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1. Introduction and Preliminaries

It is found from literature that during recent years many topologists are interested
in the study of generalized types of closed sets. For instance, a certain form of
generalized closed sets was initiated by Levine [9], whereas the notion of regular
weakly closed sets was studied by Wali [16]. Following the trend, we have introduced
and investigated a kind of generalized closed sets, the definition being formulated in
terms of grills. The concept of grill was first introduced by Choquet [4] in 1947. From
subsequent investigations it is revealed that grills can be used as an extremely useful
device for investigation of a number of topological problems, like extension of spaces,
theory of proximity spaces and so on ( see for instance, [2], [3], [14] for details ). The
definition of grill goes as follows.

Definition 1.1. [4] A nonempty collection G of nonempty subsets of a topological
space X is called a grill if
(i) A ∈ G and A ⊆ B ⊆ X ⇒ B ∈ G, and (ii) A,B ⊆ X and A ∪ B ∈ G ⇒ A ∈ G or
B ∈ G.

Let G be a grill on a topological space (X, �). In [11] an operator Φ : P (X)→ P (X)
( where P (X) stands for the power set of X ) was defined by Φ(A) = {x ∈ X :
U ∩ A ∈ G for all open set U containing x}. It was also shown in the same paper
that the map Ψ : P (X) → P (X), given by Ψ(A) = A ∪ Φ(A) for all A ∈ P (X)).
Corresponding to a grill G, on a topological space (X, �) there exists a unique topology
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�G (say) on X given by �G = {U ⊆ X : Ψ(X∖U) = X∖U} where for any A ⊆ X,
Ψ(A) = A ∪ Φ(A) = �G-cl(A). Thus a subset A of X is �G-closed (resp. �G-dense in
itself) if Ψ(A) = A or equivalently if Φ(A) ⊆ A (resp. A ⊆ Φ(A)).

In the next section we introduce and study a new class of generalized closed sets,
termed G-rw-closed, in terms of a given grill G on the ambient space, the definition
having a close bearing to the above operator Φ. This class of G-rw-closed sets will
be seen to properly contain the class of rw-closed sets as introduced in [16]. An
explicit form of such a G-rw-closed set is also obtained. In section 3, we introduce
and investigate the notion of regular weakly continuous functions in grill topological
spaces. Also, we investigate its relationship with other functions. As applications,
some formulations of certain separation axioms in terms of G-rw-closed sets and
associated concepts will be established in section 4.

Throughout the paper, by a space X we always mean a topological space (X, �)
with no separation properties assumed. If A ⊆ X, we shall adopt the usual notations
int(A) and cl(A) respectively for the interior and closure of A in (X, �). Again, �G-
cl(A) and �G-int(A) will respectively denote the closure and interior of A in (X, �G).
Similarly, whenever we say that a subset A of a space X is open ( or closed ), it will
mean that A is open (resp. closed) in (X, �). For open and closed sets with respect
to any other topology on X, e.g. �G, we shall write ‘�G’-open and ‘�G’-closed. The
collection of all open neighbourhoods of a point x in (X, �) will be denoted by �(x).
A subset A of a space (X, �) is said to be regular open [13] ( regular closed [13]) if
A = intcl(A) ( resp. A = clint(A)). A subset A of a space (X, �) is said to be regular
semiopen [1] if there is a regular open set U such that U ⊆ A ⊆ cl(U).

We now append a few definitions and results that will be frequently used in the
sequel.

Definition 1.2. A subset A of a space (X, �) is said to be rw-closed [16] (G-g-closed
[5]) if cl(A) ⊆ U ( resp. Φ(A) ⊆ U ) whenever A ⊆ U and U is regular semiopen
(resp. open) in X.

The complement of a rw-closed (G-g-closed) set is called a rw-open (resp. G-g-
open) set in X.

Theorem 1.1. [11] Let (X, �) be a topological space and G be a grill on X. Then
for any A, B ⊆ X the following hold:
(a) A ⊆ B ⇒ Φ(A) ⊆ Φ(B).
(b) Φ(A ∪B) = Φ(A) ∪ Φ(B).
(c) Φ(Φ(A)) ⊆ Φ(A) = cl(Φ(A)) ⊆ cl(A), and hence Φ(A) is closed in (X, �), for all
A ⊆ X.

Definition 1.3. [15] A subset A of a topological space X is said to be �-closed if
A = �cl(A) where �cl(A) is defined as �cl(A) = {x ∈ X/cl(U) ∩ A ∕= � for every
U ∈ � and x ∈ U}.

Definition 1.4. [15] A subset A of X is said to be �-open if X∖A is �-closed.
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Definition 1.5. [15] A subset A of a topological space X is said to be �-closed if
A = �cl(A) where �cl(A) is defined as �cl(A) = {x ∈ X/intcl(U) ∩ A ∕= � for every
U ∈ � and x ∈ U}.

Definition 1.6. [15] A subset A of X is said to be �-open if X∖A is �closed.

Definition 1.7. [7] A subset A of a topological space X is said to be �g-closed if
�cl(A) ⊆ U whenever A ⊆ U and U is open in X.

Definition 1.8. [6] A subset A of a topological space X is said to be �g-closed if
�cl(A) ⊆ U whenever A ⊆ U and U is open in X.

Definition 1.9. [6, 7] A subset A of X is said to be �g-open (�g-open) if X∖A is
�g-closed (�g-closed) in X.

Definition 1.10. A function f : (X, �)→ (Y, �) is said to be

(1) �-continuous [8] if f−1(V ) is �-closed set of (X, �) for every closed set V of
(Y, �).

(2) �-continuous if f−1(V ) is �-closed set of (X, �) for every closed set V of (Y, �).
(3) �g-continuous if f−1(V ) is �g-closed set of (X, �) for every closed set V of

(Y, �).
(4) �g-continuous if f−1(V ) is �g-closed set of (X, �) for every closed set V of

(Y, �).
(5) rw-continuous [16] if f−1(V ) is G-rw-closed set of (X, �) for every closed set

V of (Y, �).

Definition 1.11. A function f : (X, �)→ (Y, �) is said to be

(1) �-closed [10] if f(F ) is �-closed set of (Y, �) for every closed set F of (X, �).
(2) �-closed [10] if f(F ) is �-closed set of (Y, �) for every closed set F of (X, �).
(3) �g-closed if f(F ) is �g-closed set of (Y, �) for every closed set F of (X, �).
(4) �g-closed if f(F ) is �g-closed set of (Y, �) for every closed set F of (X, �).
(5) rw-closed [16] if f(F ) is G-rw-closed set of (Y, �) for every closed set F of

(X, �).

Definition 1.12. A function f : (X, �,G) → (Y, �) is said to be Gg-continuous if
f−1(V ) is Gg-closed set of (X, �) for every closed set V of (Y, �).

Definition 1.13. A function f : (X, �)→ (Y, �,G) is said to be Gg-closed if f(F ) is
Gg-closed set of (Y, �) for every closed set F of (X, �).

2. rw-Closed Sets With Respect to a Grill

We begin by introducing a new class of regular weakly closed sets in terms of grills
as follows

Definition 2.1. Let (X, �) be a topological space and G be a grill on X. Then a
subset A of X is said to be rw-closed with respect to the grill G (G-rw-closed, for
short) if Φ(A) ⊆ U whenever A ⊆ U and U is regular semiopen in X.
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A subset A of X is said to be G-rw-open if X∖A is G-rw-closed.

Proposition 2.1. For a topological space (X, �) and a grill G on X, we obtain as
follows.
(a) Every closed set in X is G-rw-closed.
(b) For any subset A in X, Φ(A) is G-rw-closed.
(c) Every �G-closed set is G-rw-closed.
(d) Any non member of G is G-rw-closed.
(e) Every w-closed set is G-rw-closed.
(f) Every rw-closed set is G-rw-closed.
(g) Every �-closed set in X is G-rw-closed.
(h) Every �-closed set in X is G-rw-closed.

Proof. (a) Let A be a closed set then cl(A) = A. Let U be any regular semiopen set
in X ∋ A ⊆ U . Then Φ(A) ⊆ cl(A) = A ⊆ U [by Theorem 1.1] ⇒ Φ(A) ⊆ U ⇒ A is
G-rw-closed.

(b) Let A be a subset in X. Then Φ(Φ(A)) ⊆ Φ(A) ⊆ U whenever A ⊆ U and U
is regular semiopen in X ⇒ Φ(A) is G-rw-closed.

(c) Let A be a �G-closed set then �G-cl(A) = A ⇒ A ∪ Φ(A) = A ⇒ Φ(A) ⊆ A.
Therefore Φ(A) ⊆ U whenever A ⊆ U and U is regular semi-open in X ⇒ A is
G-rw-closed.

(d) Let A /∈ G then Φ(A) = �⇒ A is G-rw-closed.
(e) Let A be a w-closed set and U be any regular semiopen set in X ∋ A ⊆ U then

cl(A) ⊆ U , since every regular semiopen set is semiopen in X. Then Φ(A) ⊆ cl(A) ⊆
U ⇒ A is G-rw-closed. Thus every w-closed set is G-rw-closed.

(f) Let A be a rw-closed set and U be any regular semiopen set in X ∋ A ⊆ U
then cl(A) ⊆ U , by Theorem 1.1 Φ(A) ⊆ cl(A) ⊆ U ⇒ A is G-rw-closed. Thus every
rw-closed set is G-rw-closed.

(g) Let A be a �-closed then A = �cl(A). Let U be a regular semiopen set in X
such that A ⊆ U then by Theorem 1.1, Φ(A) ⊆ cl(A) ⊆ �cl(A) = A ⊆ U . Thus A is
G-rw-closed.

(h) Let A be a �-closed then A = �cl(A). Let U be a regular semiopen set in X
such that A ⊆ U then by Theorem 1.1, Φ(A) ⊆ cl(A) ⊆ �cl(A) = A ⊆ U . Thus A is
G-rw-closed. □

The converse of the above proposition is not true in general as seen from the
following examples.

Example 2.1. Let X = {a, b, c, d}, � = {X, �, {a}, {b}, {a, b}, {a, b, c}} and
G = {{a}, {c}, {a, c}, {a, b}, {b, c}, X}. Then (X, �) is a topological space and
G is a grill on X. Then it is easy to verify that
(a) {a, b} is not closed but is G-rw-closed.
(b) {a, b} is not �G-closed but is G-rw-closed.
(c) {c, d} is not a grill but is G-rw-closed.
(d) {a, b} is not w-closed but is G-rw-closed.
(e) {b} is not rw-closed but is G-rw-closed.
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Example 2.2. LetX = {a, b, c}, � = {X, �, {a}, {b, c}} and G = {{a}, {c}, {a, c},
{a, b}, {b, c}, X}. Then (X, �) is a topological space and G is a grill on X. Then
it is easy to verify that {a, b} is not �-closed (resp. �-closed) but is G-rw-closed.

Remark 2.1. The following Examples shows that the concept of G-rw-closed sets and
G-g-closed sets, �g-closed sets, �g-closed sets are indepentent of each other.

Example 2.3. In the Example 2.1, the set {a, d} is G-g-closed set, �g-closed set,
�g-closed set but not a G-rw-closed set. Also the set {a, b} is G-rw-closed set but
not a G-g-closed set, not a �g-closed set, not a �g-closed set in X.

Remark 2.2. From the above discussions and known results we have the following
implications. Here
A→ B means A implies B, but not conversely and
A ∕↔ B means A and B are independent of each other.

closed w-closed rw -closed ℑ-rw -closed -g-closed

g-closed

g-closed

-closed

-closed
fig-1
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Corresponding to any nonempty subset A of X, a typical grill [A] on X was defined
in [12] in the following manner.

Definition 2.2. Let X be a space and (� ∕=)A ⊆ X. Then [A] = {B ⊆ X : A∩B ∕=
�} is a grill on X, called the principal grill generated by A.

Proposition 2.2. In the case of principal grill [X] generated by X, it is known
[12] that � = �[X] so that any [X]-rw-closed set becomes simply a rw-closed set and
vice-versa.

In what follows in this section, we derive certain characterizations and properties
of G-rw-closed sets.

Theorem 2.1. Let (X, �) be a topological space and G be a grill on X. Then for a
subset A of X, the following are equivalent:
(a) A is G-rw-closed.
(b) �G-cl(A) ⊆ U whenever A ⊆ U and U is regular semi-open.
(c) For all x ∈ �G-cl(A), cl({x}) ∩ A ∕= �.
(d) �G-cl(A)∖A contains no non-empty closed set of (X, �).
(e) Φ(A)∖A contains no non-empty closed set of (X, �).

Proof. (a) ⇒ (b): Suppose A is G-rw-closed set and A ⊆ U where U is regular
semi-open in X. Then Φ(A) ⊆ U ⇒ A ∪ Φ(A) ⊆ U ⇒ �G-cl(A) ⊆ U .

(b) ⇒ (c): Suppose x ∈ �G-cl(A). If cl({x}) ∩ A = �, then A ⊆ X∖cl({x}) and
using (b), �G-cl(A) ⊆ X∖cl({x}) which is a contradiction to our assumption that
x ∈ �G-cl(A). Therefore cl({x}) ∩ A ∕= �.
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(c)⇒ (d): Suppose F is a closed set of (X, �) contained in �G-cl(A)∖A and x ∈ F .
Since F ∩A = �, we have cl({x}) ∩A = �. Again since x ∈ �G-cl(A), by (c) we have
cl({x}) ∩ A ∕= �, a contradiction. This proves (d).

(d) ⇒ (e): It follows from the fact that Φ(A)∖A = �G-cl(A)∖A.
(e) ⇒ (a): Suppose that A ⊆ U and U is regular semiopen in (X, �). Since Φ(A)

is closed (by Theorem 1.1) and Φ(A) ∩ (X∖U) ⊆ Φ(A)∖A holds, Φ(A) ∩ (X∖U) is a
closed set in (X, �) contained in Φ(A)∖A. Then by (e), Φ(A) ∩ (X∖U) = � which
gives Φ(A) ⊆ U . Hence A is G-rw-closed. □

Corollary 2.1. Let (X, �) be a T1-space and G be a grill on X. Then every
G-rw-closed set is �G-closed.

Proof. Follows from Theorem 2.1 ((a) ⇒ (c)). □

Corollary 2.2. Let (X, �) be a T1-space and G be a grill on X. Then A(⊆ X) is
G-rw-closed iff A is �G-closed.

Corollary 2.3. Let G be grill on a space (X, �) and A be a G-rw-closed set. Then
the following are equivalent
(a) A is �G-closed.
(b) �G-cl(A)∖A is closed in (X, �).
(c) Φ(A)∖A is closed in (X, �).

Proof. (a) ⇒ (b) Let A be �G-closed then �G-cl(A)∖A = � and so �G-cl(A)∖A is a
closed set.
(b)⇒ (c) It is clear, since �G-cl(A)∖A = Φ(A)∖A.
(c) ⇒ (a) Let Φ(A)∖A be closed in (X, �) and A is G-rw-closed, then by Theorem
2.1, Φ(A)∖A = � and so A is �G-closed. □

Lemma 2.1. [11] Let (X, �) be a space and G be a grill on X. If A(⊆ X) is �G-dense
in itself, then Φ(A) = cl(Φ(A)) = �G-cl(A) = cl(A).

Theorem 2.2. Let G be a grill on a space (X, �). If A(⊆ X) is �G-dense in itself
and G-rw-closed, then A is rw-closed.

Proof. Follows at once from Lemma 2.1 □

Corollary 2.4. For a grill G on a space (X, �), let A(⊆ X) be �G-dense in itself.
Then A is G-rw-closed iff it is rw-closed.

Proof. Follows from Proposition 2.1(f) and Theorem 2.2. □

Theorem 2.3. For any grill G on a space (X, �) the following are equivalent
(a) Every subset of X is G-rw-closed.
(b) Every regular semiopen subset of (X, �) is �G-closed.

Proof. (a) ⇒ (b) Let A be regular semiopen in (X, �) then by (a), A is G-rw-closed
so that Φ(A) ⊆ A⇒ A is �G-closed.

(b) ⇒ (a) Let A ⊆ X and U be regular semiopen in (X, �) such that A ⊆ U .
Then by (b), Φ(U) ⊆ U . Again A ⊆ U ⇒ Φ(A) ⊆ Φ(U) (by Theorem 1.1) ⊆ U ⇒ A
is G-rw-closed. □
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Proposition 2.3. For any subset A of a space (X, �) and a grill G on X, the
following are equivalent
(a) A is G-rw-closed.
(b) A ∪ (X∖Φ(A)) is G-rw-closed.
(b) Φ(A)∖A is G-rw-open.

Proof. (a) ⇒ (b): Let A ∪ (X∖Φ(A)) ⊆ U , where U is regular semiopen in X. Then
X∖U ⊆ X∖(A ∪ (X∖Φ(A))) = Φ(A)∖A. Since A is G-rw-closed, by Theorem 2.1, we
have X∖U = �, i.e., X = U . Since X is the only regular semiopen set containing
A ∪ (X∖Φ(A)), A ∪ (X∖Φ(A)) is G-rw-closed.

(b) ⇒ (a): Suppose F ⊆ Φ(A)∖A where F is regular semi closed in (X, �).
Then A ∪ (X∖Φ(A)) ⊆ X∖F and so by (b), Φ(A ∪ (X∖Φ(A))) ⊆ X∖F ⇒ Φ(A) ∪
Φ(X∖Φ(A)) ⊆ X∖F ⇒ F ⊆ X∖Φ(A). Again, since F ⊆ Φ(A) we have F = �. Hence
by Theorem 2.1, A is G-rw-closed.

(b)⇒ (c): Follows from the fact that X∖(Φ(A)∖A) = A ∪ (X∖Φ(A)). □

Theorem 2.4. Let (X, �) be a space, G be a grill on X and A, B be subsets of X
such that A ⊆ B ⊆ �G-cl(A). If A is G-rw-closed, then B is G-rw-closed.

Proof. Suppose B ⊆ U , where U is regular semiopen in X. Since A is G-rw-closed,
Φ(A) ⊆ U ⇒ �G-cl(A) ⊆ U . Now, A ⊆ B ⊆ �G-cl(A) ⇒ �G-cl(A) ⊆ �G-cl(B) ⊆ �G-
cl(A). Thus �G-cl(B) ⊆ U and hence B is G-rw-closed. □

Corollary 2.5. �G-closure of every G-rw-closed set is G-rw-closed.

Theorem 2.5. Let G be a grill on a space (X, �) and A,B be subsets of X such
that A ⊆ B ⊆ Φ(A). If A is G-rw-closed. Then A and B are rw-closed.

Proof. A ⊆ B ⊆ Φ(A) ⇒ A ⊆ B ⊆ �G-cl(A), and hence by Theorem 2.4, B is G-rw-
closed. Again, A ⊆ B ⊆ Φ(A) ⇒ Φ(A) ⊆ Φ(B) ⊆ Φ(Φ(A)) ⊆ Φ(A) (by Theorem
1.1) ⇒ Φ(A) = Φ(B). Thus A and B are �G-dense in itself and hence by Theorem
2.2, A and B are rw-closed. □

Theorem 2.6. Let G be a grill on a space (X, �). Then a subset A of X is G-rw-open
iff F ⊆ �G-int(A) whenever F ⊆ A and F is closed.

Proof. Let A be G-rw-open and F ⊆ A, where F is closed in (X, �). Then X∖A ⊆
X∖F ⇒ Φ(X∖A) ⊆ X∖F ⇒ �G-cl(X∖A) ⊆ X∖F ⇒ F ⊆ �G-int(A).

Conversely, X∖A ⊆ U where U is open in (X, �) ⇒ X∖U ⊆ �G-int(A) ⇒ �G-
cl(X∖A) ⊆ U . Thus X∖A is G-rw-closed and hence A is G-rw-open. □

3. G-rw-Continuous and G-rw-Closed Functions

Definition 3.1. A function f : (X, �,G) → (Y, �) is said to be G-rw-continuous
(resp. rw-continuous [16]) if f−1(V ) is G-rw-open (resp. rw-open) for each V ∈ �.

Remark 3.1. (i) Every continuous function (resp. w-continuous) is rw-continuous,
but the converse is false as is shown in Examples 3.2.3 and 3.2.6 in [16].



8

(ii) Every rw-continuous function is G-continuous, but the converse is false as is
shown in Example 3.1.

But the reverses of the above implications are false as is shown below.

Example 3.1. In the Example 2.1, we define a function f : (X, �,G) → (X, �) as
follows: f(a) = c, f(b) = d, f(c) = a and f(d) = b. Then it is easy to see that f is
G-rw-continuous but not rw-continuous (in fact, A = {d} ∈ � c and f−1({d}) = {b}
is not rw-closed).

Remark 3.2. Every �-continuous (resp. �-continuous) is G-rw-continuous, but the
converse is false as is shown in Example 3.2.

Example 3.2. Let X = {a, b, c}, � = {X, �, {a}, {b}, {a, b}, {b, c}} and
G = {{a}, {c}, {a, c}, {a, b}, {b, c}, X}. Then the identity function f : (X, �,G)→
(X, �) is G-rw-continuous but not �-continuous (resp. �-continuous) in fact, A =
{c} ∈ � c and f−1({c}) = {c} is not �-closed (resp. �-closed).

Remark 3.3. In the following Examples (3.3 and 3.4) show that G-rw-continuous
function and G-g-continuous, �g-continuous, �g-continuous functions are indepentent.

Example 3.3. In the Example 2.1, we define a function f : (X, �,G) → (X, �) as
follows: f(a) = c, f(b) = b, f(c) = a and f(d) = d. Then the inverse image of every
closed set in Y is G-g-closed, �g-closed, �g-closed in X and hence f is G-g-continuous,
�g-continuous, �g-continuous. But f is not G-rw-continuous as the inverse image of
the closed set {c, d} in X is {a, d} in X which is not G-rw-closed.

Example 3.4. In the Example 2.1, we define a function f : (X, �,G) → (X, �) as
follows: f(a) = c, f(b) = d, f(c) = a and f(d) = b. Then the inverse image of
every closed set in Y is G-rw-closed in X and hence f is G-rw-continuous. Let {c, d}
is closed set in Y , f−1({c, d}) = {a, b} is not G-g-closed, �g-closed, �g-closed in X.
Thus f is not G-g-continuous, �g-continuous, �g-continuous.

Remark 3.4. From the above discussions and known results we have the following
implications. Here
A→ B means A implies B, but not conversely and
A ∕↔ B means A and B are independent of each other.

continuous w-continuous rw -continuous ℑ-rw -continuous -g-continuous

g-continuous

g-continuous
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-continuous
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Theorem 3.1. For a function f : (X, �,G)→ (Y, �), the following are equivalent:
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(a) f is G-rw-continuous.
(b) The inverse image of each closed subset of Y is G-rwclosed.
(c) For each x ∈ X and each V ∈ � containing f(x), there exists a G-rw-open set

U containing x such that f(U) ⊆ V .

Proof. (a) ⇔ (b): It is clear.
(a)⇒ (c): Let V ∈ � and f(x) ∈ V (x ∈ X). Then by (a), f−1(V ) is a G-rw-open set
containing x. Taking f−1(V ) = U , we have x ∈ U and f(U) ⊆ V .
(c) ⇒ (a): Let V be any open set in Y and x ∈ f−1(V ). Then f(x) ∈ V ∈ � and
hence by (c), there exists a G-rw-open set U containing x such that f(U) ⊆ V . Now
x ∈ U ⊆ Ψ(int(U)) ⊆ Ψ(int(f−1(V ))). This shows that f−1(V ) ⊆ Ψ(int(f−1(V ))).
Thus f is G-rw-continuous. □

Theorem 3.2. A function f : (X, �,G) → (Y, �) is G-rw-continuous iff the graph
function g : X → X × Y, defined by g(x) = (x, f(x)), for each x ∈ X, is G-rw-
continuous.

Proof. Suppose that f is G-rw-continuous. Let x ∈ X and W be any open set in X×Y
containing g(x). Then there exist U ∈ � and V ∈ � such that g(x) = (x, f(x)) ∈
U × V ⊆ W . Since f is G-rw-continuous, there exists a G-rw-open set G of X
containing x such that f(G) ⊆ V , G ∩ U is G-rw-open and g(G ∩ U) ⊆ U × V ⊆ W .
This shows that g is G-rw-continuous.

Conversely, suppose that g is G-rw-continuous. Let x ∈ X and V be any open set
in Y containing f(x). Then X × V is open in X × Y and by G-rw-continuity of g,
there exists a G-rw-open set U containing x such that g(U) ⊆ X × V . Thus we have
f(U) ⊆ V and hence f is G-rw-continuous. □

Definition 3.2. Let (X, �) be a topological space and (Y, �,G) a grill topological
space. A function f : (X, �) → (Y, �,G) is said to be G-rw-open (resp. G-rw-closed)
if for each U ∈ � (resp. closed set U in (X, �)), f(U) is G-rw-open (resp. G-rw-
closed) in (Y, �,G).

Remark 3.5. (a) Every closed (resp. w-closed) function is rw-closed, but the converse
is false as is shown in Examples 3.4.3 and 3.4.4 [16].
(b) Every rw-closed function is G-rw-closed, but the converse is false as is shown in
Example 3.5.

Example 3.5. Let X = {a, b, c, d}, � = {X, �, {a, c, d}}, � = {X, �, {a},
{b}, {a, b}, {a, b, c}} and G = {{a}, {c}, {a, c}, {a, b}, {b, c}, X}. Then the
identity function f : (X, �)→ (X, �,G) is G-rw-closed, but not rw-closed.

Remark 3.6. Every �-closed (resp. �-closed) function is G-rw-closed, but the converse
is false as is shown in Example 3.6.

Example 3.6. Let X = {a, b, c}, � = {X, �, {a}, {b}, {a, b}, {b, c}} and
G = {{a}, {c}, {a, c}, {a, b}, {b, c}, X}. Then the identity function f : (X, �)→
(X, �,G) is G-rw-closed but it is not �-closed (resp. �-closed).
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Remark 3.7. In the following Examples (3.7 and 3.8) show that G-rw-closed function
and G-g-closed, �g-closed, �g-closed functions are indepentent.

Example 3.7. In the Example 2.1, we define a function f : (X, �) → (X, �,G) as
follows: f(a) = c, f(b) = b, f(c) = a and f(d) = d. Then this function is G-g-closed,
�g-closed, �g-closed but not G-rw-closed, as the image of the closed set {c, d} in X is
{a, d} which is not G-rw-closed in X.

Example 3.8. In the Example 2.1, we define a function f : (X, �) → (X, �,G) as
follows: f(a) = c, f(b) = d, f(c) = a and f(d) = b. Then the image of every closed
set in X is G-rw-closed in X and hence f is G-rw-closed function. Let {c, d} is closed
set in X, f({c, d}) = {a, b} is not G-g-closed, �g-closed, �g-closed in X. Thus f is
not G-g-closed, �g-closed, �g-closed functions.

Remark 3.8. From the above discussions and known results we have the following
implications. Here
A→ B means A implies B, but not conversely and
A ∕↔ B means A and B are independent of each other.

closed function w-closed function rw -closed function

ℑ

-rw -closed function

-g-closed functiong-closed function

g-closed function

-closed function

-closed function fig-3

ℑ

δδ

θθ

Theorem 3.3. Let f : (X, �) → (Y, �,G) be a G-rw-open function. If V is any
subset of Y and F is a closed subset of X containing f−1(V ), then there exists a
G-rw-open set H in (Y, �,G) containing V such that f−1(H) ⊆ F .

Proof. Suppose that f is G-rw-open. Let V be any subset of Y and F be a closed sub-
set of X containing f−1(V ). Then X∖F is open in (X, �) and hence by G-rw-openness
of f , f(X∖F ) is G-open. Thus H = Y ∖f(X∖F ) is G-rw-closed and consequently
f−1(V ) ⊆ F implies that V ⊆ H. Further we obtain that f−1(H) ⊆ F. □

Theorem 3.4. For any bijection f : (X, �)→ (Y, �,G) the following are equivalent:
(a) f−1 : (Y, �,G)→ (X, �) is G-rw-continuous.
(b) f is G-rw-open.
(c) f is G-rw-closed.

Proof. Obvious. □

4. Some Characterizations of Regular and Normal Spaces

As already proposed, this section is meant for deriving certain applications of the
study in the last section; some characterizations of regular and normal spaces are
achieved here in terms of the introduced concept of G-rw-closed sets.
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Theorem 4.1. Let X be a normal space and G be a grill on X then for each pair of
disjoint closed sets F and K, there exist disjoint G-rw-open sets U and V such that
F ⊆ U and K ⊆ V .

Proof. It is obvious, since every open set is G-rw-open. □

Theorem 4.2. Let X be a normal space and G-be a grill on X then for each closed
set F and any open set V containing F , there exist a G-rw-open set U such that
F ⊆ U ⊆ �G-cl(U) ⊆ V .

Proof. Let F be a closed set and V an open set in (X, �) such that F ⊆ V . Then F
and X∖V are disjoint closed sets. by Theorem 4.1, there exist disjoint G-rw-open sets
U and W such that F ⊆ U and X∖V ⊆ W . Since W is G-rw-open and X∖V ⊆ W
where X∖V is closed, by Theorem 2.6 X∖V ⊆ �G-int(W ). So X V ⊆ �G-int(W ) ⊆ V .
Again, U ∩W = � ⇒ U ∩ �G-int(W ) = �. Hence �G-cl(U) ⊆ X∖�G-int(W ) ⊆ V .
Thus F ⊆ U ⊆ �G-cl(U) ⊆ V where U is a G-rw-open set. □

The following theorems gives characterizations of a normal space in terms of rw-
open sets which are the consequence of Theorems 4.1, 4.2 and Proposition 2.2 if one
takes G = [X].

Theorem 4.3. Let X be a normal space and G be a grill on X then for each pair
of disjoint closed sets F and K, there exist disjoint rw-open sets U and V such that
F ⊆ U and K ⊆ V .

Theorem 4.4. Let X be a normal space and G be a grill on X then for each
closed set F any open set V containing F , there exist a rw-open set U such that
F ⊆ U ⊆ �G-cl(U) ⊆ V .

Theorem 4.5. Let X is regular and G be a grill on a space (X, �). Then for each
closed set F and each x ∈ X∖F , there exist disjoint G-rw-open sets U and V such
that x ∈ U and F ⊆ V .

Proof. The proof is immediate. □

Theorem 4.6. Let X be a regular space and G be a grill on a space (X, �). Then for
each regular semiopen set V of (X, �) and each point x ∈ V there exist a G-rw-open
set U such that x ∈ U ⊆ �G-cl(U) ⊆ V .

Proof. Let V be any regular semipen in (X, �) containing a point x of X. Then by
Theorem 4.5, there exist disjoint G-rw-open sets U and W such that x ∈ U and
X∖V ⊆ W . Now, U ∩W = � implies �G-cl(U) ⊆ X∖W ⊆ V . Thus x ∈ U ⊆ �G-
cl(U) ⊆ V . □

The following theorems gives characterizations of a regular space in terms of rw-
open sets which are the consequence of Theorems 4.5, 4.6 and Proposition 2.2 if one
takes G = [X].

Theorem 4.7. Let X be a regular and G be a grill on a space (X, �). Then for each
closed set F and each x ∈ X∖F , there exist disjoint rw-open sets U and V such that
x ∈ U and F ⊆ V .
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Theorem 4.8. Let X be a regular space and G be a grill on a space (X, �). Then
for each regular semiopen set V of (X, �) and each point x ∈ V there exist a rw-open
set U such that x ∈ U ⊆ �G-cl(U) ⊆ V .

Acknowledgment: The authors would like to thank the reviewers for their valu-
able comments and helpful suggestions for improvement of the original manuscript.
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