is  of  interest  to  develop  the  fixed  point  theory  in  such  spaces. The  first  

result  from  the  fixed  point  theory  in  probabilistic  metric  spaces  is  obtained by  Sehgal  

and  Bharucha-  Reid   [16]. Since  then  many  fixed  points theorems  for  single valued  and  

multi valued  mappings  in probabilistic  metric  spaces have been proved in [2]-[5].   

A  probabilistic metric  space  is  an  ordered  pair  (X, F) , where  X   is  an  arbitrary  

set  and  F is  a  mapping  from  X2 into  the  set  of   distribution  functions.  The  distribution  

function  Fx,y (t)  will  denote  the  value  of Fx,y  at  the   real  number  t. The  function   Fx,y  

are   assumed  to  satisfy  the  following  conditions:  

        (i)     Fx,y (0)  = 0   for  all  x, y  ∈ X    

        (ii)     Fx,y (t)  = 1 for  all  t > 0 iff  x =y 

       (iii)    For distinct points x, y ∈ X, Fx, y (t) ≠1 for t > 0 

       (iv)    Fx,y (t)  =  Fy, x (t)  for  all  x, y  ∈ X and  t > 0  

       (v)   If Fx,y (t1)  =1, Fy,,z (t2) =1,  then Fx,z (t1 + t2  )= 1  for all  x, y, z ∈ X  and t1, t2,  > 0 .  

In  2003,  Ren  and  Wang [18] gave  the  notion  of  n-th  order  t- norm  as  follows: 

Definition 1.1.  A  mappings   ∆ :  ∏ [0,1] → [0,1]   is  called  a  n-th  order  t-norm  if      

following  conditions  are  satisfied: 
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           (i)    ∆ (0,0,…,0) =0,  ∆ (a, 1,1,…1) =a  for  all  a  [0,1] 

           (ii)    ∆ (a1, a2,a3 ,…,an ) = ∆ (a2, a1,a3 ,…,an ) = ∆ (a2, a3,a1 ,…,an ) 

                               =         =  ∆ (a2, a3,a4 ,…,an, a1 ) 

           (iii)   ai  ≥  bi ,  i= 1,2,3…,n  implies ∆ (a1, a2,a3 ,….,an ) ≥ ∆ (b1, b2,b3 ,…,bn) 

            (iv)  ∆ (∆ (a1, a2,a3 ,…,an), b2,b3 ,…,bn) 

                    = ∆ ( a1, ∆ (a2,a3 ,…,an,b2),b3, …bn) 

                    =  ∆ ( a1,a2,∆ (a3,a4 ,….,an,b2,b3),b4, …,bn) 

                   =… 

                   =∆ (a1, a2,a3 ,….,an-1, ∆ (an, b2,b3 ,….,bn  ) ). 

For  n= 2, we  have  a  binary  t- norm,  which  is  commonly  known  as  t- norm. 

Basics examples of t-norm are the Lukasiewicz t- norm  ∆ 	, ∆ (a, b) = max (a+b-1, 0), 

 t-norm ∆ 	, ∆ (a, b) = ab   and  t- norm ∆ 	, ∆ (a, b) = min{a, b}. 

Definition 1.2.([3])  Let ∆ be a t-norm and let ∆n: [0, 1] →[0, 1] (n∈ ℕ) be defined by  

                     ∆1(x) =∆ (x, x), ∆n+1(x) =∆ (∆n(x), x)     (n	∈ ℕ, x∈ [0,1] ). 

We say that the t-norm ∆ is of Hadzic- type if  the family {∆n(x); n∈ ℕ} is equicontinuous at 

x=1.The family {∆n(x), n∈ ℕ} is equicontinuous at x=1 if for every λ	∈ (0, 1), there δ(λ) 

∈(0,1) such that  

            x > 1 - δ(λ) implies ∆n(x) > 1- λ for all (n∈ ℕ). 

A trivial example of t-norm of Hadzic- type is ∆=∆M. 

Remark 1.3. Every t-norm ∆M is of Hadzic- type but converse need not be true see [4]   

There is a nice characterization of continuous t-norm of Hadzic - type : 

(i) If there exists a strictly increasing sequence {푏 } ∈ℕ	in	[0,1] such that  

    lim →∞ b = 1	and ∆(	b , b )=b  for all n ∈ ℕ, then ∆		is  of Hadzic – type. 

(ii) If ∆ is continuous and ∆ is of Hadzic- type, then there exists a sequence {푏 } ∈ℕ as in  (i). 

Definition 1.4.([4]) If ∆ is a t-norm and (x1,x2,x3,…,xn) ∈ [0,1]  (n∈ ℕ), then ∆ x    is 

defined recurrently by 1, if n=1 and  ∆ x  = ∆(∆ x 	, x )  for all n ≥ 2. If {푥 } ∈ℕis a 

sequence in [0,1], then ∆∞ x  is defined as lim →∞ ∆ x    (this limit always exists) and 

∆∞ x  as ∆∞ x . 

Definition 1.5.  Let X be any non-empty set and D the set of all left-continuous distribution 

functions. A triplet (X, F, ∆) is said to be a Menger space if the probabilistic metric space  

(X, F) satisfies the following condition:  

          (vi) Fx,,z (t)  ≥ ∆( Fx,y (t1), Fy,z (t2)), 

where t , t2 > 0, t1 +t2 =t  and    x, y, z, ∈X   and ∆ is the  t- norm. 
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Definition 1.6. A sequence  {xn}  in  a  Menger  space   ( X, F, ∆)  is  said  to  be 

(i)    convergent  with  limit  x  if  lim → F ,x (t)= 1  for  all  t > 0. 

(ii)    Cauchy  sequence  in  X  if  given  ∈> 0, 휆 > 0, there  exists  a  positive  integer            

Nϵ,λ  such  that        

                          F , (∈) >1- λ  for all   m, n > Nϵ,λ. 

       (iii)   Complete if every Cauchy sequence in X is convergent in X. 

Definition 1.7.([12]) Two  maps  f  and  g  are  said  to  be  weakly  compatible if  they  

commute  at their  coincidence  points. 

Definition 1.8 Two  self-mapping  f  and  g  of  a Menger  space (X, F, ∆) are  said  to  be  

weakly commuting if  F(fgx, gfx, t)  ≥ F(fx, gx,t), for  each  x ∈ X and  for  each  t>0. 

Definition 1.9.([14])  Let  f and  g  mapping  from  a Menger  space (X, F,∆)	 into  itself. A 

pair  of  map {f, g}  is  said to be  compatible if  lim →∞ F(fgx , gfx , t) = 1, whenever {x }  

is  a  sequence  in X  such  that  lim →∞ fx = lim →∞ gx = u  for  some  u ∈X and for all t > 0. 

Definition 1.10. Let  f and  g  self- mapping  from  on  Menger  space (X, F, ∆ ).The  

mappings  f  and  g  are  said  to be  non-compatible  if  lim →∞ F(fgx , gfx , t) ≠ 1, 

whenever {x }  is  a  sequence  in  X  such  that  lim →∞ fx = lim →∞ gx = u for  some  u ∈X  

and  for  all t > 0. 

In 2007, Kohli et.al [13] introduced the notion of variants of R-weak commutative maps as 

follows: 

Definition 1.11.  A pair of self- mappings (f, g) of a Menger space (X, F, ∆) is said to be  

(i)   Weakly commuting if  F(fgx, gfx,t) ≥ F(fx, gx,t) 

(ii)   R- Weakly commuting if there exists some R > 0 such that  

         F (fgx, gfx,t) ≥ F(fx,gx, t/R) 

(iii)   R- Weakly commuting mappings of the type (i) if there exists some R > 0 such that 

F(gfx, ffx,t) ≥ F(gx,fx, t/R) 

(iv)   R- Weakly commuting mappings of the type (ii) if there exists some R > 0 such that  

F(fgx, ggx,t) ≥ F(fx,gx, t/R) 

(v)   R- Weakly commuting mappings of the type (iii) if there exists some R > 0 such that 

F(ffx, ggx,t) ≥ F(fx,gx, t/R), for all x∈ X  and  t > 0. 

In our further discussion, we adopt the terminology from the paper of Imdad et.al.[8] . 

We  rename  R-Weakly commuting  mappings of  the type (i), R-Weakly commuting  

mappings of  the type (ii) and  R-Weakly commuting  mappings of  the type (iii) by R-

Weakly commuting  mappings of  the type (Ag), R-Weakly commuting  mappings of  the 

type (Af) and  R-Weakly commuting  mappings of  the type (P) respectively. 
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One can   notice that definition 1.11.(iii) and 1.11.(iv) was  inspired by Imdad et.al. [8]  from  

the paper of  Pathak et. al. [15], whereas definition 1.11.(v) was introduce by Imdad et.al. [8]. 

In 2002, Aamri and Moutawakil [1] generalized the notion of non compatible 

mapping to E.A. property. It was pointed out in [1] that property E.A. buys containment of 

ranges without any continuity requirements besides minimizes the commutativity conditions 

of the maps at their points of coincidence. Moreover, E.A. property allows replacing the 

completeness requirement of the space with a more natural condition of closeness of the 

range. Recently, common fixed point theorems in probabilistic metric spaces/fuzzy metric 

spaces using  E.A. property along with weak compatibility have been recently obtained in 

([8],[10]). 

Definition 1.12.([1]) Let f and g be two self-maps of a metric (X, d), then they are said to 

satisfy E.A. property if there exists a sequence {xn} in X such that  

                    lim → fx 		= 	 lim → gx = u	, for some u∈	X. 

Now in a similar mode, we can state E.A. property in Menger space as follows: 

Definition 1.13. A pair of self-mapping (f, g) of Menger spaces (X, F, ∆) is said to hold E.A. 

property, if there exists a sequence {xn} in X such that  

    lim →∞ F , (t)=1 for all t		> 0. 

Example.1.14. Let X = [0, ∞) be the usual metric space. Define f, g: X→ X by fx=  and 

gx=  for all x ∈ X. Consider the sequence {x }= 		 . Since    lim →∞ fx  = lim →∞ gx =0, 

then f and g satisfy the E.A. property. 

Although E.A property is generalization of the concept of non compatible maps, yet it 

requires either completeness of the whole space or any of the range space or continuity of 

maps. Recently, the new notion of CLR property (common limit range property) was given 

by Sintunavarat and Kuman [19] that does not impose such conditions. Their importance of 

CLR property ensures that one does not require the closeness of range subspaces. 

Definition 1.15.( [19]) Two maps f and g on Menger spaces X are satisfy the common limit 

in the range of g (CLRg) property if 		lim → fx 		= 	 lim → gx = gx	, for some x ∈	X. 

Example.1.16. Let X = [0, ∞) be the usual metric space. Define f, g: X→ X by fx=x+1 and 

gx=2x for all x ∈ X. Consider the sequence {x }= 1+		 . Since lim →∞ fx  = lim →∞ gx =2= 

g1, therefore f and g satisfy the (CLRg) property. 

Now we state a Lemma which is useful in our study: 

LEMMA 1.17.([14])  Let (X, F, ∆) be a Menger space.  If there exists q∈(0, 1) such that    

F(x, y, qt ) ≥ F(x, y, t) for  all  x, y	∈ X and t > 0,  then  x = y. 
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Implicit relations 

Let  Ѱ  be  set  of  all  continuous  function ɸ( t1,t2,t3,t4,t5,t6 ): ℝ → ℝ is a non-increasing in  

6-th co-ordinate variable and satisfying the following conditions: 

    (i)  ɸ( u, 1, v, 1, v, ∆(u, v) ) ≥ 1 or ɸ( u, v, v, u,1, ∆(u, v)) ≥ 1 implies  that  u ≥ v,  

   (ii)  ɸ( u, 1, 1, u,1, u ) ≥ 1  implies  that  u ≥ 1,  

   (iii) ɸ( u, v, 1, 1,v, u ) ≥ 1  implies  that  u ≥ v. 

Example 1.18. Define  ɸ( t1,t2,t3,t4,t5,t6 ) = 15t1- 13t2+5t3-7t4+t5-t6 , then  ɸ ∈ Ѱ. 

2. Weakly compatible maps 

Theorem 2.1. Let (X, F,	∆) be a complete Menger space with continuous t-norm of Hadzic - 

type. Let A, B, S and T be self mappings on X satisfying the following conditions: 

       (2.1)  A(X) ⊂ T(X),   B(X) ⊂	S(X), 

       (2.2)  the pairs (A, S) and (B, T) are weakly compatible, 

       (2.3)  there  exists  q ∈ (0, 1) such  that  for  every  x, y ∈ X ,  t > 0  and  ɸ ∈ Ѱ, 

                ɸ (F (Ax, By, qt), F (Sx, Ty, t), F (Ax, Sx, t),  

                     F (By, Ty, qt), F (Ax, Ty, t), F (By, Sx, (q+1) t)) ≥ 1, 

      (2.4)  One  of  the  subsets A(X), B(X), S(X) and T(X)  is  a  closed subset of X. 

Assume that there exists		x , x  ∈	X such that for  y  = Ax  = Tx , 	y  = Bx  and  µ ∈ (q, 1)  

                                           lim → 		∆ F	(y , y , 	)=1. 

 Then  A,  B, S,  and T  have  a  unique  common  fixed  point  in  X. 

Proof. Since  B(X) ⊂	S(X),  there  exists x , x ∈ X  such  that  Bx = Sx . Inductively, we   

can  construct two  sequences  {x }  and  {y }  of  X  such  that 

                  y 	= Tx  = Ax   and  

                		y 		= Sx  = Bx    for n= 1,2,… 

Putting   x= x   and y =x  in (2.3), we have that for all   t > 0 

 1 ≤	ɸ (F (Ax , Bx , qt), F(Sx , Tx , t), F (Ax , Sx , t),  

            F (Bx , Tx , qt), F (Ax , Tx , t),  

              F (Bx , Sx , (q+1) t))   

     = ɸ(F(y , y , qt ), F(y ,	y , t ), F(y ,	y  , t ),  

             F (y ,y , qt ), F(y , y , t),  

                 F(y , y , (q+1) t))  

     ≤	ɸ(F(y , y , qt ), F(y ,	y , t ), F(y ,	y , t ),  

             F (y , y , qt ), F(y , y , t),  

                ∆ (F (y , y , qt), F(y ,	y , t ))),  



              International Journal of Mathematics Trends and Technology – Volume 5  – January 2014 

  ISSN: 2231-5373                   http://www.ijmttjournal.org                         Page 187 
 

since the function ɸ is non-increasing in the 6-th coordinate variable. 

Using properties of implicit relations Ѱ, we get  

 F (y ,	y , qt)  ≥  F(y ,	y , t ). 

Again,   putting   x= x   and y =x  in (2.3), we have for all   t > 0 

1	≤ ɸ (F (Ax , Bx , qt), F(Sx , Tx , t), F (Ax , Sx , t),  

       F (Bx , Tx , qt), F (Ax , Tx , t),  

          F (Bx , Sx , (q+1) t)) 

  = ɸ(F(y , y , qt ), F(y ,	y , t ), F(y ,	y , t),  

         F (y , y , qt), F (y , y , t),  

              F (y , y , (q+1) t)) 

  ≤ ɸ (F (y ,	y , qt ), F(y ,	y , t), F(y ,	y , t), 

           F (y , y , qt), F(y , y , t),  

             ∆ (F (y ,y , qt), F(y ,	y ,t))),  

Hence we get 

            F(y ,	y , qt)  ≥  F(y ,	y , t ). 

Thus for any n∈ 	ℕ, we have   

                            F (y ,	y , qt)  ≥  F(y ,	y , t ) 

     i.e.,                     

                             F (y ,	y , t)  ≥  F(y ,	y ,  )  

                                                     ≥ F (y ,	y ,   ) 

                                                  . . . 

                                                       ≥ F (y ,	y ,  ) 

Thus for all t > 0 and n=1, 2, 3… 

                                F (y ,	y , qt) ≥ F(y ,	y ,  	).  (2.5) 

Now, we show that {y } is a Cauchy sequence in X. 

Let σ = .  Since 0 ˂ σ ˂ 1, the series   ∑ σ  is convergent and there exists m  ∈ ℕ such 

that  ∑ σ  ˂ 1.  Hence for every m > m +1 and every s ∈ ℕ  

                                 t > t ∑ σ  > t ∑ σ .  

Now   

  F ( y 	,	y 	, t )   

   ≥ F ( y 	,	y 	,	t∑ σ  )  

   ≥ F ( y 	,	y 	,tσ + tσ 	 + tσ …+ tσ  ) 
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   ≥ F ( y 	,	y 	,tσ 	 + tσ …+ tσ + tσ  ) 

   ≥ ∆⏟(F ( y 	,	y 	,tσ 	 + tσ …+ tσ  ),  

           F( y 	,	y 	,tσ )) 

   ≥ ∆(∆(F( y 	,	y 	,tσ 	 +…+ tσ  ),  

            F( y 	,	y ,tσ ), F( y 	,	y 	,tσ ))) 

  ≥ ∆(∆(∆(F( y 	,	y 	,tσ 	 +…+ tσ  ),  

          F( y 	,	y ,tσ ), F( y 	,	y ,tσ ) , F( y 	,	y 	,tσ )))) 

 ≥ ∆(∆(∆(∆(F( y 	,	y 	,tσ 	 +…+ tσ  ), F( y 	,	y ,tσ ) 

               , F( y 	,	y ,tσ ), F( y 	,	y ,tσ ) , F( y 	,	y 	,tσ ))))) 

≥ ∆(∆(∆(∆(∆(F( y 	,	y 	,tσ 	 +…+ tσ  ), F( y 	,	y ,tσ ) 

                               , F(y 	,	y ,	tσ ), F(y 	,	y ,tσ ), F(y 	,	y ,tσ ), 

                                                                              , F(y 	,	y 	,tσ )))))) 

≥ ∆(∆(∆(∆(∆(∆(F( y 	,	y 	,tσ 	 +…+ tσ  ), F( y 	,	y ,tσ ) 

                   , F( y 	,	y ,tσ ), F(y 	,	y ,	tσ ), F(y 	,	y ,tσ ), 

                                           F(y 	,	y ,tσ ), F(y 	,	y 	,tσ ))))))) 

≥      . . . 

 

. 

 ≥ ∆(∆(… (∆(
	

F( y 	,	y 	, tσ  ), F( y 	,	y ,tσ ) 

              … , F( y 	,	y 	,tσ )))   ...)) 

 ≥ ∆(∆(… (∆(F(y 	,	y 	, t  ), F( y 	,	y 	, t  ), …, F( y 	,	y 	,	t ))) ...)) 

 ≥ ∆(∆(… (∆(F(y 	,	y 	, ), F( y 	,	y 	,	  ), …, F( y 	,	y 	, 	))) ...)) 

 	≥		∆ 	F(y , y ,	  )                                            									 

  ≥  ∆ 	 F(y , y ,		 ).  

It is obvious that 

 lim → ∆ F(y , y ,			 	)=1, implies	lim → ∆ F(y , y ,			 	) = 1	for every t > 0.  

Now  for  every  t > 0  and  every  λ ∈ (0, 1),  there  exists  m1 (t, λ) such that 
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F (y 	,	y 	, t ) > 1- λ for  every  m ≥ m1 (t, λ) and  every  s	∈ ℕ.  Hence {y } is a Cauchy 

sequence in X. Since  X  is  complete,  therefore,  there  exists  a  point  z  in  X  such  that  

lim → y = z and  this  gives   

 lim → Sx  =  lim → Tx  =	lim → Ax =	lim → Bx  = z, for all n	∈ ℕ. 

Without  loss  of  generality, we assume  that  S(X)  is  a  closed  subset  of  X. Then z = Su  

for  some  u	∈ X. Subsequently, we have  

                  lim → Sx  =  lim → Tx  =	lim → Ax =lim → Bx  = z =Su. 

Next, we claim that Au = Su. 

For this purpose, if we put x= u and y= x  in (2.3), then this gives   

 1≤ ɸ (F (Au, Bx , qt), F (Su, Tx , t), F (Au, Su, t),  

           F (Bx , Tx , qt), F (Au, Tx , t), F (Bx , Su, (q+1)t)) 

   ≤ ɸ(F(Au, Bx , qt ), F( Su, Tx , t ), F(Au, Su, t),  

           F(Bx , Tx , qt), F(Au, Tx , t),  

            ∆(F(Bx , Au, qt), F(Au, Su, t))).  

Taking limit as n → ∞, we have  

1≤ ɸ(F(Au, z, qt ), F( z, z, t ), F(Au, z, t ), F(z, z, qt ),  

           F(Au, z, t), ∆( F(Au, z, qt), F(Au, z, t)).  

 Hence we have  F(Au, z, qt) ≥ F(Au, z, t) for  all t > 0,  by  Lemma 1.17, we  have  Au= Su 

=z. Since A(X) ⊂ T(X), therefore there exists a point v	∈ X   such that   Au= z=Tv. 

Next, we claim that Tv = Bv. 

Putting x = u and y= v in  (2.3), we  have   

1	≤	ɸ(F(Au, Bv, qt ), F( Su, Tv, t ), F(Au, Su, t ),  

         F(Bv, Tv, qt ), F(Au, Tv,  t), F(Bv, Su, (q+1)t))    

   = 	ɸ(F(Au, Bv, qt ), F( z, z, t ), F(z, z, t),  

         F(Bv, Tv, qt ), F(z, z, t), F(Bv, Su, (q+1)t))    

     ≤  ɸ(F(Au, Bv, qt ),1,1, F(Bv, Tv, qt ), 1,  

            ∆( F(Bv, Au, qt), F(Au, Su, t)),  

Therefore, we obtain that     

                 ɸ(F(Au, Bv, qt ), 1, 1, F(Bv, Au, qt ), 1, F(Bv, Au, qt)) ≥ 1,  

by ɸ	∈ Ѱ, we  have  F(Bv, Tv, qt ) ≥ 1 for  all t > 0 implies that   Tv = Bv. Thus Au = Su = 

Tv = Bv =  z. Since  the  pairs  (A, S)  and  (B, T)  are  weakly  compatible  and  u  and  v  are  

their   coincidence points respectively, we obtain  Az  = A (Su) = S(Au)  =Sz  and  Bz=  

B(Tv) = T(Bv) = Tz. 

Now,  we  prove  that  z  is  a  common  fixed  point  of  A,B, S and  T.  
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For this purpose, putting x = z, y = v in (2.3), we get  

1≤ ɸ (F(Az, Bv, qt ), F( Sz, Tv, t ), F(Az, Sz, t ), 

          F(Bv, Tv, qt ) ,F(Az, Tv, t), F(Bv, Sz, (q+1)t)) 

 		≤ ɸ (F(Az, Bv, qt ), F( Sz, Tv, t ), F(Az, Sz, t ), F(Bv, Tv, qt )  

                   ,F(Az, Tv, t), ∆(F(Bv, Az, qt), F(Az, Sz, t) ). 

Again we note that 

                  ɸ (F(Az, Bv, qt ), F( Sz, Tv, t ),1,1, 

                             F(Az, Tv, t), F(Bv, Az, qt) ) ≥ 1,  

by  ɸ	∈ Ѱ, we  have   F(Az, Bv, qt )) ≥ F( Sz, Tv, t ), for  all t > 0, by Lemma 1.17, we get  

Az = Bv. Hence Az = Bv  = z. Hence z = Az =Sz  and z  is  a  common  fixed  point  of  A 

and  S. One  can  prove  that  Bv=z  is  also  a  common  fixed  point  of  B  and  T. 

Finally, in order to prove the uniqueness, suppose that w (z ≠ w) be another fixed point of A, 

B, S and T. Then, for   all t > 0, we have  

1 ≤	ɸ(F(Az, Bw, qt ), F( Sz, Tw, t ), F(Az, Sz, t ),  

         F(Bw, Tw, qt ), F(Az, Tw, t), F(Bw, Sz,(q+1)t))  

   ≤ ɸ(F(Az, Bw, qt ), F( Sz, Tw, t ), F(Az, Sz, t ),  

           F(Bw, Tw, qt ), F(Az, Tw, t),  

            ∆(F(Bw, Az,qt), F(Az, Az,t)). 

Therefore we have  

              ɸ(F(Az, Bw, qt ), F( Sz, Tw, t ), 1,1,  

                            F(Az, Tw, t),F(Bw, Az,qt)) ≥ 1.  

Hence we have   F(Az, Bw, qt )) ≥ F( Sz, Tw, t ) for  all t > 0, by Lemma1.17, we get   Az = 

Bw. Hence z =w. This completes the proof.  

 

3. E.A. property and weakly compatible maps.    

Now, we prove  a  fixed  point  theorem  for  weakly  compatible  maps  with  E.A. property. 
Theorem 3.1. Let (X,F,	∆ ) be complete  Menger   space  with  continuous t-norm  of  Hadzic  
type.  Let A, B, S and  T  be  self  mapping  on  X  satisfying (2.1)-(2.4)  and  the  following 
condition: 
                       (3.1) the pairs (A, S) or (B, T) satisfy E.A. property. 
  Then  A, B, S and T  have  a  unique  common  fixed  point  in  X. 

Proof.  Without  loss  of  generality, we assume  that  the  pair  (B, T)  satisfies  the  E.A. 

property. Then  there  exists  a sequence  {x } in  X   such  that   lim → Bx  = lim → Tx  

=  z, for  some  z	∈ X. Since  B(X) ⊂ S(X), there  exists  a  sequence  {y }  in X  such  that   
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Bx = Sy . Hence		lim → Sy  = z. Also A(X) ⊂	T(X),	 there   exists a sequence {y } in X 

such that Ay = Tx .  Hence		lim → Ay  = z. 

Suppose  that  S(X)  is  a  closed  subset  of  X. Then z = Su for some u ∈X. Subsequently, we 

have  

 lim → Bx  = lim → Tx  = lim → Ay 			=lim → Sy  = z =Su,  

for some   u ∈X. 

Next, we claim that Au = Su. 

For this purpose, if we put x= u and y= x  in (2.3), then this gives  

  1≤	ɸ (F(Au, Bx , qt ), F( Su, Tx , t ), F(Au, Su, t ), 

           F(Bx , Tx , qt ) , F(Au, Tx , t), F(Bx , Su, (q+1)t))  

     ≤   ɸ(F(Au, Bx , qt ), F( Su, Tx , t ), F(Au, Su, t ),  

             F(Bx , Tx , qt ) , F(Au, Tx , t),  

              ∆(F(Bx , Au, qt), F(Au, Su, t)) 

 since the function ɸ is non-increasing in the 6-th coordinate variable. 

Taking limit as n → ∞,  we have  

  ɸ(F(Au, z, qt ), F( z, z, t ), F(Au, z, t ), F(z, z, qt ),  

               F(Au, z, t), ∆( F(Au, z, qt), F(Au, z, t)) ≥ 1. 

Thus we obtain 

           ɸ(F(Au, z, qt ), 1, F(Au, z, t ), 1, F(Au, z, t),  

                                 ∆( F(Au, z, qt), F(Au, z, t) ) ≥ 1, 

 by ɸ	∈ Ѱ, we  have F(Au, z, qt) ≥ F(Au, z, t) for  all t > 0,   by  Lemma 1.17, we  have    Au= 

Su =z. Since A(X) ⊂ T(X), therefore there exists a point   v	∈ X   such that   Au= z=Tv. 

Next, we claim that Tv = Bv. 

Putting  x = u  and  y= v in  (2.3), we  have   

   1≤ ɸ(F(Au, Bv, qt ), F( Su, Tv, t), F(Au, Su, t ),  

             F(Bv, Tv, qt ), F(Au, Tv,  t), F(Bv, Su, (q+1)t))   

      = ɸ(F(Au, Bv, qt ), F( z, z, t ), F(z, z, t ), 

                F(Bv, Tv, qt ), F(z, z, t),F(Bv, Su, (q+1)t)).   

      	≤   ɸ(F(Au, Bv, qt ),1,1, F(Bv, Tv, qt ), 1,  

              ∆( F(Bv, Au, qt), F(Au, Su, t))).  

Therefore we have    

     ɸ(F(Au, Bv, qt ), 1, 1, F(Bv, Tv, qt ), 1, F(Bv, Au, qt)) ≥ 1.  

Hence we get F(Bv, Tv, qt )) ≥ 1 for  all t > 0 implies that   Tv = Bv. Thus Au = Su = Tv = 

Bv =  z. Since  the  pairs  (A, S)  and  (B, T)  are  weakly  compatible  and  u  and  v  are  
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their  coincidence points  respectively, we obtain  Az  = A (Su) = S(Au)  =Sz  and  Bz=  

B(Tv) = T(Bv) = Tz. 

Now,  we  prove  that  z  is  a  common  fixed  point  of  A,B, S and  T.  

For this purpose, if put x = z and y = v  in  (2.3), then this gives 

1	≤ ɸ (F(Az, Bv, qt ), F( Sz, Tv, t ), F(Az, Sz, t ), 

          F(Bv, Tv, qt ), F(Az, Tv, t), F(Bv, Sz, (q+1)t))   

    ≤  ɸ (F(Az, Bv, qt ), F( Sz, Tv, t ), F(Az, Sz, t ), 

               F(Bv, Tv, qt ),F(Az, Tv, t),  

                ∆(F(Bv, Az, qt), F(Az, Sz, t))). 

Therefore we have    

                 ɸ(F(Az, Bv, qt ), F( Sz, Tv, t ),1,1,F(Az, Tv, t), F(Bv, Az, qt) ) ≥ 1. 

 Hence  we  get  F(Az, Bv, qt )) ≥ 1 for  all t > 0 implies that   Az = Bv. Hence Az = Bv  = z. 

Therefore  z = Az =Sz  and z  is  a  common  fixed  point  of  A and  S. One  can  prove  that  

Bv=z  is  also  a  common  fixed  point  of  B  and  T. 

Finally, in order to prove the uniqueness, let w  (z ≠ w)  be  another  fixed  point  of  A, B, S 

and  T.Then,  for   all  t > 0, we have  

  1 ≤	ɸ (F(Az, Bw, qt ), F( Sz, Tw, t ), F(Az, Sz, t ),  

              F(Bw, Tw, qt ), F(Az, Tw, t), F(Bw, Sz,(q+1)t))  

     ≤ ɸ (F(Az, Bw, qt ), F( Sz, Tw, t ), F(Az, Sz, t ),  

             F(Bw, Tw, qt ),F(Az, Tw, t),  

              ∆(F(Bw, Az,qt), F(Az, Az,t)).  

Therefore we have    

                    ɸ (F(Az, Bw, qt ), F( Sz, Tw, t ), 1,1,F(Az, Tw, t),F(Bw, Az, qt)) ≥ 1,  

Hence we   get F(Az, Bw, qt ) ≥ 1 for  all t > 0 implies that   Az = Bw i.e.,   z =w. This 

completes the proof. 

4. (CLR ) property  and  weakly compatible maps    
Now we  prove  a  result  for weakly compatible maps along with (CLRS ) property.  

Theorem 4.1. Let (X,F,	∆) be  Menger   space  with  continuous t-norm  of  Hadzic  type. Let 

A, B, S and  T  be  self  mapping  on  X  satisfying (2.1), (2.2), (2.3) and  the  following 

conditions: 

                  (4.1)  pairs (A, S) or (B, T)  satisfy  (CLRS ) property, 

                   (4.2) One  of  the  subspaces A(X), B(X), S(X) or  T(X)  is  a  closed  subspace. 

Then  A, B, S,  and T  have  a  unique  common  fixed  point  in  X. 
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Proof.  If  the  pair  (A,S)  satisfies  the (CLRS )  property, then  there  exists  a sequence  

{x } in  X   such  that   lim → Ax  = lim → Sx  =  z, where z  ∈ S(X). Therefore there 

exists a  point  u ∈	X  such  that Su = z.  Since T(X)  is  a   closed  subset  of  X and   A(X) ⊂	

T(X), so  for each {x } in X, there  corresponds  a  sequence { y } in X  such  that  

Ax =Ty . Therefore,      lim → Ty  = lim → Ax  =  z,  where  z ∈S(X).  

Thus we have     lim → Ax  = lim → Sx  =    lim → Ty  =  z . 

Now, we are required to show that  lim → By  = z. 

Putting x= x  and y =y  in (2.3), we get   

 ɸ (F(Ax , By , qt), F(Sx ,Ty ,t),F(Ax ,Sx , t), F(By ,Ty ,qt ) 

                                    ,F(Ax ,Ty ,t), F(By ,Sx ,(q+1)t )) ≥ 1. 

We assume that  lim → By  =  l≠z  for  t >0.  Then taking limit as n→ ∞, we have 

     1 ≤	ɸ(F(z, l, qt), F(z, z, t),F(z, z, t),  

              F(l, z ,qt ) ,F(z ,z ,t), F(l, z ,(q+1)t ))  

         =  ɸ (F(z, l, qt), 1,1, F(l,z ,qt ) ,1, ∆(F(l,z ,qt ), F(z, z ,t ) ),  

since the function ɸ is non-increasing in the 6-th coordinate variable. Therefore, we have 

              ɸ(F(z, l, qt), 1,1, F(l,z ,qt ) ,1, (F(l,z ,qt )) ≥ 1,  

by ɸ	∈ Ѱ, we  get  F(z, l, qt) ≥ 1implies  that  z = l, then  hence   lim → By  =  z. Therefore 

    lim → Ax  = lim → Sx  =  lim → Ty   = lim → By  =  z = Su, for  some  u	∈	X. 

Using  the  Theorem 2.1 and implicit relations Ѱ, we  can easily  prove  that  z  is  a  unique  

common  fixed  point  of  A, B, S  and  T. This completes the proof. 
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