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Abstract

In this paper we introduce the new concept of p#g closed sets in
topological spaces and a basic properties of p#g-closed set were obtain
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1 Introduction

The study of generalized closed (briefly g-closed) sets in a topological spaces
was initiated by N.Levine in 1970[7] and in 1982 A.S.Mashhour [11] introduced
the concept of preopen(briefly p-open) sets in topological spaces. Later in 1998
H.Maki, T.Nori [10] gave a new type of generalized closed sets in topological
spaces called generalized pre-closed(briefly gp-closed) sets.

The aim of this paper is to introduce the new type of closed set called
p#g closed set in topological spaces and to continue the study of p#g-closed
sets thereby contributing new innovation and concepts, in the field of topology
through analytical as well as research works. The notion of p#g-closed sets
and its different characterizations are given in this paper.

2 Preliminaries

A subset A of a topological space X is said to be open if A ∈ τ . A subset
A of a topological space X is said to be closed if the set X − A is open.
The interior of a subset A of a topological space X is defined as the union
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of all open sets contained in A. It is denoted by int(A). The closure of a
subset A of a topological space X is defined as the intersection of all closed
sets containing A. It is denoted by cl(A).
Throughout this paper (X, τ) represent the non-empty topological spaces on
which no separation axioms are assumed, unless otherwise mentioned. Let
A ⊆ X,the closure of A and interior of A will be denoted by cl(A) and int(A)
respectively.
Definitions 2.1.

1. A subset A of a space (X, τ) is said to be pre-open [11] if A ⊆ int (cl (A))
and pre-closed if cl (int (A)) ⊆ A.

2. A subset A of a space (X, τ) is said to be semi open [6] if A ⊆ cl (int (A))
and semi closed if int (cl (A)) ⊆ A.

3. A subset A of a space (X, τ) is said to be regular-open [14] if
A = int (cl (A)) and regular-closed if A = cl (int (A)).

4. A subset A of a space (X, τ) is said to be semi pre-open [2] if
A ⊆ cl (int (cl (A))) and semi pre-closed if int (cl (int (A))) ⊆ A.

5. A subsetA of a space (X, τ) is said to be α-open[13]ifA ⊆ int (cl (int (A)))
and α-closed if cl (int (cl (A))) ⊆ A.

The complement of a pre-open (resp.semi-open, α-open) set is called pre-
closed (resp.semi-closed, α-closed). The intersection of all pre-closed
(resp.semi-closed, α-closed) sets containing A is called the pre-closure
(resp.semi-closure, α-closure) of A and is denoted by pcl(A)(resp. scl(A),
α-cl(A)).The union of all pre-open (resp.semi-open, α-open) sets contained
in A is called the pre-interior(resp.semi-interior, α-interior) of A and
is denoted by pint(A)(resp. sint(A), α-int(A)). The family of all semi-open
(resp.pre-open, α-open) sets is denoted by PO(X)(resp. SO(X), α − O(X)).
The family of all pre-closed (resp.semi-closed, α-closed) sets is denoted by
PCl(X) (resp. SCl(X), α-Cl(X)).

Definitions 2.2.

1. A subset A of a space (X, τ) is called generalized-closed set [7] (briefly
g-closed) if cl (A) ⊆ U , whenever A ⊆ U and U is open in (X, τ).

2. A subset A of a space (X, τ) is called α generalized-closed set [9]
(briefly αg-closed) if α (cl (A)) ⊆ U , whenever A ⊆ U and U is open in
(X, τ).
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3. A subset A of a space (X, τ) is called generalized α-closed set [8]
(briefly gα-closed) if α (cl (A)) ⊆ U , whenever A ⊆ U and U is α-open
in (X, τ).

4. A subset A of a space (X, τ) is called generalized pre-closed set [10]
(briefly gp-closed) if pcl (A) ⊆ U , whenever A ⊆ U and U is open in
(X, τ).

5. A subset A of a space (X, τ) is called generalized semi-pre closed set
[3] (briefly gsp-closed) if spcl (A) ⊆ U , whenever A ⊆ U and U is open
in (X, τ).

6. A subset A of a space (X, τ) is called weekly generalized-closed set
[12] (briefly wg-closed) if cl (int (A)) ⊆ U , whenever A ⊆ U and U is
open in (X, τ).

7. A subset A of a space (X, τ) is called semi weekly generalized-closed
set [12] (briefly swg-closed) if cl (int (A)) ⊆ U , whenever A ⊆ U and U
is semi-open in (X, τ).

8. A subset A of a space (X, τ) is called πgeneralized-closed set [4]
(briefly πg-closed) if cl (A) ⊆ U , whenever A ⊆ U and U is π-open
in (X, τ).

9. A subset A of a space (X, τ) is called πgeneralizedα-closed set [5]
(briefly πgα-closed) if αcl (A) ⊆ U , whenever A ⊆ U and U is π-open in
(X, τ).

10. A subset A of a space (X, τ) is called weekly-closed set [15] (briefly
w-closed) if cl (A) ⊆ U , whenever A ⊆ U and U is semi-open in (X, τ).

11. A subset A of a space (X, τ) is called πgeneralized semi-closed set
[1] (briefly πgs-closed) if scl (A) ⊆ U , whenever A ⊆ U and U is π-open
in (X, τ).

12. A subset A of a space (X, τ) is called ĝ-closed set[16] if cl (A) ⊆ U ,
whenever A ⊆ U and U is semi-open in (X, τ).

3 p#g-Closed sets in Topological Spaces

In this section the notion of a new class of sets called p#g-closed sets in topo-
logical spaces is introduced and their properties were studied.

Definition 3.1 A subset A of space (X, τ) is called p#g-closed if int (pcl (A))
⊆ U , whenever A ⊆ U and U is p-open in X.

The family of all p#g-closed subsets of the space X is denoted by P#GC(X).
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Definition 3.2 The intersection of all p#g-closed sets containing a set A is
called p#g-closure of A and is denoted by p#g-cl(A).

A set A is p#g-closed set if and only if p#g Cl (A) = A.

Definition 3.3 A subset A in X is called p#g-open in X if Ac is p#g-closed
in X.

The family of a p#g-open sets is denoted by P#GO(X).

Definition 3.4 The union of all p#g-open sets containing a set A is called
p#g-interior of A and is denoted by p#g-Int(A).

A set A is p#g-open set if and only if p#g Int (A) = A.

Theorem 3.5 Every closed set is a p#g-closed set.

Proof: Let A be a closed set in X. Such that A ⊆ U , U is p-open. Since A
is closed, cl (A) = A.For every subset A of X, int (pcl (A)) ⊆ cl (A) = A ⊆ U
and so we have int (pcl (A)) ⊆ U . Hence A is p#g-closed.

Remark 3.6 The converse of the above theorem need not be true as seen from
the following example.

Example 3.7 Let X = {a, b, c, d} with topology τ = {X,φ, {a} , {b} , {a, b} ,
{a, b, c} , {a, b, d}}. Then A = {a} is p#g-closed but not a closed set of (X, τ).

Theorem 3.8 Every s-closed set is a p#g-closed set.

Proof: Let A be a s-closed set in X. Such that A ⊆ U , U is p-open. Since
A is s-closed, scl (A) = A. For every subset A of X, int (pcl (A)) ⊆ scl (A) =
A ⊆ U and so we have int (pcl (A)) ⊆ U . Hence A is p#g-closed.

Remark 3.9 The converse of the above theorem need not be true as seen from
the following example.

Example 3.10 Let X = {a, b, c, d, e} with topology τ = {X,φ, {a, b} , {c, d} ,
{a, b, c, d}}. Then A = {a, b, c, e} is p#g-closed but not a s-closed set of (X, τ).

Theorem 3.11 Every α closed set is a p#g-closed set.

Proof: Let A be a α-closed set in X. Such that A ⊆ U , U is p-open. Since A
is α-closed, αcl (A) ⊆ A. For every subset A of X, int (pcl (A)) ⊆ αcl (A) ⊆
A ⊆ U and so we have int (pcl (A)) ⊆ U . Hence A is p#g-closed.

Remark 3.12 The converse of the above theorem need not be true as seen
from the following example.
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Example 3.13 Let X = {a, b, c, d} with topology τ = {X,φ, {a} , {b} , {a, b} ,
{a, b, c} , {a, b, d}}. Then A = {a, c} is p#g-closed but not α closed set of
(X, τ).

Theorem 3.14 Every r-closed set is a p#g-closed set.

Proof: Let A be a r-closed set in X. Such that A ⊆ U , U is p-open. Since
A is r-closed, rcl (A) ⊆ A. For every subset A of X, int (pcl (A)) ⊆ rcl (A) ⊆
A ⊆ U and so we have int (pcl (A)) ⊆ U . Hence A is p#g-closed.

Remark 3.15 The converse of the above theorem need not be true as seen
from the following example.

Example 3.16 Let X = {a, b, c, d, e} with topology τ = {X,φ, {a, b} , {c, d} ,
{a, b, c, d}}. Then A = {b, c} is p#g-closed but not a r-closed set of (X, τ).

Theorem 3.17 Every gα closed set is a p#g-closed set.

Proof: Let A be a gα-closed set in X. Such that A ⊆ U , U is p-open. Since A
is gα-closed, αcl (A) ⊆ A. For every subset A of X, int (pcl (A)) ⊆ αcl (A) ⊆
A ⊆ U and so we have int (pcl (A)) ⊆ U . Hence A is p#g-closed.

Remark 3.18 The converse of the above theorem need not be true as seen
from the following example.

Example 3.19 Let X = {a, b, c, d, e} with topology τ = {X,φ, {a, b} , {c, d} ,
{a, b, c, d}}. Then A = {a, d} is p#g-closed but not gα closed set of (X, τ).

Theorem 3.20 Every p#g closed set is a gsp-closed set.

Proof: Let A be a p#g-closed set in X. Such that A ⊆ U , U is open. Since
A is p#g-closed, int (pcl (A)) ⊆ A. For every subset A of X, spcl (A) ⊆
int (pcl (A)) ⊆ A ⊆ U and so we have spcl (A) ⊆ U . Hence A is gsp-closed.

Remark 3.21 The converse of the above theorem need not be true as seen
from the following example.

Example 3.22 Let X = {a, b, c} with topology τ = {X,φ, {a} , {b} , {a, b}}.
Then A = {a, b} is gsp-closed but not p#g closed set of (X, τ).

Theorem 3.23 Every αg closed set is a p#g-closed set.

Proof: Let A be a αg-closed set in X. Such that A ⊆ U , U is p-open. Since A
is αg-closed,αcl (A) ⊆ A. For every subset A of X,int (pcl (A)) ⊆ αcl (A) ⊆ U
and we have int (pcl (A)) ⊆ U . Hence A is p#g-closed.
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Remark 3.24 The converse of the above theorem need not be true as seen
from the following example.

Example 3.25 Let X = {a, b, c, d} with topology τ = {X,φ, {a} , {b} , {a, b} ,
{a, b, c} , {a, b, d}}. Then A = {b, c} is p#g-closed but not αg closed set of
(X, τ).

Theorem 3.26 Every gp-closed set is a p#g-closed set.

Proof: Let A be a gp-closed set in X. Such that A ⊆ U , U is p-open. Since A
is gp-closed, pcl (A) ⊆ A. For every subset A of X, int (pcl (A)) ⊆ pcl (A) ⊆
A ⊆ U and so we have int (pcl (A)) ⊆ U . Hence A is p#g-closed.

Remark 3.27 The converse of the above theorem need not be true as seen
from the following example.

Example 3.28 Let X = {a, b, c, d, e} with topology τ = {X,φ, {a, b} , {c, d} ,
{a, b, c, d}}. Then A = {a, b, d} is p#g-closed but not a gp-closed set of (X, τ).

Theorem 3.29 Every wg-closed set is a p#g-closed set.

Proof: Let A be a wg-closed set in X. Such that A ⊆ U , U is p-open. Since
A is wg-closed, cl (int (A)) ⊆ A. For every subset A of X, int (pcl (A)) ⊆
cl (int (A)) ⊆ A ⊆ U and so we have int (pcl (A)) ⊆ U . Hence A is p#g-
closed.

Remark 3.30 The converse of the above theorem need not be true as seen
from the following example.

Example 3.31 Let X = {a, b, c, d} with topology τ = {X,φ, {a} , {b} , {a, b} ,
{a, b, c} , {a, b, d}}. Then A = {b, d} is p#g-closed but not a wg-closed set of
(X, τ).

Theorem 3.32 Every ĝ-closed set is a p#g-closed set.

Proof follows from the definition, since every p-open set is semi-open.

Example 3.33 In example (3.7), the set {b, c} is p#g-closed but not a ĝ-
closed set of (X, τ).

Theorem 3.34 Every swg-closed set is a p#g-closed set.

Proof follows from the definition, since every p-open set is semi-open.

Example 3.35 In example (3.7), the set {a, d} is p#g-closed but not a swg-
closed set of (X, τ).
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Theorem 3.36 Every πg-closed set is a p#g-closed set.

Proof follows from the definition, since every p-open set is π-open.

Example 3.37 In example (3.22), the set {b} is p#g-closed but not a πg-
closed set of (X, τ).

Theorem 3.38 Every πgα-closed set is a p#g-closed set.

Proof follows from the definition, since every p-open set is π-open.

Example 3.39 In example (3.22), the set {a} is p#g-closed but not a πgα-
closed set of (X, τ).

Theorem 3.40 Every g-closed set is a p#g-closed set.

Proof follows from the definition, since every p-open set is open.

Example 3.41 In example (3.10), the set {a, c, d} is p#g-closed but not a
g-closed set of (X, τ).

Theorem 3.42 Every p-closed set is a p#g-closed set.

Proof follows from the definition, since every p-open set is open.

Example 3.43 In example (3.10), the set {b, c, d, e} is p#g-closed but not a
p-closed set of (X, τ).

Theorem 3.44 Every w-closed set is a p#g-closed set.

Proof follows from the definition, since every p-open set is semi-open.

Example 3.45 In example (3.7), the set {b, d} is p#g-closed but not a w-
closed set of (X, τ).
So the class of p#g-closed sets properly contain the class of ĝ-closed set, swg-
closed set, πgα-closed set, πg-closed set, g-closed set, w-closed sets.

Theorem 3.46 Every p#g-closed set is a πgs-closed set.

Proof follows from the definition, since every π-open set is p-open.

Example 3.47 In example (3.7), the set {a, b, c} is πgs-closed but not a p#g-
closed set of (X, τ).
so the class of φgs-closed sets properly contain the class of p#g-closed sets.

Remark 3.48 Figure 3.1 gives the implication relations of p#g-closed sets
based on the above results.
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Figure 3.1 Implication of p#g- closed set 

  Where    A            B represents A implies B  

      A       B represents A does not implies B 

          A            B represents B does not implies A 

  -closed set 

p#g –closed set 

 gs-closed set 
swg-closed set 

g-closed set 

w-closed set 

p- closed set 

   -closed set 

 g-closed set 

Theorem 3.49 For each x ∈ {X},either {x} p-closed or {x}c is p#g-closed
in X.

Proof: Suppose that {x} is not p-closed, then the only pre-open set containing
{x}c in X. Thus pre-closure of {x}c is contained in X. Hence {x}c is p#g-
closed in X.

Theorem 3.50 The intersection of two p#g-closed subsets of X is also p#g-
closed subset of X.

Proof: Assume that P and Q are p#g-closed set in X. Let P
⋂
Q ⊆ U and U

be p-open in X. Since P ⊂ U and Q ⊂ U , U is p-open.Then int (pcl (P )) ⊆ U
and int (pcl (Q)) ⊆ U and we have int (pcl (P

⋂
Q)) ⊆ int (pcl (p))

⋂
int (pcl (Q))

⊆ U . Since U is p-open. Hence P
⋂
Q is p#g-closed set in X.

Remark 3.51 The union of two p#g-closed sets in X is generally not p#g-
closed set in X.

Example 3.52 Let X = {a, b, c, d, e} with topology τ = {X,φ, {a, b} , {c, d} ,
{a, b, c, d}}. If P = {a, b} and Q = {c, d}, then P and Q are p#g-closed sets
in X, but P

⋂
Q = {a, b, c, d} is not a p#g-closed set of X.

Theorem 3.53 Let A be a closed subset of p#g-closed set (X, τ) iff
int(cl(A))− A does not contain any nonempty p-closed set in X.
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Proof: Necessary:
Let that A is p#g-closed set in X. Suppose F be a p-closed subset of X.

Such that F ⊆ int (pcl (A))− A Now, F ⊆ int (pcl (A))
⋂
Ac. Since A is p#g-

closed set. Thus ⇒ F ⊆ int (pcl (A)) and F ⊆ Ac ⇒ A ⊆ F c. Since F c is
preopen and A is p#g-closed set.int (pcl (A)) ⊆ F c⇒ F ⊆ (int (pcl (A)))c Thus
implies F ⊇ (int (pcl (A))

⋂
(int (pcl (A)))c) = φ. This shows that, F = φ.

Hence int (pcl (A)) − A = φ does not contains any nonempty p-closed set in
X.
Sufficient:

Let A ⊆ U and U is preopen then int (pcl (A)) ⊆ U . Suppose that int (pcl (A))
does not contained in U .Then int (pcl (A))

⋂
U c is a non-empty preclosed set

of int (pcl (A))−A. Which is contradiction Therefore int (pcl (A)) ⊆ U Hence
A is p#g−closed.

Theorem 3.54 If A is p#g-closed set and B is any set such that A ⊂ B ⊂
int (pcl (A)) then B is p#g-closed set.

Proof: Let B ⊂ U and U is pre-open. Given A ⊂ B ,then A ⊂ U .Since A is
p#g-closed set, A ⊂ U implies int (pcl (A)) ⊆ U . By assumption it follows that
⇒ int (pcl (B)) ⊆ int (pcl (A)) ⊆ U ⇒ int (pcl (B)) ⊆ U and U is pre-open.
Hence B is p#g-closed.

Theorem 3.55 If cl (pint (A)) ⊂ B ⊂ A and A is p#g-open then B is p#g-
closed.

Proof: Let cl (pint (A)) ⊂ B ⊂ A. Thus (X − A) ⊂ (X − B) ⊂ (X −
cl (pint (A))) ⇒ (X −A) ⊂ (X −B) ⊂ (X − int (pcl (X − A))) Since (X −A)
is p#g-closed. By theorem (3.36) (X−A) ⊂ (X−B) ⊂ (X−int (pcl (X − A)))
⇒ X −B is p#g-closed.

Theorem 3.56 Let (X, τ) be a compact topological spaces. If A is p#g-closed
subset of X,then A is compact.

Proof: Let {Ui} be a open cover of A. Since every open set is pre-open and A
is p#g-closed, we get int (pcl (A)) ⊆ ⋃

Ui. Since a closed subset of a compact
space is compact, int (pcl (A)) is compact. Therefore there exists a finite sub-
cover, say {U1

⋃
U2

⋃ · · ·⋃Un} of Ui for int (pcl (A)). So A ⊆ int (pcl (A)) ⊆
{U1

⋃
U2

⋃ · · ·⋃Un}. Therefore A is not compact.

Theorem 3.57 Let (X, τ) be a Lindelof [countable compact] and suppose that
A is p#g-closed subset of X. Then A is not Lindelof [countable compact].

Proof: Let {Ui} be a open cover of A. Since every open set is pre-open,
{Ui} is a countable pre-open cover of A

⋃
Ui is pre-open.Then int (pcl (A)) ⊆
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⋃
Ui because A is p#g-closed. Since a closed subset of a Lindelof space is

Lindelof, int (pcl (A)) is not Lindelof. Therefore int (pcl (A)) has no countable
sub-cover, say {U1

⋃
U2

⋃ · · ·⋃Un} and it follows that, A ⊆ int (pcl (A)) ⊆
{U1

⋃
U2

⋃ · · ·⋃Un} Hence A is not Lindelof.

Theorem 3.58 Let (X, τ) be a normal space and if Y is ap#g-closed subset
of (X, τ),then the subspace Y is normal.

Proof: If G1 and G2 are disjoint closed sets in topological space (X, τ) such
that (Y

⋂
G1)

⋂
(Y

⋂
G2) = φ. Then Y ⊆ (G1

⋂
G2)

c and (G1
⋂
G2)

c is pre-
open. Y is p#g-closed in (X, τ). Therefore int (pcl (A)) ⊆ (G1

⋂
G2)

c .Hence
(int (pcl (Y ))

⋂
G1)

⋂
(int (pcl (Y ))

⋂
G2) = φ. Since (X, τ) is normal, there

exists disjoint open set A and B such that (int (pcl (Y ))
⋂
G1) ⊆ A and

(int (pcl (Y ))
⋂
G2) ⊆ B.(i.e) (Y

⋂
A) and (Y

⋂
B) are open set of Y such that

(Y
⋂
G1) ⊆ (Y

⋂
A) and (Y

⋂
G2) ⊆ (Y

⋂
B) are disjoint open sets of Y .

Hence Y is normal.
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