A.Devika, R.Vani and K.Gomathi

Associate Professor,Department of Mathematics,PSG College of Arts & Science,Coimbatore,Tamilnadu. Assistant Professor,Department of Mathematics with CA,PSG College of Arts & Science,Coimbatore,Tamilnadu. Research Scholar,Department of Mathematics,PSG College of Arts & Science,Coimbatore,Tamilnadu.

Abstract

In this paper we introduce the new concept of $\alpha s g$ closed sets in topological spaces and a basic properties of $\alpha s g$ -closed sets were obtained.

Mathematics Subject Classification: 54A05

Keywords: α sg-closed sets and α sg-open sets.

1 Introduction

The study of semi-open (briefly s-open) sets in a topological spaces was initiated by N.Levine[7] in 1963 and also he generalized the concept of closed sets to generalized closed(briefly g-closed) sets[8] in 1970. Bhattacharya and Lahiri[3] generalized the concept of closed sets to semi-generalized closed(briefly sgclosed) sets in 1987. O.Njastad^[14] introduced α sets(called as α -closed sets).

The aim of this paper is to introduce the new type of closed set called $\alpha s g$ closed set and to continue the study of $\alpha s q$ -closed sets thereby contributing new innovation and concept, in the field of topology through analytical as well as research works. The notion of $\alpha s q$ -closed sets and its different characterizations are given in this paper.

2 Preliminaries

A subset A of a topological space X is said to be **open** if $A \in \tau$. A subset A of a topological space X is said to be **closed** if the set $X - A$ is open. The **interior** of a subset A of a topological space X is defined as the union of all open sets contained in A. It is denoted by $int(A)$. The **closure** of a

subset A of a topological space X is defined as the intersection of all closed sets containing A. It is denoted by $cl(A)$.

Throughout this paper (X, τ) represent the non-empty topological spaces on which no separation axioms are assumed, unless otherwise mentioned. Let $A \subseteq X$, the closure of A and interior of A will be denoted by $cl(A)$ and $int(A)$ respectively.

Definitions 2.1.

- 1. A subset A of a space (X, τ) is said to be **semi open** [7] if $A \subset cl$ (int (A)) and semi-closed if $int(cl(A)) \subset A$.
- 2. A subset A of a space (X, τ) is said to be α -open [14] if $A \subseteq int(cl(int(A)))$ and α -closed if $cl(int(cl(A))) \subseteq A$.
- 3. A subset A of a space (X, τ) is said to be semi pre-open [1] if $A \subset$ $cl(int(cl(A)))$ and semi pre-closed if $int(cl(int(A))) \subseteq A$.
- 4. A subset A of a space (X, τ) is said to be **regular-open** [17] if $A = int(cl(A))$ and **regular-closed** if $A = cl(int(A))$.
- 5. A subset A of a space (X, τ) is said to be **pre-open** [12] if $A \subset int(cl(A))$ and **pre-closed** if $cl(int(A)) \subseteq A$.

The complement of a semi-open (resp.pre-open, α -open) set is called **semi**closed (resp.pre-closed, α -closed). The intersection of all semi-closed (resp.pre-closed, α -closed) sets containing A is called the **semi-closure** (resp.pre-closure, α -closure) of A and is denoted by $\mathfrak{sol}(A)$ (resp. $\mathfrak{pol}(A)$, α -cl(A)). The union of all semi-open (resp.pre-open, α -open) sets contained in A is called the **semi-interior**(resp.pre-interior, α -interior) of A and is denoted by $sint(A)(resp. pint(A), \alpha-int(A)).$ The family of all semi-open (resp.pre-open, α -open)sets is denoted by $SO(X)(\text{resp. } PO(X), \alpha - O(X)).$ The family of all semi-closed (resp.pre-closed, α -closed)sets is denoted by $SCl(X)$ (resp. $PCl(X)$, α - $Cl(X)$).

Definitions 2.2.

- 1. A subset A of a space (X, τ) is called **generalized-closed set** [8] (briefly g-closed) if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is open in (X, τ) .
- 2. A subset A of a space (X, τ) is called **generalized semi-closed set** [2] (briefly gs-closed set) if $\operatorname{scl}(A) \subseteq U$, whenever $A \subseteq U$ and U is open in (X, τ) .

- 3. A subset A of a space (X, τ) is called **semi-generalized closed set** [3] (briefly sq-closed set) if scl $(A) \subseteq U$, whenever $A \subseteq U$ and U is semi-open in (X, τ) .
- 4. A subset A of a space (X, τ) is called α generalized-closed set [10] (briefly αq -closed) if α (cl(A)) $\subset U$, whenever $A \subset U$ and U is open in (X, τ) .
- 5. A subset A of a space (X, τ) is called **generalized** α -closed set [9] (briefly qα-closed) if α (cl(A)) $\subset U$, whenever $A \subset U$ and U is α -open in (X, τ) .
- 6. A subset A of a space (X, τ) is called **generalized pre-closed set** [11] (briefly qp-closed) if $pcl(A) \subseteq U$, whenever $A \subseteq U$ and U is open in (X, τ) .
- 7. A subset A of a space (X, τ) is called **generalized semi-pre closed set** [4] (briefly gsp-closed) if spcl $(A) \subseteq U$, whenever $A \subseteq U$ and U is open in (X, τ) .
- 8. A subset A of a space (X, τ) is called semi weekly generalized-closed set [13] (briefly swg-closed) if $cl(int(A)) \subseteq U$, whenever $A \subseteq U$ and U is semi-open in (X, τ) .
- 9. A subset A of a space (X, τ) is called **star generalized-closed set** [20] (briefly *g-closed) if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is g-open in (X, τ) .
- 10. A subset A of a space (X, τ) is called weekly-closed set [18] (briefly w-closed) if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is semi-open in (X, τ) .
- 11. A subset A of a space (X, τ) is called **generalized-closed set** [19] (briefly \hat{q} -closed) if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is semi-open in (X, τ) .
- 12. A subset A of a space (X, τ) is called weekly generalized-closed set [13] (briefly wq-closed) if $cl(int(A)) \subseteq U$, whenever $A \subseteq U$ and U is open in (X, τ) .
- 13. A subset A of a space (X, τ) is called π **generalized-closed set** [5] (briefly πg -closed) if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is π -open in (X, τ) .
- 14. A subset A of a space (X, τ) is called π **generalized** α -closed set [6] (briefly $\pi g \alpha$ -closed) if $\alpha cl(A) \subseteq U$, whenever $A \subseteq U$ and U is π -open in (X, τ) .

- 15. A subset A of a space (X, τ) is called **m** generalized-closed set [16] (briefly mq-closed) if $cl(int(A)) \subseteq U$, whenever $A \subseteq U$ and U is q-open in (X, τ) .
- 16. A subset A of a space (X, τ) is called **generalized-closed set** [15] (briefly \tilde{q} -closed) if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is #gsopen in (X, τ) .

3 αsg-Closed sets in Topological Spaces

In this section the notion of a new class of sets called α sg-closed sets in topological spaces is introduced and their properties were studied.

Definition 3.1 A subset A of space (X, τ) is called asg-closed if int (scl (A)) $\subset U$, whenever $A \subset U$ and U is α -open in X. The family of all α sq-closed subsets of the space X is denoted by α SGC(X).

Definition 3.2 The intersection of all α sg-closed sets containing a set A is called α sg-closure of A and is denoted by α sg-cl(A). A set A is α sq-closed set if and only if α sq $Cl(A) = A$.

Definition 3.3 A subset A in X is called α sg-open in X if A^c is α sg-closed in X.

The family of a α sq-open sets is denoted by α SGO(X).

Definition 3.4 The union of all α sq-open sets containing a set A is called α sg-interior of A and is denoted by α sg-Int(A).

A set A is α sq-open set if and only if α sq Int(A) = A.

Theorem 3.5 Every closed set is a α sq-closed set.

Proof: Let A be a closed set in X. Such that $A \subseteq U$, U is α -open. Since A is closed, cl(A) = A. For every subset A of X, int (scl(A)) \subseteq cl(A) = A \subseteq U and so we have int $(scl(A)) \subseteq U$. Hence A is α sq-closed.

Remark 3.6 The converse of the above theorem need not be true as seen from the following example.

Example 3.7 Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}.$ Then $A = \{a\}$ is asg-closed but not a closed set of (X, τ) .

Theorem 3.8 Every p-closed set is a α sq-closed set.

Proof: Let A be a p-closed set in X. Such that $A \subseteq U$, U is a-open. Since A is p-closed, pcl $(A) = A$. For every subset A of X, int $(scl(A)) \subseteq pd(A) = A \subseteq U$ and so we have $int(scl(A)) \subseteq U$. Hence A is $\alpha s g$ -closed.

Remark 3.9 The converse of the above theorem need not be true as seen from the following example.

Example 3.10 Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b\}$ ${a, b, c}, {a, b, d}$. Then $A = {a}$ is asg-closed but not a p-closed set of (X, τ) .

Theorem 3.11 Every α closed set is a α sq-closed set.

Proof: Let A be a α -closed set in X. Such that $A \subseteq U$, U is α -open.Since A is α -closed, $\alpha cl(A) \subseteq A$. For every subset A of X, int (scl(A)) $\subseteq \alpha cl(A) \subseteq$ $A \subseteq U$ and so we have int $(scl(A)) \subseteq U$. Hence A is asg-closed.

Remark 3.12 The converse of the above theorem need not be true as seen from the following example.

Example 3.13 Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}.$ Then $A = \{b\}$ is asg-closed but not a closed set of (X, τ) .

Theorem 3.14 Every r-closed set is a α sq-closed set.

Proof: Let A be a r-closed set in X. Such that $A \subseteq U$, U is a-open. Since A is r-closed, rcl $(A) \subseteq A$. For every subset A of X, int $(scl(A)) \subseteq rel(A) \subseteq A \subseteq U$ and so we have int $(scl(A)) \subset U$. Hence A is α sq-closed.

Remark 3.15 The converse of the above theorem need not be true as seen from the following example.

Example 3.16 Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{X, \phi, \{a, b\}, \{c, d\},\}$ ${a, b, c, d}$. Then $A = {b, c, e}$ is asg-closed but not a r-closed set of (X, τ) .

Theorem 3.17 Every g α closed set is a α sq-closed set.

Proof: Let A be a go-closed set in X. Such that $A \subseteq U$, U is a-open. Since A is g α -closed, α cl $(A) \subseteq A$. For every subset A of X, int $(scl(A)) \subseteq \alpha$ cl $(A) \subseteq$ $A \subset U$ and so we have int $(scl(A)) \subset U$. Hence A is asg-closed.

Remark 3.18 The converse of the above theorem need not be true as seen from the following example.

Example 3.19 Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}.$ Then $A = \{b\}$ is asg-closed but not ga closed set of (X, τ) .

Theorem 3.20 Every q closed set is a α sq-closed set.

Proof: Let A be a g-closed set in X. Such that $A \subseteq U$, U is a-open. Since A is q-closed, cl(A) $\subset A$. For every subset A of X, int (scl(A)) $\subset c_l(A) \subset A \subset U$ and so we have $int(scl(A)) \subseteq U$. Hence A is $\alpha s g$ -closed.

Remark 3.21 The converse of the above theorem need not be true as seen from the following example.

Example 3.22 Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}$, ${a, b, c}, {a, b, d}$. Then $A = {a, c}$ is asg-closed but not g- closed set of (X, τ) .

Theorem 3.23 Every αq closed set is a αsq -closed set.

Proof: Let A be a αq -closed set in X. Such that $A \subseteq U$, U is α -open. Since A is αq -closed, $\alpha cl(A) \subseteq A$. For every subset A of X, int $(scl(A)) \subseteq \alpha cl(A) \subseteq U$ and we have int $(scl(A)) \subseteq U$. Hence A is $\alpha s g$ -closed.

Remark 3.24 The converse of the above theorem need not be true as seen from the following example.

Example 3.25 Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}$, ${a, b, c}, {a, b, d}$. Then $A = {a, d}$ is asg-closed but not ag closed set of (X, τ) .

Theorem 3.26 Every $*q$ -closed set is a α sq-closed set.

Proof: Let A be a $*q$ -closed set in X. Such that $A \subseteq U$, U is α -open. Since A is $*_q$ -closed, cl(A) ⊂ A.For every subset A of X, int(scl(A)) ⊂ cl(A) ⊂ A ⊂ U and so we have $int(scl(A)) \subseteq U$. Hence A is α sq-closed.

Remark 3.27 The converse of the above theorem need not be true as seen from the following example.

Example 3.28 Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}.$ Then $A = \{a\}$ is asg-closed but not a *q-closed set of (X, τ) .

Theorem 3.29 Every w-closed set is a α sq-closed set.

Proof: Let A be a w-closed set in X. Such that $A \subseteq U$, U is s-open. Since A is w-closed, $cl(A) \subseteq A$. For every subset A of X, int $(scl(A)) \subseteq cl(A) \subseteq A \subseteq U$ and so we have int $(scl(A)) \subseteq U$. Hence A is $\alpha sq-closed$.

Remark 3.30 The converse of the above theorem need not be true as seen from the following example.

Example 3.31 Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}$, ${a, b, c}, {a, b, d}$. Then $A = {a, c}$ is asg-closed but not a w-closed set of (X, τ) .

Theorem 3.32 Every swg-closed set is a α sq-closed set.

Proof: Let A be a swg-closed set in X. Such that $A \subseteq U$, U is α -open. Since A is swg-closed, $cl(int(A)) \subseteq A$. For every subset A of X, int(scl(A)) \subseteq $cl(int(A)) \subseteq A \subseteq U$ and so we have $int(scl(A)) \subseteq U$. Hence A is α sg-closed.

Remark 3.33 The converse of the above theorem need not be true as seen from the following example.

Example 3.34 Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b\} \}$ ${a, b, c}, {a, b, d}$. Then $A = {a}$ is asg-closed but not a swg-closed set of (X, τ) .

Theorem 3.35 The union of two $\alpha s q$ -closed subsets of X is also $\alpha s q$ -closed subset of X.

Proof: Assume that P and Q are p#g-closed set in X. Let $P \cup Q \subseteq U$ and U be α -open in X. Since $P \subset U$ and $Q \subset U$, U is α -open. Then $int (sd (P)) \subseteq U$ and $int (sd (Q)) \subseteq U$ and we have $int (sd (P \cup Q)) \subseteq$ $int\left(scl\left(p\right)\right)\bigcup int\left(scl\left(Q\right)\right)\subseteq U.$ Since U is α -open. Hence $P\bigcup Q$ is α sg-closed set in X.

Remark 3.36 The intersection of two α sg-closed sets in X is generally not α sq-closed set in X.

Example 3.37 Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}$, ${a, b, c}, \{a, b, d\}$. If $P = \{b, c\}$ and $Q = \{b, d\}$, then P and Q are $\alpha s q$ -closed sets in X, but $P \cup Q = \{b\}$ is not a asg-closed set of X.

Theorem 3.38 Every \hat{q} -closed set is a α sq-closed set.

Proof follows from the definition, since every α -open set is semi-open.

Example 3.39 In example (3.10), the set $\{b, c\}$ is asg-closed but not a \hat{g} closed set of (X, τ) .

Theorem 3.40 Every wg-closed set is a αsg-closed set.

Proof follows from the definition, since every α -open set is open.

Example 3.41 In example (3.10), the set $\{a, d\}$ is α sq-closed but not a wqclosed set of (X, τ) .

Theorem 3.42 Every πq -closed set is a $\alpha s q$ -closed set.

Proof follows from the definition, since every α -open set is π -open.

Example 3.43 In example (3.13), the set $\{b\}$ is asg-closed but not a πg closed set of (X, τ) .

Theorem 3.44 Every $\pi q \alpha$ -closed set is a $\alpha s q$ -closed set.

Proof follows from the definition, since every α -open set is π -open.

Example 3.45 In example (3.13), the set $\{a\}$ is α sq-closed but not a $\pi q \alpha$ closed set of (X, τ) .

Theorem 3.46 Every mg-closed set is a αsg-closed set.

Proof follows from the definition, since every α -open set is g-open.

Example 3.47 In example (3.16), the set $\{b, c, e\}$ is asg-closed but not a mq-closed set of (X, τ) .

Theorem 3.48 Every qp-closed set is a α sq-closed set.

Proof follows from the definition, since every α -open set is open.

Example 3.49 In example (3.10), the set $\{b\}$ is asg-closed but not a gp-closed set of (X, τ) .

So the class of α sq-closed sets properly contain the class of \hat{q} -closed set, wg-closed set, $\pi g \alpha$ -closed set, πg -closed set, gp-closed set and mg-closed sets.

Remark 3.50 The concept of αsg-closed set is independent of the following classes of sets namely qs-closed set and \tilde{q} -closed set.

Example 3.51 Consider the topological space $X = \{a, b, c, d, e\}$, with topology $\tau = \{X, \phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}\}\.$ In this space, the set $\{a, b\}$ is $\alpha s q$ -closed set but not gs-closed set and the set ${a, e}$ is gs-closed set but not α sq-closed set.

Example 3.52 Consider the topological space $X = \{a, b, c, d\}$, with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}\.$ In this space, the set $\{a\}$ is α sg-closed set but not \tilde{q} -closed set and the set $\{a, b\}$ is \tilde{q} -closed set but not αsg-closed set.

Remark 3.53 Figure 3.1 gives the implication relations of αsg-closed sets based on the above results.

Figure 3.1 Implication of α **sg-** closed set

Theorem 3.54 For $x \in X$, the set $X - \{x\}$ is asg-closed or a-open.

Proof: Suppose $X - \{x\}$ is not α -open. Then X is the only α -open set containing $X - \{x\}$. \Rightarrow int $(scl(X - \{x\})) \subseteq X$. Then $X - \{x\}$ is $\alpha s g$ -closed in X

Theorem 3.55 Let $A \subseteq Y \subseteq X$ and suppose that A is asg-closed in X, then A is α sq-closed relative to Y.

Proof: Given that $A \subseteq Y \subseteq X$ and A is α sq-closed in X. To show that A is asg-closed relative to Y. where U is α -open in X. Since A is asg-closed, $A \subseteq U$, implies that int $(scl(A)) \subseteq U$, It follows that $Y \cap int (scl(A)) \subseteq Y \cap U$. Thus A is α sq-closed relative to Y.

Theorem 3.56 If A is asg-closed and $A \subseteq B \subseteq int(scl(A))$. Then B is α sq-closed.

Proof: Let U be a α -open set of X, such that $B \subseteq U$. Then $A \subseteq U$ and since A is α sq-closed, we have, int(scl(A)) $\subseteq U$ Now, int(scl(B)) \subseteq int $(scl(int(scl(A)))) = int(scl(A)) \subseteq U$ Hence B is asg-closed set.

Theorem 3.57 If a subset A of (X, τ) is α -open and α sq-closed, then A is semi-closed in (X, τ) .

Proof: If a subset A of (X, τ) is α -open and α sq-closed. Then int $(scl(A)) \subset$ $U \subseteq A$. Hence A is semi-closed in (X, τ) .

Theorem 3.58 If a set A is α sq-closed, then int(scl(A)) – A contains no non-empty α -closed set.

Proof: Let F be a non-empty α -closed set such that $F \subseteq int(scl(A)) - A$, then $F \subseteq int (sel (A))$ and $A \subseteq X - F$, we have $int (sel (A)) \subseteq int (X - F)$. \Rightarrow int (scl(A)) $\subseteq X - cl(A) \Rightarrow cl(A) \subseteq X - int(scl(A))$. Therefore $F \subseteq$ $int (sd(A)) \bigcap (X - int (sd(A))) = \phi$. Hence $int (sd(A)) - A$ contains no non-empty α -closed set.

Theorem 3.59 Let A be α -closed in (X, τ) , then A is semi-closed iff int $(scl(A)) - A$ is α -closed.

Proof: Necessity:

Let A be semi-closed, then $\text{scl}(A) = A$. Hence $\text{int}(\text{scl}(A)) - A = \{\phi\}.$ Which is α -closed.

Sufficiency:

Suppose int $(scl(A)) - A$ is α -closed. Since A is α sq-closed by theorem(), $int(scl(A)) - A = \{\phi\}.$ Then $int(scl(A)) = A$. This means that A is semiclosed.

References

- [1] D. Andrijevic, semipre-open sets, Mat.Vesnik, 38(1)(1986), 24-32.
- [2] S.P. Arya, T.M. Tour, Characterization of s-normal spaces, Indian J.Pure-Appl.Math, $21(8)(1990)$, 717-719.
- [3] P. Bhattacharya, B.K. Lahari, semi-generalized closed sets in topology, $Indian.J.Math., 29(3)(1987), 375-382.$
- [4] J. Dontchev, On generalizing semi-pre open sets, Mem.Fac.Sci.Kochi.Univ.ser.A.Math, 16(1995), 35-48.
- [5] J. Dontchev and T. Noiri, Quasi-normal spaces and πg -closed sets, Acta Math.Hungar,89(3)(2000),211-219.
- [6] C. Janaki, Studies on $\pi g \alpha$ -closed sets in Topology, *Ph.D The*sis,Bharathiar University ,Coimbatore.(2009).
- [7] N. Levine, semi-open sets and semi-continuity in topological spaces, American Mathematical Monthly, 70(1963), 36-41.

- [8] N.Levine, Generalized closed sets in topological spaces, Rend.circ.mat.palermo, vol $19(2)$, (1970) 89-96.
- [9] H. Maki, R. Devi, K. Balachandran, Generalized α -closed sets in topology, Bull.Fukuoka Univ, Ed.partIII., 42(1993), 13-21.
- [10] H. Maki, R. Devi, K. Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem.Fac.Sci.Kochi Univ.sev.A.Math., 15(1994), 51-63.
- [11] H. Maki, J. Umehera, T. Noiri, Every Topological space is pre-t1/2, Mem.Fac.Sci.Kochi.Univ.ser.A.Math., 17(1996), 33-42.
- [12] A.S. Mashlour, M.E. Abd.EI- Monsef, S.N.EI. Deeb, On pre-continuous and weak pre-continuous mappings, proc.Math,phys.soc.Egypt, 53,(1982), 47-53.
- [13] N. Nagaveni,Studys on generalizations of homeomorphism in topological spaces, Ph.D., Thesis, Bharathiar University, Coimbatore (1999).
- [14] O. Njastad, On some classes of nearly open sets, Pacific.J.Math., 15(1965), 961-970.
- [15] T. Noiri,S.Jafari,N.Rajesh and M.L.Thivagar. Another generalization of closed sets, Kochi J.Math,3(2008)25-38.
- [16] J.K.Park and J.H.Park, Mildly generalized closed set, almost normal and mildly normal space, *Chaos. Solution and Fractal*, 20(2004), 1103-1111.
- [17] M.H.Stone,Application of the theory of Boolean rings to general topology, Trans.Amer.Math.Soc.,41(1937),375-381.
- [18] P. Sundaram,and M.shiek john.,On w-closed sets in topology, Act aciencia indica,(2000),389-392.
- [19] M.K.R.S.Veerakumar, \hat{q} -closed sets and GIC-functions, *Indian* $J. Math., 43(2)(2001), 231-247.$
- [20] M.K.R.S.Veerakumar ,Between closed sets and g-closed sets, Mem.Fac.Sci.Kochi Univ.(Math).,21(2000),1-19.