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Abstract. We introduce the concept of (EA) property and occasionally
w�compatibility for hybrid pair g : X ! X and F : Xn ! 2X : We also give
some common n�tupled �xed point results for this hybrid pair of mappings. It
is to be noted that in our results neither condition of continuity is necessary
for any mapping nor the completeness of space is necessary involved there in.
Finally an example is also given to validate our results. We extend and generalize
several known results.
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1. Introduction and Preliminaries

Multivalued �xed point theory has wide application potential in various
�elds, in particular game theory and mathematical economics. Thus, it is nat-
ural to extend the known �xed point results for single-valued mappings to the
setting of multivalued mappings. The results of multivalued nonexpansive map-
pings are much more complicated than the corresponding results of singlevalued
nonexpansive mappings and hence many problems remain unsolved in it. The
study of �xed points for multivalued contraction mappings using the Hausdor¤
metric was initiated by Nadler [22] :
Let (X; d) be a metric space. We denote CB (X) the family of all nonempty

closed and bounded subsets of X and CL (X) the set of all nonempty closed
subsets of X. For A;B 2 CB (X) and x 2 X; we denote D (x;A) = inffd (x; y) :
a 2 Ag: Let H be the Hausdor¤ metric induced by the metric d on X, that is,

H (A;B) = maxfsup
x2A

d (x;B) ; sup
y2B

d (y;A)g;
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for every A;B 2 CB (X) :It is clear that for A;B 2 CB (X), and a 2 A; we
have d (a;B) � H (A;B) :
The existence of �xed points for various multivalued contractive mappings

has been studied by many authors under di¤erent conditions. For details, we
refer the reader to [3; 6; 7; 9; 14; 18; 21; 23; 24] and the references therein.
Samet and Vetro [25] introduced the concept of coupled �xed point for multi-

valued mapping and later several authors namely Hussain and Alotaibi [16] and
Aydi et. al.[4] proved coupled coincidence point theorems in partially ordered
metric spaces. Deshpande et al. in [12] introduced triple �xed, triple coincidence
and triple common �xed points for multivalued maps. Imdad, Soliman, Choud-
hury and Das [17] introduced the concept of n�tupled �xed point, n�tupled
coincidence point and proved some n�tupled coincidence point and n-tupled
�xed point results for single valued mapping. These concepts was extended by
Deshpande and Handa [10] to multivalued mappings and obtained n�tupled co-
incidence points and common n�tupled �xed point theorems involving hybrid
pair of mappings under generalized Mizoguchi-Takahashi contraction. In [10]
Deshpande and Handa introduced the following for multivalued mappings:

De�nition 1.1.[10] Let X be a nonempty set, F : Xr ! 2X(a collection
of all nonempty subsets of X) and g be a self-mapping on X: An element�
x1; :::; xr

�
2 Xr is called

(1) an r-tupled �xed point of F if x1 2 F
�
x1; :::; xr

�
; :::; xr 2

�
xr; x1; :::; xr�1

�
:

(2) an r�tupled coincidence point of hybrid pair fF; gg if g
�
x1
�
2 F

�
x1; :::; xr

�
;

:::; g (xr) 2
�
xr; x1; :::; xr�1

�
:

(3) a common r-tupled �xed point of hybrid pair fF; gg if x1 = g
�
x1
�
2

F
�
x1; :::; xr

�
; :::; xr = g (xr) 2 F

�
xr; x1; : : :; xr�1

�
:

We denote the set of r�tupled coincidence points of mappings F and g by
CfF; gg:Note that if

�
x1; :::; xr

�
2 CfF; gg then

�
x2; :::; xr; x1

�
; :::;

�
xr; x1; :::; xr�1

�
are also in CfF; gg:

De�nition 1.2.[10] Let F : Xr ! 2X be a multivalued mapping and g
be a self mapping on X: The hybrid pair fF; gg is called w�compatible if
g
�
F
�
x1; x2; :::; xr

��
� F

�
g
�
x1
�
; g
�
x2
�
; :::; g (xr)

�
whenever

�
x1; x2; :::; xr

�
2 CfF; gg.

De�nition 1.3. [10] Let F : Xr ! 2X be a multivalued mapping and g be
a self mapping on X: The mapping g is called F�weakly commuting at some
point

�
x1; x2; :::; xr

�
2 Xr if g2

�
x1
�
2 F

�
g
�
x1
�
; g
�
x2
�
; :::; g (xr)

�
; g2

�
x2
�
2

F
�
g
�
x2
�
; g
�
x3
�
; :::; g (xr) ; g

�
x1
��
; :::; g2 (xr) 2 F

�
g (xr) ; g

�
x1
�
; :::; g

�
xr�1

��
:

Aamri and ElMoutawakil [1] de�ned (EA) property for self-mappings which
contained the class of non-compatible mappings. Kamran [19] extended the
(EA) property for hybrid pair g : X ! X and F : X ! 2X : Abbas and Rhoades
[2] extended the concept of occasionally weakly compatible mappings for hybrid
pair g : X ! X and F : X ! 2X : Deshpande and Handa [11] introduced
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the concept of (EA) property and occasionally w�compatibility for hybrid pair
g : X ! X and F : X �X ! 2X :
In this paper, we introduce the concept of (EA) property and occasionally

w�compatibility for hybrid pair g : X ! X and F : Xn ! 2X : We also give
some common n�tupled �xed point results for this hybrid pair of mappings. It
is to be noted that in our results neither condition of continuity is necessary
for any mapping nor the completeness of space is necessary involved there in.
We improve, extend and generalize the results of Bhaskar and Lakshmikantham
[5] ; Ciric et al. [8] ; Ding et al. [13] ; Gordji et al. [15] ; Deshpande and Handa
[11] and Lakshmikantham and Ciric [20] : Finally an example is also given to
validate our results.

2. Main results

First we introduce the following
De�nition 2.1. Mappings g : X ! X and F : Xr ! CB(X) are said

to satisfy the (EA) property if there exist sequences fx1ng; fx2ng; :::; fxrng in X;
some t1; t2; :::; tr in X and A;B; :::; Z in CB(X) such that

lim
n!1

gx1n = t1 2 A = lim
n!1

F (x1n; x
2
n; :::; x

r
n);

lim
n!1

gx2n = t2 2 B = lim
n!1

F (x2n; x
3
n; :::; x

r
n; x

1
n);

:::; lim
n!1

gxrn = tr 2 Z = lim
n!1

F (xrn; x
1
n; :::; x

r�1
n ):

De�nition 2.2. Mappings F : Xr ! 2X and g : X ! X are said to be occa-
sionally w�compatible if and only if there exists some point (x1; x2; :::; xr) 2 Xr

such that gx1 2 F (x1; x2; :::; xr); gx2 2 F (x2; x3; :::; xr; x1); :::; gxr 2 F (xr; x1; :::; xr�1);
and gF (x1; ::; xr) � F (gx1; :::; gxr):
Following example shows that, occasionally w�compatibility is weaker con-

dition than w�compatibility.

Example 2.1. Let X = [0;+1) with usual metric. De�ne g : X ! X;
F : Xr ! CB (X) ; by

gx =

�
0; 0 � x < 1;

(r + 1)x; 1 � x <1; for some r 2 f1; 2; :::; ng;

F
�
x1; x2; :::; xr

�
=

� �
0; 1 + x1 + x2 + :::+ xr

�
;

�
x1; :::; xr

�
6= (0; :::; 0) ;

fx1g;
�
x1; :::; xr

�
= (0; :::; 0) :

It can be easily veri�ed that (0; :::; 0) and (1; :::; 1) are r�tupled coinci-
dence points of g and F , but gF (0; :::; 0) � F (g0; :::; g0) and gF (1; :::; 1)  
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F (g1; :::; g1) : So g and F are not w-compatible. However, the pair fF; gg is
occasionally w-compatible.

Let 	 denote the set of all functions  : [0; +1)! [0; +1) satisfying
(i )  is continuous and non-decreasing,
(ii )  (t) = 0, t = 0;
(iii ) lim sups!0+

s
 (s) <1;

and � denote the set of all functions ' : [0; +1)! [0; +1) satisfying
(i') ' is lower semi-continuous and non-decreasing,
(ii') '(t) = 0, t = 0;
(iii') for any sequence ftng with limn!1 tn = 0; there exist k 2 (0; 1)
and n0 2 N; such that '(tn) � ktn for each n � n0;
and � denote the set of all functions � : [0; +1)! [0; +1) satisfying
(i�) � is continuous,
(ii�) �(t) = 0, t = 0:

For simplicity, we de�ne

(I) M(x1; x2; ::; xr; y1; y2; :::; yr)

= max

8>>>>>>><>>>>>>>:

d(gx1; gy1); D(gx1; F (x1; :::; xr)); D(gy1; F (y1; :::; yr));
d(gx2; gy2); D(gx2; F (x2; :::; xr; x1)); D(gy2; F (y2; :::; yr; y1));

:::; d(gxr; gyr); D(gxr; F (xr; x1; :::; xr�1)); D(gyr; F (yr; y1; :::; yr�1));
D(gx1; F (y1;:::;yr))+D(gy1; F (x1;:::;xr))

2 ;
D(gx2;F (y2;:::;yr;y1))+D(gy2;F (x2;:::;xr;x1))

2 ;

:::; D(gx
r;F (yr;y1;:::;yr�1))+D(gyr;F (xr;x1;:::;xr�1))

2 :

9>>>>>>>=>>>>>>>;
;

(II) N(x1; x2; ::; xr; y1; y2; :::; yr)

= min

8>>>>>><>>>>>>:

D(gx1; F (x1; :::; xr)); D(gy1; F (y1; :::; yr));
D(gx1; F (y1; :::; yr)); D(gy1; F (x1; :::; xr));

D(gx2; F (x2; :::; xr; x1)); D(gy2; F (y2; :::; yr; y1));
D(gx2; F (y2; :::; yr; y1)); D(gy2; F (x2; :::; xr; x1));

:::; D(gxr; F (xr; x1; :::; xr�1)); D(gyr; F (yr; y1; :::; yr�1));
D(gxr; F (yr; y1; :::; yr�1)); D(gyr; F (xr; x1; :::; xr�1)):

9>>>>>>=>>>>>>;
:

Theorem 2.1. Let (X; d) be a metric space, F : Xr ! CB(X) and
g : X ! X be two mappings. Suppose that there exist some  2 	; ' 2 � and
� 2 � such that

 
�
H(F (x1; :::; xr); F (y1; :::; yr))

�
�  

�
M(x1; :::; xr; y1; :::; yr)

�
�

'
�
 
�
M(x1; :::; xr; y1; :::; yr)

��
+

�
�
N(x1; :::; xr; y1; ::; yr)

�
; (2:1)

for all x1; :::; xr; y1; :::; yr 2 X: Furthermore, assume that fF; gg satis�es the
(EA) property. Then F and g have a r�tupled coincidence point. Moreover, F
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and g have a common r�tupled �xed point, if one of the following conditions
holds:

(a) F and g are w�compatible. limn!1 gnx1 = y1; limn!1 gnx2 = y2; :::;
limn!1 gnxr = yr for some (x1; :::; xr) 2 CfF; gg and for some y1; :::; yr 2 X
and g is continuous at y1; y2; :::; yr:
(b) g is F�weakly commuting for some (x1; :::; xr) 2 CfF; gg and gx1; gx2;

:::; gxr are �xed points of g; that is, g2x1 = gx1; g2x2 = gx2; :::; g2xr = gxr:
(c) g is continuous at x1; :::; xr: limn!1 gny1 = x1; limn!1 gny2 = x2; :::;

limn!1 gnyr = xr for some (x1; :::; xr) 2 CfF; gg and for some y1; :::; yr 2 X:
(d) g(CfF; gg) is a singleton subset of CfF; gg:

Proof. Since fF; gg satis�es the (EA) property, therefore there exist se-
quences fx1ng; fx2ng; :::; fxrng in X; some t1; :::; tr in X and A; :::; Z in CB(X)
such that

lim
n!1

gx1n = t1 2 A = lim
n!1

F (x1n; x
2
n; :::; x

r
n);

lim
n!1

gx2n = t2 2 B = lim
n!1

F (x2n; x
3
n; :::; x

r
n; x

1
n);

:::; lim
n!1

gxrn = tr 2 Z = lim
n!1

F (xrn; x
1
n; :::; x

r�1
n ): (2:2)

Since g(X) is a subset of X; then there exist x1; ::; xr 2 X; we have

t1 = gx1; :::; tr = gxr (2:3)

Now, by using condition (2:1) and (i ); we get

 
�
H(F (x1n; :::; x

r
n); F (x

1; :::; xr))
�

�  
�
M(x1n; :::; x

r
n; x

1; :::; xr)
�
� '

�
 
�
M(x1n; :::; x

r
n; x

1; :::; xr)
��

+ �
�
N(x1n; :::; x

r
n; x

1; :::; xr)
�
;

where

(I) M(x1n; :::; x
r
n; x

1; :::; xr)

= max

8>>>>>>><>>>>>>>:

d(gx1n; gx
1); D(gx1n; F (x

1
n; :::; x

r
n)); D(gx

1; F (x1; :::; xr));
d(gx2n; gx

2); D(gx2n; F (x
2
n; :::; x

r
n; x

1
n)); D(gx

2; F (x2; :::; xr; x1));
:::; d(gxrn; gx

r); D(gxrn; F (x
r
n; x

1
n; :::; x

r�1
n )); D(gxr; F (xr; x1; :::; xr�1));

D(gx1n;F (x
1;:::;xr))+D(gx1;F (x1n;:::;x

r
n))

2 ;
D(gx2n;F (x

2;:::;xr;x1))+D(gx2;F (x2n;:::;x
r
n;x

1
n))

2 ;

:::;
D(gxrn;F (x

r;x1;:::;xr�1))+D(gxr;F (xrn;x
1
n;:::;x

r�1
n ))

2 :

9>>>>>>>=>>>>>>>;

5
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and

(II) N(x1n; x
2
n; ::; x

r
n; x

1; x2; :::; xr)

= min

8>>>>>><>>>>>>:

D(gx1n; F (x
1
n; :::; x

r
n)); D(gx

1; F (x1; :::; xr));
D(gx1n; F (x

1; :::; xr)); D(gx1; F (x1n; :::; x
r
n));

D(gx2n; F (x
2
n; :::; x

r
n; x

1
n)); D(gx

2; F (x2; :::; xr; x1));
D(gx2n; F (x

2; :::; xr; x1)); D(gx2; F (x2n; :::; x
r
n; x

1
n));

:::; D(gxrn; F (x
r
n; x

1
n; :::; x

r�1
n )); D(gxr; F (xr; x1; :::; xr�1));

D(gxrn; F (x
r; x1; :::; xr�1)); D(gxr; F (xrn; x

1
n; :::; x

r�1
n )):

9>>>>>>=>>>>>>;
:

Letting n ! 1 in the above inequality, by using (i ); (i'); (i�); (ii�); (2:2);
(2:3); gx1 2 A; gx2 2 B; :::; gxr 2 Z;we get

 
�
D(gx1; F (x1; :::; xr))

�
�  

�
max

�
D(gx1; F (x1; :::; xr)); D(gx2; F (x2; :::; xr; x1)); :::; D(gxr; F (xr; x1:::; xr�1)

	�
�'

�
 
�
max

�
D(gx1; F (x1; :::; xr)); D(gx2; F (x2; :::; xr; x1)); :::; D(gxr; F (xr; x1; :::; xr�1)

	��
:

Similarly, we can obtain that

 
�
D(gx2; F (x2; :::; xr; x1))

�
�  

�
max

�
D(gx1; F (x1; :::; xr)); D(gx2; F (x2; :::; xr; x1)); :::; D(gxr; F (xr; x1:::; xr�1)

	�
�'

�
 
�
max

�
D(gx1; F (x1; :::; xr)); D(gx2; F (x2; :::; xr; x1)); :::; D(gxr; F (xr; x1; :::; xr�1)

	��
,...,

 
�
D(gxr; F (xr; x1:::; xr�1))

�
�  

�
max

�
D(gx1; F (x1; :::; xr)); D(gx2; F (x2; :::; xr; x1)); :::; D(gxr; F (xr; x1:::; xr�1)

	�
�'

�
 
�
max

�
D(gx1; F (x1; :::; xr)); D(gx2; F (x2; :::; xr; x1)); :::; D(gxr; F (xr; x1; :::; xr�1)

	��
:

Combining them, we get

max 
�
D(gx1; F (x1; :::; xr)); D(gx2; F (x2; :::; xr; x1)); :::; D(gxr; F (xr; x1; :::; xr�1))

�
�  

�
max

�
D(gx1; F (x1; :::; xr)); D(gx2; F (x2; :::; xr; x1)); :::; D(gxr; F (xr; x1:::; xr�1)

	�
�'

�
 
�
max

�
D(gx1; F (x1; :::; xr)); D(gx2; F (x2; :::; xr; x1)); :::; D(gxr; F (xr; x1; :::; xr�1)

	��
:

Since  is non-decreasing, therefore,

 
�
max

�
D(gx1; F (x1; :::; xr)); D(gx2; F (x2; :::; xr; x1)); :::; D(gxr; F (xr; x1; :::; xr�1))

��
�  

�
max

�
D(gx1; F (x1; :::; xr)); D(gx2; F (x2; :::; xr; x1)); :::; D(gxr; F (xr; x1:::; xr�1)

	�
�'

�
 
�
max

�
D(gx1; F (x1; :::; xr)); D(gx2; F (x2; :::; xr; x1)); :::; D(gxr; F (xr; x1; :::; xr�1)

	��
:

which, by (ii') and (ii ); implies that

max

�
D(gx1; F (x1; :::; xr)); D(gx2; F (x2; :::; xr; x1)); :::;

D(gxr; F (xr; x1; :::; xr�1))

�
= 0;

6
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it follows that

gx1 2 F (x1; :::; xr); :::; gxr 2 F
�
xr; x1; :::; xr�1

�
;

that is, (x1; ::; xr) is a r�tupled coincidence point of F and g: That is CfF; gg
is non empty.
Suppose now that (a) holds. Assume that for some (x1; ::; xr) 2 CfF; gg;

lim
n!1

gnx1 = y1; lim
n!1

gnx2 = y2; :::; lim
n!1

gnxr = yr; (2:4)

where y1; :::; yr 2 X: Since g is continuous at y1; :::; yr: We have, by (2:4); that
y1; :::; yr are �xed points of g; that is,

gy1 = y1; :::; gyr = yr: (2:5)

As F and g are w�compatible, so

(gnx1; :::; gnyr) 2 CfF; gg; for all n � 1;

that is,

gnx1 2 F (gn�1x1; :::; gn�1xr);

gnx2 2 F (gn�1x2; :::; gn�1xr; gn�1x1); :::;

gnxr 2 F (gn�1xr; gn�1x1; :::; gn�1xr�1); for all n � 1: (2:6)

Now, by using (2:1); (2:6) and (i ); we obtain

 
�
D(gnx1; F (y1; :::; yr))

�
�  

�
H(F (gn�1x1; :::; gn�1xr); F (y1; :::; yr))

�
�  

�
M(gn�1x1; :::; gn�1xr; y1; :::; yr)

�
� '

�
 
�
M(gn�1x1; :::; gn�1xr; y1; :::; yr)

��
+ �

�
N(gn�1x1; :::; gn�1xr; y1; :::; yr)

�
;

where

M(gn�1x1; :::; gn�1xr; y1; :::; yr)

= max

8>>>>>>><>>>>>>>:

d(gnx1; gy1); D(gnx1; F (gn�1x1; :::; gn�1xr)); D(gy1; F (y1; :::; yr));
d(gnx2; gy2); D(gnx2; F (gn�1x2; :::; gn�1xr; gn�1x1)); D(gy2; F (y2; :::; yr; y1));

:::; d(gnxr; gyr); D(gnxr; F (gn�1xr; gn�1x1; :::; gn�1xr�1)); D(gyr; F (yr; y1; :::; yr�1));
D(gnx1; F (y1;:::;yr))+D(gy1; F (gn�1x1;:::;gn�1xr))

2 ;
D(gnx2;F (y2;:::;yr;y1))+D(gy2;F (gn�1x2;:::;gn�1xr;gn�1x1))

2 ;

:::; D(g
nxr;F (yr;y1;:::;yr�1))+D(gyr;F (gn�1xr;gn�1x1;:::;gn�1xr�1))

2 :

9>>>>>>>=>>>>>>>;

� max

8>>>>>>><>>>>>>>:

d(gnx1; gy1); d(gnx1; gnx1); D(gy1; F (y1; :::; yr));
d(gnx2; gy2); d(gnx2; gnx2); D(gy2; F (y2; :::; yr; y1));

:::; d(gnxr; gyr); d(gnxr; gnxr); D(gyr; F (yr; y1; :::; yr�1));
D(gnx1; F (y1;:::;yr))+D(gy1; F (gn�1x1;:::;gn�1xr))

2 ;
D(gnx2;F (y2;:::;yr;y1))+D(gy2;gn)

2 ;

:::; D(g
nxr;F (yr;y1;:::;yr�1))+D(gyr;gnxr)

2 :

9>>>>>>>=>>>>>>>;
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and

N(gn�1x1; :::; gn�1xr; y1; :::; yr)

= min

8>>>>>><>>>>>>:

D(gnx1; F (gn�1x1; :::; gn�1xr)); D(gy1; F (y1; :::; yr));
D(gnx1; F (y1; :::; yr)); D(gy1; F (gn�1x1; :::; gn�1xr));

D(gnx2; F (gn�1x2; :::; gn�1xr; gn�1x1)); D(gy2; F (y2; :::; yr; y1));
D(gnx2; F (y2; :::; yr; y1)); D(gy2; F (gn�1x2; :::; gn�1xr; gn�1x1));

:::; D(gnxr; F (gn�1xr; gn�1x1; :::; gn�1xr�1)); D(gyr; F (yr; y1; :::; yr�1));
D(gnxr; F (yr; y1; :::; yr�1)); D(gyr; F (gn�1xr; gn�1x1; :::; gn�1xr�1)):

9>>>>>>=>>>>>>;
= 0:

On taking limit as n ! 1 in the above inequality, by using (i ); (i'); (ii�);
(2:4); (2:5) and (2:6); we get

 
�
D(gy1; F (y1; :::; yr))

�
�  

�
max

�
D(gy1; F (y1; :::; yr)); D(gy2; F (y2; :::; yr; y1)); :::; D(gyr; F (yr; y1; :::; yr�1))

	�
�' max

�
D(gy1; F (y1; :::; yr)); D(gy2; F (y2; :::; yr; y1)); :::; D(gyr; F (yr; y1; :::; yr�1))

	
:

Similarly,

 
�
D(gy2; F (y2; :::; yr; y1))

�
�  

�
max

�
D(gy1; F (y1; :::; yr)); D(gy2; F (y2; :::; yr; y1)); :::; D(gyr; F (yr; y1; :::; yr�1))

	�
�' max

�
D(gy1; F (y1; :::; yr)); D(gy2; F (y2; :::; yr; y1)); :::; D(gyr; F (yr; y1; :::; yr�1))

	
:

On continuing, we get

 
�
D(gyr; F (yr; y1:::; yr�1))

�
�  

�
max

�
D(gy1; F (y1; :::; yr)); D(gy2; F (y2; :::; yr; y1)); :::; D(gyr; F (yr; y1; :::; yr�1))

	�
�' max

�
D(gy1; F (y1; :::; yr)); D(gy2; F (y2; :::; yr; y1)); :::; D(gyr; F (yr; y1; :::; yr�1))

	
:

Combining them, we get

max
�
 
�
D(gy1; F (y1; :::; yr))

�
;  
�
D(gy2; F (y2; :::; yr; y1))

�
; :::;  

�
D(gyr; F (yr; y1; :::; yr�1))

�	
�  

�
max

�
D(gy1; F (y1; :::; yr)); D(gy2; F (y2; :::; yr; y1)); :::; D(gyr; F (yr; y1; :::; yr�1))

	�
�'

�
 
�
max

�
D(gy1; F (y1; :::; yr)); D(gy2; F (y2; :::; yr; y1)); :::; D(gyr; F (yr; y1; :::; yr�1))

	��
:

Since  is non-decreasing, therefore

 
�
max

�
D(gy1; F (y1; :::; yr))

�
;
�
D(gy2; F (y2; :::; yr; y1))

�
; :::;

�
D(gyr; F (yr; y1; :::; yr�1))

�	
�  

�
max

�
D(gy1; F (y1; :::; yr)); D(gy2; F (y2; :::; yr; y1)); :::; D(gyr; F (yr; y1; :::; yr�1))

	�
�'

�
 
�
max

�
D(gy1; F (y1; :::; yr)); D(gy2; F (y2; :::; yr; y1)); :::; D(gyr; F (yr; y1; :::; yr�1))

	��
;
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which, by (ii') and (ii ); implies that

max
�
D(gy1; F (y1; :::; yr))

�
;
�
D(gy2; F (y2; :::; yr; y1))

�
;

:::;
�
D(gyr; F (yr; y1; :::; yr�1))

�
= 0;

it follows that

gy1 2 F (y1; :::; yr); gy2 2 F (y2; :::; yr; y1); :::; gyr 2 F (yr; y1; :::; yr�1): (2:7)

Now, from (2:5) and (2:7); we have

y1 = gy1 2 F (y1; :::; yr) ; y2 = gy2 2 F (y2; :::; yr; y1); :::; yr

= gyr 2 F (yr; y1; :::; yr�1);

that is, (y1; ::; yr) is a common r�tupled �xed point of F and g:
Suppose now that (b) holds. Assume that for some (x1; :::; xr) 2 CfF; gg; g is

F�weakly commuting, that is g2x1 2 F (gx1; ::; gxr); g2x2 2 F (gx2; :::; gxr; gx1);
:::; g2xr 2 F (gxr; gx1; :::; gxr�1) and g2x1 = gx1; :::; g2xr = gxr: Thus
gx1 = g2x1 2 F (gx1; :::; gxr); :::; gxr = g2xr 2 F (gxr; gx1; :::; gxr�1); that
is, (gx1; :::; gxr) is a common r�tupled �xed point of F and g:
Suppose now that (c) holds. Assume that for some (x1; :::; xr) 2 CfF; gg

and for some y1; :::; yr 2 X;

lim
n!1

gny1 = x1; :::; lim
n!1

gnyr = xr: (2:8)

Since g is continuous at x1; :::; xr: Therefore, by (2:8); we obtain that x1; :::; xr

are �xed points of g; that is,

gx1 = x1; :::; gxr = xr: (2:9)

Since (x1; :::; xr) 2 CfF; gg: Therefore, by (2:9); we obtain

x1 = gx1 2 F (x1; :::; xr); :::; xr = gxr 2 F (xr; x1; :::; xr�1);

that is, (x1; :::; xr) is a common r�tupled �xed point of F and g:
Finally, suppose that (d) holds. Let g(CfF; gg) = f(x1; :::; x1)g: Then

fx1g = fgx1g = F (x1; :::; x1): Hence (x1; :::; x1) is a common r�tupled �xed
point of F and g:

If we put �(t) = 0 in the Theorem 2.1, we get the following result:
Corollary 2.2. Let (X; d) be a metric space, F : Xr ! CB(X) and

g : X ! X be two mappings. Suppose that there exist some  2 	 and ' 2 �
such that

 
�
H(F (x1; :::; xr); F (y1; :::; yr))

�
(2:10)

�  
�
M(x1; :::; xr; y1; :::; yr)

�
� '

�
 
�
M(x1; :::; xr; y1; :::; yr)

��
;
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for all x1; :::; xr; y1; :::; yr 2 X: Furthermore, assume that fF; gg satis�es the
(EA) property. Then F and g have a r�tupled coincidence point. Moreover, F
and g have a common r�tupled �xed point, if one of the conditions (a) to (d)
of Theorem 2.1 holds.

If we put '(t) = t � te'(t) for all t � 0 in Corollary 2.2, then we get the
following result:
Corollary 2.3. Let (X; d) be a metric space, F : Xr ! CB(X) and

g : X ! X be two mappings. Suppose that there exist some  2 	 and e' 2 �
such that

 
�
H(F (x1; :::; xr); F (y1; :::; yr))

�
� e' � �M(x1; :::; xr; y1; :::; yr)�� �M(x1; :::; xr; y1; :::; yr)� ; (2:11)

for all x1; :::; xr; y1; :::; yr 2 X: Furthermore, assume that fF; gg satis�es the
(EA) property. Then F and g have a r�tupled coincidence point. Moreover, F
and g have a common r�tupled �xed point, if one of the conditions (a) to (d)
of Theorem 2.1 holds.

If we put  (t) = 2t for all t � 0 in Corollary 2.3, then we get the following
result:
Corollary 2.4. Let (X; d) be a metric space, F : Xr ! CB(X) and

g : X ! X be two mappings. Suppose that there exists some e' 2 � such that
H(F (x1; :::; xr); F (y1; :::; yr))

� e' �2M(x1; :::; xr; y1; :::; yr)� 2M(x1; :::; xr; y1; :::; yr); (2:12)

for all x1; :::; xr; y1; :::; yr 2 X: Furthermore, assume that fF; gg satis�es the
(EA) property. Then F and g have a r�tupled coincidence point. Moreover, F
and g have a common r�tupled �xed point, if one of the conditions (a) to (d)
of Theorem 2.1 holds.

If we put e'(t) = k
2 where 0 < k < 1; for all t � 0 in Corollary 2.4, then we

get the following result:
Corollary 2.5. Let (X; d) be a metric space. Assume F : Xr ! CB(X)

and g : X ! X be two mappings satisfying

H(F (x1; :::; xr); F (y1; :::; yr)) � kM(x1; :::; xr; y1; :::; yr); (2:13)

for all x1; :::; xr; y1; :::; yr 2 X; where 0 < k < 1: Furthermore, assume that
fF; gg satis�es the (EA) property. Then F and g have a r�tupled coincidence
point. Moreover, F and g have a common r�tupled �xed point, if one of the
conditions (a) to (d) of Theorem 2.1 holds.

Theorem 2.6. Let (X; d) be a metric space, F : Xr ! CB(X) and
g : X ! X be two mappings. Suppose that there exist some  2 	; ' 2 � and
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� 2 � satisfying (2:1) and fF; gg is occasionally w�compatible. Then F and g
have a common r�tupled �xed point.

Proof. Since the pair fF; gg is occasionally w�compatible, therefore there
exists some point (x1; :::; xr) 2 Xr such that

gx1 2 F (x1; :::; xr); gx2 2 F (x2; :::; xr; x1); :::; gxr 2 F
�
xr; x1; :::; xr�1

�
;

and gF (x1; :::; xr) � F (gx1; :::; gxr): (2:14)

It follows that

g2x1 2 F (gx1; :::; gxr); :::; g2xr 2 F (gxr; gx1; :::; gxr�1): (2:15)

Now, suppose y1 = gx1; :::; yr = gxr; then by (2:15); we get

gy1 2 F (y1; :::; yr); :::; gyr 2 F (yr; y1; :::; yr�1): (2:16)

Thus, by condition (2:1); we have

 
�
H(F (x1; :::; xr); F (y1; :::; yr))

�
�  

�
M(x1; :::; xr; y1; :::; yr)

�
�'

�
 
�
M(x1; :::; xr; y1; :::; yr)

��
+�
�
N(x1; :::; xr; y1; :::; yr)

�
:

which, by (2:14); (2:16); (i ); (i'); (i�); (ii�); and triangle inequality, implies

 
�
d(gx1; gy1)

�
�  

�
max

�
d(gx1; gy1); :::; d (gxr; gyr)

	�
�'

�
 
�
max

�
d(gx1; gy1); :::; d (gxr; gyr)

	��
:

Similarly, we can obtain that

 
�
d(gx2; gy2)

�
�  

�
max

�
d(gx1; gy1); :::; d (gxr; gyr)

	�
�'

�
 
�
max

�
d(gx1; gy1); :::; d (gxr; gyr)

	��
;

continuing in this way, we get

 (d(gxr; gyr))

�  
�
max

�
d(gx1; gy1); :::; d (gxr; gyr)

	�
�'

�
 
�
max

�
d(gx1; gy1); :::; d (gxr; gyr)

	��
:

Combining them, we get

max
�
 
�
d(gx1; gy1)

�
; :::;  (d(gxr; gyr))

	
�  

�
max

�
d(gx1; gy1); :::; d (gxr; gyr)

	�
� '

�
 
�
max

�
d(gx1; gy1); :::; d (gxr; gyr)

	��
:

Since  is non-decreasing, therefore

 
�
max

��
d(gx1; gy1)

�
; :::; (d(gxr; gyr))

	�
�  

�
max

�
d(gx1; gy1); :::; d (gxr; gyr)

	�
�'

�
 
�
max

�
d(gx1; gy1); :::; d (gxr; gyr)

	��
;
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which, by (ii') and (ii ); implies that

max
��
d(gx1; gy1)

�
; :::; (d(gxr; gyr))

	
= 0;

it follows that d(gx1; gy1) = 0; :::; d(gxr; gyr) = 0: Hence

y1 = gx1 = gy1; :::; yr = gxr = gyr: (2:17)

Thus, by (2:16) and (2:17); we get

y1 = gy1 2 F (y1; :::; yr); :::; yr = gyr 2 F (yr; y1; :::; y1);

that is, (y1; :::; yr) is a common r�tupled �xed point of F and g:

If we put �(t) = 0 in the Theorem 2.6, we get the following result:
Corollary 2.7. Let (X; d) be a metric space, F : Xr ! CB(X) and g : X !

X be two mappings satisfying (2:10) and fF; gg is occasionally w�compatible.
Then F and g have a common r�tupled �xed point.

If we put '(t) = t � te'(t) for all t � 0 in Corollary 2.7, then we get the
following result:
Corollary 2.8. Let (X; d) be a metric space, F : Xr ! CB(X) and g : X !

X be two mappings satisfying (2:11) and fF; gg is occasionally w�compatible.
Then F and g have a common r�tupled �xed point.

If we put  (t) = 2t for all t � 0 in Corollary 2.8, then we get the following
result:
Corollary 2.9. Let (X; d) be a metric space, F : Xr ! CB(X) and g : X !

X be two mappings satisfying (2:12) and fF; gg is occasionally w�compatible.
Then F and g have a common r�tupled �xed point.

If we put e'(t) = k
2 where 0 < k < 1; for all t � 0 in Corollary 2.9, then we

get the following result:
Corollary 2.10. Let (X; d) be a metric space, F : Xr ! CB(X) and g :

X ! X be mappings satisfying (2:13) and fF; gg is occasionally w�compatible.
Then F and g have a common r�tupled �xed point.

Example 2.2. Suppose that X = [0; 1]; equipped with the metric d :
X � X ! [0; +1) de�ned as d(x; y) = maxfx; yg and d(x; x) = 0 for all
x; y;2 X: Let F : Xr ! CB(X) be de�ned as

F (x1; :::; xr) =

(
f0g; for x1; :::; xr = 1;h
0; x1+:::+xr

2r

i
; for x1; :::; xr 2 [0; 1):

and g : X ! X be de�ned as

gx =
x

2
for all x 2 X:
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De�ne  : [0; +1)! [0; +1) by

 (t) =
t

2
; for all t � 0;

and ' : [0; +1)! [0; +1) by

'(t) =
t

3
; for all t � 0;

and � : [0; +1)! [0; +1) by

�(t) =
t

4
; for all t � 0:

Now, for all x1; :::; xr; y1; :::; yr 2 X with x1; :::; xr; y1; :::; yr 2 [0; 1); we have
Case (a): If x1 + :::+ xr = y1 + :::+ yr; then

 
�
H(F (x1; :::; xr); F (y1; :::; yr))

�
=
1

2
H(F (x1; :::; xr); F (y1; :::; yr))

=
1

4r
(y1 + :::+ yr)

� 1

2r
max

�
x1

2
;
y1

2

�
+ :::+

1

2r
max

�
xr

2
;
yr

2

�
� 1

2r
d(gx1; gy1) + :::+

1

2r
d(gxr; gyr)

� 1

r
M(x1; :::; xr; y1; :::; yr)

�  
�
M(x1; :::; xr; y1; :::; yr)

�
� '

�
 
�
M(x1; :::; xr; y1; :::; yr)

��
�  

�
M(x1; :::; xr; y1; :::; yr)

�
� '

�
 
�
M(x1; :::; xr; y1; :::; yr)

��
+ �

�
N(x1; :::; xr; y1; :::; yr)

�
:

Case (b): If x1 + :::+ xr 6= y1 + :::+ yr with x1 + :::+ xr < y1 + :::+ yr; then

13

lalitha
Text Box
International Journal of Mathematics Trends and Technology (IJMTT)  - Volume 50 Number 1 October 2017

lalitha
Text Box
ISSN: 2231-5373                                http://www.ijmttjournal.org                                Page 43



 
�
H(F (x1; :::; xr); F (y1; :::; yr))

�
=

1

2
H(F (x1; :::; xr); F (y1; :::; yr))

=
1

4r
(y1 + :::+ yr)

� 1

2r
max

�
x1

2
;
y1

2

�
+ :::+

1

2r
max

�
xr

2
;
yr

2

�
� 1

2r
d(gx1; gy1) + :::+

1

2r
d(gxr; gyr)

� 1

r
M(x1; :::; xr; y1; :::; yr)

�  
�
M(x1; :::; xr; y1; :::; yr)

�
� '

�
 
�
M(x1; :::; xr; y1; :::; yr)

��
�  

�
M(x1; :::; xr; y1; :::; yr)

�
� '

�
 
�
M(x1; :::; xr; y1; :::; yr)

��
+�
�
N(x1; :::; xr; y1; :::; yr)

�
:

Similarly, we obtain the same result for y1 + ::: + yr < x1 + ::: + xr: Thus
the contractive condition (2:1) is satis�ed for all x1; :::; xr; y1; :::; yr 2 X with
x1; :::; xr; y1; :::; yr 2 [0; 1):Again, for all x1; :::; xr; y1; :::; yr 2 X with x1; :::; xr 2
[0; 1) and y1; :::; yr = 1; we have

 
�
H(F (x1; :::; xr); F (y1; ::::; yr))

�
=

1

2
H(F (x1; :::; xr); F (y1; :::; yr))

=
1

4r
(x1 + :::+ xr)

� 1

2r
max

�
x1

2
;
y1

2

�
+ :::+

1

2r
max

�
xr

2
;
yr

2

�
� 1

2r
d(gx1; gy1) + :::+

1

2r
d(gxr; gyr)

� 1

r
M(x1; :::; xr; y1; :::; yr)

�  
�
M(x1; :::; xr; y1; :::; yr)

�
� '

�
 
�
M(x1; :::; xr; y1; :::; yr)

��
�  

�
M(x1; :::; xr; y1; :::; yr)

�
� '

�
 
�
M(x1; :::; xr; y1; :::; yr)

��
+�
�
N(x1; :::; xr; y1; :::; yr)

�
:

Thus the contractive condition (2:1) is satis�ed for all x1; :::; xr; y1; :::; yr 2
X with x1; :::; xr 2 [0; 1) and y1; :::; yr = 1: Similarly, we can see that the
contractive condition (2:1) is satis�ed for all x1; :::; xr; y1; :::; y1 2X with x1; :::;
xr; y1; :::; yr = 1:Hence, the hybrid pair fF; gg satis�es the contractive condition
(2:1); for all x1; :::; xr; y1; :::; yr 2 X: In addition, all the other conditions of
Theorem 2.1 and Theorem 2.6 are satis�ed and z = (0; :::; 0) is a common
r�tripled �xed point of hybrid pair fF; gg: The function F : X ! CB(X)
involved in this example is not continuous at the point (1; :::; 1) 2 Xr:
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