On sgp-Closed and sgp-Open Functions in Topology

Mahesh Bhat^{*}, Md. Hanif PAGE**, Dattatray. M. Hegde***

*Department of Mathematics, S.D.M. College, Honnavar, Karnataka, India. **Department of Mathematics, KLE Technological University, Hubli-580031, Karnataka, India. ***Department of Mathematics, Govt First Grade College, Sirsi-581401, Karnataka, India. Corresponding author: Md. hanif PAGE

Abstract: We continue the study on sgp-closed set [12], by introducing the new classes of functions called sgp-closed and sgp-open functions in topological spaces and some of their properties are discussed by giving counter examples wherever necessary.

Keywords: *s*gp-closed set, sgp-open set, sgp-closed function and sgp-open function, sgp-homeomorphism

I. INTRODUCTION

In 1970, Levine [6] initiated the study of generalized closed(g-closed) sets, that is , a subset A of a topological space X is g-closed if the closure of A included in every open superset of A and defined a $T_{1/2}$ space to be one in which the closed sets and g-closed sets coincide. The notion has been studied extensively in recent years by many topologists.

In 1982, Malghan [9] introduced and studied the concept of generalized closed functions. After that several topologists introduced and studied α -open functions, gp-closed functions, gs-closed functions, gpr-closed functions.

The concept of homeomorphism has been generalized by many topologists. Crossley and Hildebrand [2] have introduced and studied semihomeomorphisms which are strictly weaker than homeomorphisms in topological spaces. Maki et al [7] have introduced and studied g-homeomorphisms and gc-homeomorphisms in topological spaces. Recently many researchers like Devi [3], Gnanambal [4], Sheik John [16] have introduced and investigated several types of homeomorphisms in topological spaces.

Recently Navalagi and Mahesh Bhat [12] introduced the notion of sgp-closed set utilizing pre-closure operator. The notions of sgp-open sets, sgpcontinuity are introduced in [12]. In this paper we continue the study of sgp-closed sets, with introducing and characterizing sgp-open and sgpclosed functions. We have also introduced sgphomeomorphism and studied some of its basic properties

II. PRELIMINARIES

In the entire paper (X,τ) and (Y,σ) (or X and Y) represents topological spaces on which no separation axioms are assumed unless explicitly stated. If A is any subset of space X, then Cl(A) and Int(A) denote the closure of A and the interior of A in X respectively.

We use some definitions:

Definition 2.1: A subset A of space X is called (i) a semi-open set [5] if $A \subseteq Cl(Int(A))$ (ii) a semi-closed set [2] if $Int(Cl(A)) \subseteq A$ (iii) pre-open [10], if $A \subseteq Int(Cl(A))$) (iv) α -open set [14] if $A \subseteq Int(Cl(Int(A)))$ (v) ω -closed [17] if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X. The complements of these sets are their respective closed sets in the space X.

Definition 2.2 [10]: The pre closure of a subset A of X is the intersection of all pre-closed sets containing A in X and is denoted by pCl(A).

Definition 2.3: A subset A of a space X is called (i) generalized-closed (in brief, g-closed) set [6] if Cl (A) \subseteq U and U is open in X. The complement of gclosed set is g-open set. (ii) semi generalized pre closed (in short, sgp-closed) set [12] if pCl(A) \subseteq U, whenever A \subseteq U and U is semi-open in X. The complement of sgp-closed set

is sgp-open set and the family of all sgp-open sets of X is denoted by SGPO(X).

Definition 2.4[12]: A space X is said to be $_{sgp}T_{c}$ -space if every sgp-closed set is closed set in it.

Definition 2.5: A function f: $X \rightarrow Y$ is called (i) ω -open [16] if f(G) is ω -open in Y for every open set G in X.

(ii) gp-closed [15] if f(A) is gp-closed in Y for every closed set A in X.

(iii) gpr-open [4] if f(E) is gpr-open in Y for every open set E in X.

(iv) α^* -homeomorphism [3] if f and f¹ are α -irresolute functions.

(v) generalized homeomorphism (in short, g-homeomorphism) [7] if f is both g-continuous and g-open.

III. PROPERTIES OF sgp-CLOSED AND sgp-OPEN FUNCTIONS

Definition 3.1: A function $f: X \rightarrow Y$ is called semigeneralized pre-open (in short, sgp-open) function if the image of every open set in X is sgp-open in Y.

Definition 3.2: A function f: $X \rightarrow Y$ is called semigeneralized pre-closed (briefly, sgp-closed) function if the image of every closed set in X is sgp-closed in Y.

Theorem 3.3: Every open function is sgp-open function but not conversely.

Proof: Assume f: $X \rightarrow Y$ to be an open function. Let G be an open set in X. Then f(G) is open in Y. And therefore f(G) is sgp-open in Y. Hence f is sgp-open function.

Example 3.4: Let $X = \{p, q, r\}, \tau = \{X, \phi, \{p\}, \{p, q\}\}$ and $\sigma = \{Y, \phi, \{p\}, \{q, r\}\}$. Then the identity function f: $X \rightarrow Y$ is not an open function, since for the open set $\{p, q\}$ in X, $f(\{p, q\}) = \{p, q\}$ is not an open in Y. However f is sgp-open function.

Theorem 3.5: If f: $X \rightarrow Y$ is sgp-open function and Y is a _{sep}T_c-space, then f is an open function.

Proof: Let K be an open set in X. Then f(K) is sgpopen in Y, since f is sgp-open function. Then f(K) is open in Y as Y is $_{sgp}T_c$ -space. Hence f is open function.

Theorem 3.6: Every α -open map is sgp-open but the converse is need not be true.

Proof: Let f: $X \to Y$ be an α -open map. Let G be an open set in X. Then f(G) is α -open set in Y. Therefore f(G) is sgp -open in Y. Hence f is sgp - open.

Example 3.7: Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}. \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}$. Let f: $X \rightarrow Y$ be the identity map. Then f is sgp -open but not α -open, since for the open set $\{b\}$ in X, $f(\{b\}) = \{b\}$ is not α -open in Y but it is sgp -open in Y.

Theorem 3.8: If f: X \rightarrow Y is sgp-open and Y is $_{sgp}T_c$ -space, then f is α -open map.

Proof: Let E be an open set in X. Then f(E) is sgp - open in Y as f is sgp -open. Since Y is ${}_{sgp}T_c$ -space, f(E) is open and so α -open in Y. Hence f is α -open map.

Theorem 3.9: Every ω -open function is sgp-open but the converse need not be true as seen from the following example.

Proof: Let $f: X \to Y$ be an ω -open function. Let G be an open set in X. Then f(G) is ω -open set in Y.

Therefore f(G) is sgp -open in Y. Hence f is sgp - open.

Example 3.10: Let $X = Y = \{p, m, n\}, \tau = \{X, \phi, \{p\}, \{p, m\}\}$ and $\sigma = \{Y, \phi, \{p\}\}$. Let f: $X \rightarrow Y$ be the identity function. Then f is sgp -open but not ω -open, since for the open set $\{p, m\}$ in X, $f(\{p, m\}) = \{p, m\}$ is not ω -open in Y but it is sgp -open in Y.

Theorem 3.11: If a function $f: X \rightarrow Y$ is sgp-open, then f is gp-open but not conversely.

Proof: Let $f: X \to Y$ is a sgp –open function. Let H be an open set in X. Then f(H) is sgp-open in Y. As every sgp-open set is gp-open, therefore f(H) is gp-open. Hence f is gp-open.

Example 3.12: Let $X = \{a, b, c\} = Y$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Let f: $X \rightarrow Y$ be the identity function. Then f is gp-open but not sgp - open, since for the open set $\{b\}$ in X, $f(\{b\}) = \{b\}$ is not sgp -open in Y but it is gp-open in Y.

Theorem 3.13: If f: $X \rightarrow Y$ is sgp-open function, then f is gpr-open.

Proof: Let G be an open set in X. Then f(G) is sgp - open in Y. Therefore f(G) is gpr -open. Hence f is gpr -open function.

Remark 3.14: The following example makes clear that converse of the above theorem need not be true.

Example 3.14: Let $X = \{a, b, c\} = Y$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Let f: $X \rightarrow Y$ is the identity function. Then f is gpr-open but not sgp -open, since for the open set $\{b\}$ in X, $f(\{b\}) = \{b\}$ is not sgp -open in Y but it is gpr-open in Y.

Theorem 3.15: Every sgp-open function is gsp-open function, but not conversely.

Proof: Let $f: X \to Y$ be a sgp-open function. Let W be an open set in X. Then f(W) is sgp -open in Y. Therefore f(W) is gsp -open. Hence f is gsp-open.

Example 3.16: Let $X = \{a, b, c\} = Y$, $\tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$. Let f: $X \rightarrow Y$ be the identity function. Then f is gsp-open but not sgp-open, since for the open set $\{b, c\}$ in X, f($\{b, c\}$) = $\{b, c\}$ is not sgp -open in Y but it is gsp-open in Y.

Theorem 3.17: Every closed function is sgp-closed function but the converse need not be true.

Proof: Let $f: X \to Y$ is a closed function. Let Q be a closed set in X. Then f(Q) is closed in Y. Therefore f(Q) is sgp-closed in Y. Hence f is sgp-closed function.

Example 3.18: Let $X = \{a, b, c\} = Y$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Let f: $X \rightarrow Y$ is the identity function. Then f is sgp-closed but not

closed function as the closed set $\{c\}$ in X, $f(\{c\}) = \{c\}$ is sgp-closed set but not closed set in Y.

Theorem 3.19: If f: $X \rightarrow Y$ is sgp-closed function and Y is ${}_{sgp}T_c$ -space, then f is a closed map.

Proof: Let f: $X \rightarrow Y$ is a sgp-closed function. Let G be a closed set in X. Then f(G) is sgp-closed set in Y. Since Y is ${}_{sgp}T_c$ -space, f(G) is closed set in Y. Hence f is a closed map.

Corollary 3.20: (i) If f: $X \rightarrow Y$ is sgp-closed function, then f is gp-closed function.

(ii) Converse of (i) is true if Y is $_{sgp}T_{c}$ -space.

(iii) If f: $X \to Y$ is sgp-closed function, then f is gp-closed function.

(iv) Converse of (iii) is true if Y is $_{sgp}T_{c}$ -space.

Theorem 3.21: A function f: $X \rightarrow Y$ is sgp-closed if and only if for each subset S of Y and for each open set U containing $f^{-1}(S)$ there is a sgp-open set V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof: Suppose f is sgp-closed. Let S be a subset of Y and U be an open set of X containing $f^{1}(S)$, that is $f^{1}(S) \subseteq U$. Now X – U is closed in X. Then f(X - U) is sgp-closed set in Y since f is sgp-closed function. Then V = Y - f(X - U) is a sgp -open set containing S such that $f^{1}(V) \subseteq U$.

Conversely suppose that F is a closed set of X. Then $f^{1}(Y-(f(F)) \subseteq X - F$ and X - F is open set. By hypothesis, there is a sgp-open set V of Y such that $Y - f(F) \subseteq V$ and $f^{1}(V) \subseteq X - F$. Therefore $F \subseteq X - f^{1}(V)$. Hence $Y-V \subseteq f(F) \subseteq f(X - f^{1}(V)) \subseteq Y - V$ which implies f(F) = Y - V. Since Y - V is sgpclosed set, f(F) is sgp-closed set and thus f is sgp closed function.

Remark 3.22: The composition of two sgp-closed functions need not be sgp-closed function as seen from the following example.

Example 3.23: Let $X = Y = Z = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, c\}, X\}, \sigma = \{Y, \phi, \{a\}\} and \eta = \{Z, \phi, \{b\}, \{a, b\}\}$. Let f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ as identity maps. Then f and g are both sgp-closed maps but the composition gof: $X \rightarrow Z$ is not a sgp-closed function, since for the closed set $\{b\}$ in X, $(gof)(\{b\}) = g(\{b\}) = g(\{b\}) = \{b\}$ is not sgp-closed set in Z.

Theorem 3.24: Composition of closed function and sgp-closed function is again sgp-closed function.

Proof: Let $f: X \to Y$ and $g: Y \to Z$ are sgp-closed functions. Let F be a closed set in X. Then f(F) is closed in Y since f is a closed map. Again since g is sgp-closed, g(f(F)) is sgp-closed in Z. That is g(f(F)) = (gof)(F) is sgp-closed in Z. Hence gof is sgp-closed function.

Theorem 3.25: If f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ are sgpclosed functions and Y is ${}_{sgp}T_c$ -space, then gof: $X \rightarrow Z$ is sgp-closed.

Proof: Let F be a closed set in X. Then f(F) is sgpclosed set in Y as f is sgp-closed function. Since Y is ${}_{sgp}T_c$ -space, f(F) is closed set in Y. Again since g is sgp-closed function, g(f(F)) is sgp-closed set in Z. That is g(f(F)) = (gof)(F) is sgp-closed set in Z. Hence gof is sgp-closed function.

Theorem 3.26: If f: $X \rightarrow Y$ is sgp-closed g: $Y \rightarrow Z$ is gp-closed and Y is _{sgp}T_c-space, then gof: $X \rightarrow Z$ is is gp-closed function.

Proof: Let O be a closed set in X. Then f(O) is sgpclosed set in Y as f is sgp-closed function. Since Y is $_{sgp}T_c$ -space, f(O) is closed set in Y. Also since g is gp-closed, g(f(O)) is gp-closed set in Z. That is g(f(O)) = (gof)(O) is gp-closed set in (Z, γ). Hence gof is gp-closed function.

Theorem 3.27: For f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ two functions

(i) If gof: $X \rightarrow Z$ is sgp-closed function and f: $X \rightarrow Y$ is continuous and surjection, then g is sgp-closed function.

(ii) If gof: $X \rightarrow Z$ is sgp-closed function and g is sgp-irresolute and injective, then f is sgp-closed function.

(iii) If gof: $X \rightarrow Z$ is sgp-closed function and f is gp-continuous, surjective and X is $_{sgp}T_c$ -space, then g is sgp-closed function..

Proof: (i) Let K be a closed set in Y. Then $f^{1}(K)$ is closed in X since f is continuous. So $(gof)(f^{1}(K))$ is sgp-closed set in Z as gof is sgp-closed function. That is $(gof)(f^{1}(K)) = g(f(f^{1}(K)) = g(K)$ is sgp-closed set in Z. Hence g is sgp-closed function.

(ii) Let A be a closed set in X. Since gof is sgpclosed, (gof)(A) is sgp-closed in Z. Since g is sgpirresolute $g^{-1}(gof)(A)$ is sgp-closed set in Y. Since g is injective $g^{-1}(gof)(A) = f(A)$ is sgp-closed set in Y. Hence f is sgp-closed function.

(iii) Let N be a closed set in Y. Since f is gpcontinuous, $f^{1}(N)$ is gp-closed set in X. Again since gof is sgp-closed function, $(gof)(f^{1}(N)) = g(N)$ is sgp-closed set in Z. Hence g is sgp-closed function.

Theorem 3.28: Let (X,τ) and (Y,σ) be any topological spaces. If f: $(X,\tau) \rightarrow (Y,\sigma)$ is sgp-closed function and A is closed set of (X,τ) , then its restriction $f_A: (A,\tau_A) \rightarrow (Y,\sigma)$ is sgp-closed function. **Proof:** Let B be a closed of (A, τ_A) . Then $B = A \cap F$ for some closed set F of (X, τ) and so B is closed in (X, τ) . Since f is sgp-closed function, f(B) is sgp-closed set in (Y, σ) . But $f(B) = f_A(B)$ and therefore f_A is a sgp-closed function. **Theorem 3.30:** For any bijection f: $X \rightarrow Y$ the following statements are equivalent:

(i) $f^{-1}: Y \rightarrow X$ is sgp-continuous

(ii) f is sgp-open function.

(iii) f is sgp-closed function.

Proof: (i) \Rightarrow (ii): Let K be an open set of X. By (i), $(f^{1})^{-1}(K) = f(K)$ is sgp-open in Y and so f is sgp-open function.

(ii) \Rightarrow (iii): Let G be a closed set of X. Then X – G is open set of X. By hypothesis f(X-G) is sgp-open in Y. That is f(X-G) = Y - f(G) is sgp-open set in Y and therefore f(G) is sgp-closed set in Y. Hence f is sgp-closed function.

(iii) \Rightarrow (i): Let D be closed set of X. Then by hypothesis f(D) closed set in Y. But f(D) = $(f^{-1})^{-1}(D)$ is sgp-closed set in Y. Therefore f^{-1} is sgp-continuous function.

Theorem 3.31: A function $f: X \rightarrow Y$ is sgp-open if and only if for any subset S of Y and for any closed set F containing $f^{-1}(S)$, there exists sgp-closed set K of Y containing S such that $f^{-1}(K) \subseteq F$. **Proof:** Suppose f: $X \rightarrow Y$ is sgp-open function. Let S be a subset of Y and F be a closed set of X containing $f^{-1}(S)$. Then K = Y - f(X - F) is a sgpclosed set containing S such that $f^{-1}(K) \subset F$. Conversely, suppose that U is an open set of X. Then $f^{-1}(Y - f(U)) \subseteq X - f^{-1}[f(U)] \subseteq X - U$ and X - U is closed. By hypothesis, there is a sgp-closed set K of Y such that Y-f(U) \subseteq K and f⁻¹(K) \subseteq X – V. Therefore $U \subseteq X - f^{-1}(K)$. Hence $Y - K \subseteq f(U) \subseteq f$ $[X - f^{-1}(K)] \subseteq Y - K$. Which implies $f(U) \subseteq Y - K$. Since Y - K is sgp-open set, f(U) is sgp-open set and hence f is sgp-open function.

IV. sgp-HOMEOMORPHISMS IN TOPOLOGICAL SPACES

In this section we introduce the concept of sgphomeomorphisms in topological spaces and obtained some of their properties.

Definition 4.1: A bijective function f: $X \rightarrow Y$ is called sgp-homeomorphism if f and f^{-1} are sgp-continuous functions.

Example 4.2: Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a, b\}\}$. Define a function f: $X \rightarrow Y$ by f(a)=a, f(b)=c and f(c)=b. Then the function f is bijective, sgp- continuous and sgp-open function. Hence f is a sgp-homeomorphism.

Theorem 4.3: Every homeomorphism is a sgp-homeomorphism, but not conversely.

Proof: Let $X \rightarrow Y$ be a homeomorphism. Then f and f^{-1} are continuous functions. Since every continuous function is sgp-continuous Therefore f and f^{-1} are

sgp-continuous functions. Hence f is sgp-homeomorphism.

Example 4.4: In Example 4.2, the function f is sgphomeomorphism but not a homeomorphism.

Theorem 4.5: If f: $X \rightarrow Y$ is ω -homeomorphism then f is sgp-homeomorphism but the converse is not true.

Proof: Let $f:X \rightarrow Y$ is ω -homeomorphism. Then f and f^1 are ω -continuous functions. Since every ω -continuous is sgp-continuous. Therefore f and f^1 are sgp-continuous functions. Hence f is sgp-homeomorphism.

Example 4.6: Let $X = Y = \{x, y, z\}$, $\tau = \{X, \phi, \{x\}\}$ and $\sigma = \{Y, \phi, \{x\}, \{x, y\}\}$. Let f: $X \rightarrow Y$ be a identity function. Then f is sgp-homeomorphism but not a ω -homeomorphism, since for the closed set $\{z\}$ in Y, $f^{-1}(\{z\}) = \{z\}$ is not ω -closed in X but it is sgp-closed in X.

Theorem 4.7: Every α^* -homeomorphism is sgphomeomorphism but not conversely. **Proof:** Suppose f: X \rightarrow Y is α^* -homeomorphism. Then f and f¹ are α -continuous functions. Since every α -continuous function is sgp-continuous function, if follows that, f and f¹ are sgp-continuous functions. Hence f is sgp-homeomorphism.

Example 4.8: Let $X = \{p, q, r\} = Y$, $\tau = \{X, \phi, \{p\}, \{q, r\}\}$ and $\sigma = \{Y, \phi, \{p\}, \{q\}, \{p, q\}\}$. Then the identity function f: $X \rightarrow Y$ is sgp-homeomorphism but not α^* -homeomorphism, since for the closed set $\{r\}$ in Y, f⁻¹($\{r\}$) = $\{r\}$ is not α -closed in X but it is sgp-closed in X.

Remark 4.9: The concepts of sgp-homeomorphisms and g-homeomorphisms are independent of each other as seen from the following examples.

Example 4.10: Let $X = \{a, b, c\} = Y, \tau = \{X, \phi, \{a\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, b\}\}$. Then the identity function f: $X \rightarrow Y$ is sgp-homeomorphism but not g-homeomorphism, since for the open set $\{a, c\}$ in X, $f(\{a, c\}) = \{a, c\}$ is not g-open in Y but it is sgp-open in Y

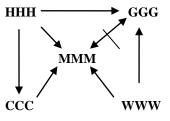
Example 4.11: Let $X = \{a, b, c\} = Y$, $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{b\}\}$. Define a map $f : X \rightarrow Y$ by f(a) = c, f(b) = a and f(c) = b. Then the function f is g-homeomorphism but not a sgp-homeomorphism, since for the open set $\{a\}$ of X, $f(\{a\}) = \{c\}$ is not a sgp-open in Y but it is g-open in Y.

Theorem 4.12: Let f: $X \rightarrow Y$ be a bijective and sgpcontinuous function. Then the following statements are equivalent.

- (i) f is sgp-open.
- (ii) f is sgp-homeomorphism.
- (iii) f is sgp-closed

Proof: The proof follows from Theorem 3.30.

Remark 4.13: From the above results we have the following diagrams



Where

HHH--- homeomorphism, GGG--- g-homeomorphism

CCC--- α *-homeomorphism, MMM-- sgp-homeomorphism

WWW------homeomorphism

Remark 4.14: The composition of two sgphomeomorphisms need not be a sgphomeomorphism as seen from the following example.

Example 4.15: Let $X = Y = Z = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, \sigma = \{\phi, \{a\}, Y\}$ and $\eta = \{\phi, \{a\}, \{a, b\}, Z\}$. Define functions $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = a and f(c) = c and $g : (Y, \sigma) \rightarrow (Z, \eta)$ is defined as g(a) = b, g(b) = c and g(c) = a. Then f and g are both sgp-homeomorphisms but the composition gof is not a sgp-homeomorphism, since for the open set $\{a, b\}$ in $(Z, \eta), (gof)^{-1}(\{a, b\}) = f^{-1}(g^{-1}(\{a, b\})) = f^{-1}(\{a, c\}) = \{b, c\}$ is not an sgp-open in (X, τ) .

REFERENCES

- S. P. Arya and T. M. Nour, Characterization of s-normal spaces, Indian J. Pure appl. Math., 21(8) (1990), 717-719.
- [2] S. G. Crossely and S. K. Hilderbrand. Semi closure, Texas JI. Sci., 22(1971), 99-112.
- [3] R. Devi, Studies on generalizations of closed maps and homeomorphisms in topological spaces, Ph.D thesis, Bharathiar University, Coimbatore (1994).
- [4] Y. Gnanambal, Studies on generalized pre-regular closed sets and generalization of locally closed sets, Ph.D, Thesis Bharathiar University, Coimbatore, (1998).
- [5] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math., Monthly, 70(1963), 36-41.
- [6] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2) (1970), 89- 96.
- [7] H.Maki, P.Sundaram and K.Balachandran, On Generalized Homeomorphisms in Topological Spaces, Bull. Fukuoka Univ. Ed. Part III, 40(1991), 13-21.
- [8] H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T_{1/2}, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 17(1996), 33-42.
- [9] S. R. Malghan, Generalized closed maps, J. Karnataka Univ. Sci., 27(1982), 82-88.

- [10] A. S. Mashhour, M. E. Abd. El-Monsef and S. N. El-Deeb, On pre continuous mappings and weak pre continuous mappings, Proc. Math. Phys. Soc. Egypt., 53, (1982), 47-53.
- [11] A. S. Mashhour, I. A. Hasanein and S. N. EL-Deeb, *α* continuous and *α* -open mappings, Acta Math. Hung., 41(3-4)(1983), 213-218.
- [12] Govindappa Navalagi and Mahesh Bhat, on sgp-closed sets in Topological Spaces, Journal of Applied Mathematical Analysis and Applications, 3(1)(2007), 45-58.
- [13] Govindappa Navalagi and Md. Hanif PAGE, On θgs-open and θgs-closed functions. Proyececciones Journal of Mathematics, 28(2009), 111-123.
- [14] O. Njastad, on some classes of nearly open sets, Pacific. J. Math., 15(1965), 961-970.
- [15] T. Noiri, H. Maki and J. Umehara, Generalized pre closed functions, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 19(1998), 13-20.
- [16] M. Sheik John, A study on generalizations of closed sets and continuous maps in topological spaces and bitopological spaces, Ph.D., thesis, Bharathiar University, Coimbatore (2002).
- [17] P. Sundaram and M. Sheik John, On ω-closed sets in Topology, Acta Ciencia Indica, 4(2000), 389-392.