SP-Sasakian Manifolds Admitting Special Semi - Symmetric Recurrent Metric Connection

N.V.C.Shukla, Ram Asray Verma

ABSTRACT; In this paper, we study special semi -symmetric metric recurrent connection in SP-Sasakian manifold. Some results related to this connection are studied and obtained .Also some curvature properties of SP-sasakian manifolds admitting special semi - symmetric recurrent metric connection are studied.

KEYWORD; *sp-sasakianmanifold,semi -symmetric metric recurrent connection, concircular curvature tensor*, *projective curvature tensor.*

MSC2010; 53C07, 53C25

1. INTRODUCTION

In 1975, Golab[1] initiated the study of quarter-symmetric linear connection on a differentiable manifold M^n . A linear connection \tilde{V} in an n dimensional differentiable manifold M^n is said to be a Quarter -symmetric connection if torsion tensor T is of the form

$T(X,Y) = \tilde{\nabla}_{x}Y - \tilde{\nabla}_{Y}X - [X,Y]$	(1.1)
$= \eta(Y) \varphi X - \eta(X) \varphi Y$	

where η is a 1-form and φ is a tensor of type (1,1). In addition, if a quarter-symmetric linear connection $\tilde{\mathcal{V}}$ satisfies the condition $\tilde{\mathcal{V}}_{xg=0}$ for all X,Y,Z \in TMⁿ, where TM is a lie algebra of vectors fields of the differentiable manifold Mⁿ. Then ∇ is said to be quarter-symmetric metric connection. Quarter -symmetric metric connection is also studied by Biswas and De [10] De and Mondal[16] Singh and pandey[15] Mishra and Pandey[5],Rastogi[7], Yano and Imai [6], Sular, S [17] and many others.

In particular, if $\phi X=X$ and $\phi Y=Y$, then the quarter-symmetric connection reduces to a semi-symmetric connection. The semi symmetric metric connection is generalized case of quarter-symmetric metric connection.

The semi-symmetric metric connection in an SP-Sasakian manifold have been studied by Sinhaand Kalpna[4].In the present paper we have studied with quarter-symmetric metric connection in an SP-Sasakian manifold . We also discuss the different type of curvatures with a quarter- symmetric metric connection in an SP-Sasakian manifold .This paper organized as fallows after preliminaries . In section 1,Introduction .In section 2,We discuss the preliminary results of sp-sasakian manifold and also special semi-symmetric recurrent metrics connection \vec{V} .In section 3,existence of special semi-symmetric recurrent metrics connection \vec{V} .In section 5, concircular curvature tensor of sp-sasakian manifold with respect to the special semi-symmetric recurrent metric recurrent metric connection \vec{V} . In section 6, projective curvature tensor of sp-sasakian manifold with respect to special semi-symmetric recurrent metric special semi-symmetric recurrent metric connection \vec{V} . In section 6, projective curvature tensor of sp-sasakian manifold with respect to special semi-symmetric recurrent metric special semi-symmetric recurrent metric connection \vec{V} . In section 6, projective curvature tensor of sp-sasakian manifold with respect to special semi-symmetric recurrent metric connection \vec{V} . In section 8, m-projective curvature tensor of sp-sasakian manifold with respect to special semi-symmetric recurrent metric connection \vec{V} and In section 8, m-projective curvature tensor of sp-sasakian manifold with respect to special semi-symmetric recurrent metric connection \vec{V} .

2.PRELIMINARIES

An n-dimensional smooth manifold M^n is called an almost para-contact manifold [12], if it admits an almost para-contact structure (φ, ξ, η) consisting of a (1,1) tensor field φ , vector field ξ , and 1-form η satisfying

$\phi^2 X = X - \eta(X) \xi$	(2.1)
$\varphi^{-}X = X - \eta(X)\zeta$	(2.1)

 $\eta(\xi) = 1 \tag{2.2}$

φοξ=0	(2.3)	
ηοφ=0		(2.4)
Rank(ϕ)=n-1		(2.5)
for all XETM ⁿ		
Let g be Riemannian metric satisfying		
$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)$		

 $g(\phi X, Y) = g(X, \phi Y) \tag{2.7}$

for all $X,Y \in TM^n$. Then M^n becomes an almost para-contact Riemannian manifold equipped with the almost para-contact Riemannian structure (φ, ξ, η, g) [2].

(2.6)

If we define

$g(X,\xi)=\eta(X), g(\xi,\xi)=1$	(2.8)
$\Phi(X,Y)=g(\phi X,Y)$	(2.9)
then in addition to the above equation, we have	
$\Phi(X,Y)=\Phi(Y,X)$	(2.10)
$\Phi(\phi X, \phi Y) = \Phi(X, Y)$	(2.11)

An almost para-contact Riemannian manifold is called a P-Sasakian manifold [4] if it satisfies

(2.12)

for all $XY \epsilon TM^n$ where ∇ denotes the covariant differentiation with respect to Riemannian metric g. from the above equation it follows that

$\nabla_X \xi = \phi X$	(2.13)	
(∇ _x η)($(Y)=g(X,\phi Y)=(\nabla_Y \eta)(X)$	(2.14)

Especially, a P-Sasakian manifold M^n is called a special para-Sasakian manifold or briefly an SP-Sasakian manifold .If M^n admits a 1-form η satisfying

$(\nabla_{\mathbf{X}}\eta)(\mathbf{Y}) = -g(\mathbf{X},\mathbf{Y})\xi + \eta(\mathbf{X})\eta(\mathbf{Y})$	(2.15)
---	--------

For SP-Sasakian manifold we have [4]

 $\Phi(X,Y) = -g(X,Y)\xi + \eta(X)\eta(Y)$ (2.16)

In an n-dimensional P-Sasakian manifold Mⁿ, the curvature tensor R, the Ricci tensor S satisfy [3],[2],[9]

$R(X,Y)\xi=\eta(X)Y-\eta(Y)X$	(2.17)	
$R(\xi,X)Y=\eta(Y)X-g(X,Y)\xi$	(2.18)	
$R(\xi,X)\xi=X-\eta(X)\xi$	(2.19)	
$\eta(R(X,Y)U)=g(X,U)\eta(Y)-g(Y,U)\eta(X)$	(2.20)	
$\eta(R(X,Y)\xi)=0$	(2.21)	
$\eta(R(\xi,X)Y)=\eta(X)\eta(Y)-g(X,Y)$	(2.22)	
$S(X,\xi)=-(n-1)\eta(X)$	(2.23)	

QX=-(n-1)X	(2.24)
$S(\phi X,\phi Y)=S(X,Y)+(n-1)\eta(X)\eta(Y)$	(2.25)
$S(X,\phi Y)=S(\phi X,Y)$	(2.26)
Let (M,g) be an manifold with Levi-Civita connection	n $\tilde{\mathcal{V}}$ in a SP-Sasakian Manifold can be defined by
$\widetilde{\mathcal{V}}_{X}Y = \nabla_{X}Y - \eta(X)Y$	(2.27)
The curvature tensor \tilde{R} of M^n	
$\tilde{R}(X,Y)Z = R(X,Y)Z + 3g(X,Z)Y - 3g(Y,Z)X - 2g(X,Z)\eta(Y)\xi$	
$-2\eta(X)\eta(Z)Y+2g(Y,Z)\eta(X)\xi+2\eta(Y)\eta(Z)X$	(2.28)

The Ricci tensor S and scalar curvature r of M^n with respect to quarter -symmetric metric connection $\vec{\nu}$ is defined by

$$\tilde{S}(Y,Z) = S(Y,Z) - (3n-5)g(Y,Z) + 2(n-2)\eta(Y)\eta(Z)$$

$$\tilde{r} = r - (n-1)(3n-4)$$
(2.29)
(2.29)

Where \tilde{S} and S are the Ricci tensor of the connection ∇ and \tilde{V} respectively. Similarly \tilde{r} and r are the scalar curvature of the connection ∇ and \tilde{V} respectively.

DEFINITION ;The projective curvature tensor is defined as[21]

$$P(X,Y)Z = R(X,Y)Z - \frac{1}{n-1} \{S(Y,Z)X - S(X,Z)Y\}$$
(2.31)

DEFINITION ;The concircular curvature tensor is defined as [20]

 $C(X,Y,Z)=R(X,Y,Z)-\frac{r}{n(n-1)}\{g(Y,Z)X-g(X,Z)Y\}$

DEFINITION ; The M-projective curvature tensor (W) is defined as [20]

$$W(X,Y,Z,U) = R(X,Y,Z,U) - \frac{1}{2(n-1)} [S(Y,Z)g(X,U) - S(X,Z)g(Y,U)] - \frac{1}{2(n-1)} [g(Y,Z)S(X,U) - g(X,Z)S(Y,U)]$$

DEFINITION; The projective Ricci curvature tensor is defined as

 $L(X,Y)Z = \frac{2n+1}{2n}S(X,Z)Y - \frac{r}{2n}g(X,Y)Z$

3.EXISTENCE OF SPECIAL SEMI-SYMMETRIC RECURRENT METRIC CONNECTION

Let ∇ be a linear connection in M, given by

$\vec{\nabla}_{X}Y = \nabla_{X}Y + H(X,Y)$	(3.1)
$X \mathbf{Y} = \mathbf{V}_{\mathbf{X}} \mathbf{Y} + \mathbf{H}(\mathbf{X}, \mathbf{Y})$	(3.1)

Where H is a tensor of type (1,2) Now, we determine tensor field H such that \tilde{V} satisfies (2.23)and (2.27). from equation(3.1), we have (3.2)

T(X,Y)=H(X,Y)-H(Y,X)	(3.2)
Let (3.3)	
$G(X,Y,Z) = (\tilde{V}_x g)(Y,Z)$	(3.3)

then(3.4)			
g(H(X,Y),Z)+g(H(X,Z),Y)=-G(X,Y,Z)		(3.4)	
From (3.2), we have			
$g(\tilde{T}(X,Y),Z)+g(\tilde{T}(Z,X),Y)+g(\tilde{T}(Z,Y),X) = g(H(X,Y),Z)-g(H(Y,X),Z)$			
+g(H(Z,X),Y)-g(H(X,Z),Y)			
+g(H(Z,Y),X)-g(H(Y,Z),X)			
Now from (3.1) and (3.4) we have			
$g(T(X,Y),Z)+g(T(Z,X),Y)+g(T(Z,Y),X) = 2g(H(X,Y),Z)+2\eta(X)g(Y,Z)$			
$-2\eta(Z)g(X,Y)+2\eta(Y)g(X,Z)$			
This gives			
$H(X,Y)=1/2\{\tilde{T}(X,Y)+\tilde{T}(X,Y)+\tilde{T}(Y,X)\}-\eta(X)Y-\eta(Y)X=g(X,Y)$	(3.5)		
where			
$g(\tilde{T}(X,Y),Z=g(\tilde{T}(Z,X),Y)$		(3.6)	
From (2.23) and (3.6), we get			
$\tilde{T}(X,Y)=\eta(X)Y-g(X,Y)$		(3.7)	
Now from (3.5) and (3.7) we have			
$H(X,Y)=-\eta(X)Y$			(3.8)
Thus from (3.1) we obtain $\widetilde{\nabla}$			

 $\widetilde{\nabla}_{x}Y = \nabla xY - \eta(X)Y$

Conversely, the connection $\overline{\nabla}$ defined by (2.23), satisfies (2.25) and (2.27) so that the connection $\overline{\nabla}$ is a special semi-symmetric recurrent metric connection.

Theorem3.1;.Let(M,g) be an SP-Sasakian manifold with a contact metric structure (ϕ,ξ,η,g), then it admits a special semi-symmetric recurrent metric connection defined as below

 $\widetilde{\nabla}_{x}Y = \nabla_{x}Y - \eta(X)Y$

4.CURVATURE TENSOR OF THE MANIFOLD WITH RESPECT TO SPECIAL SEMI-SYMMETRIC RECURRENT METRICS CONNECTION₽

The curvature tensor of the manifold M^n with respect to special semi - symmetric recurrent metrics connection \overline{V} is given by

 $\widetilde{R}(\mathbf{X},\mathbf{Y},\!Z) \!\!=\! \widetilde{\nabla}_{\mathbf{X}} \widetilde{\nabla}_{\mathbf{Y}} Z \!\!-\! \widetilde{\nabla}_{\mathbf{Y}} \widetilde{\nabla}_{\mathbf{X}} Z \!\!-\! \widetilde{\nabla}_{[\mathbf{X},\mathbf{Y}]} Z$

Thus from equations (2.25) and (2.15) the above equation becomes

 $\tilde{R}(X,Y,Z) = R(X,Y,Z)$

(4.1)

This can be stated as follows:

PROPOSITION4.1 . The curvature tensor R of the special semi-symmetric recurrent metrics connection ∇ of manifold M coincides with that of connection ∇ of Riemannian manifold.

Now taking inner product of (4.1) with W, we ob	tain		
$\tilde{R}(X,Y,Z,W)=R(X,Y,Z,W)$		(4.2)	
Where $R(X,Y,Z,W)=g(R(X,Y,Z),W)$			
Now from (4.2), we have			
$\tilde{R}(X,Y,Z,W) = -R(X,Y,Z,W)$	(4.3)		
$\tilde{R}(X,Y,Z,W) = -R(X,Y,W,Z)$	(4.4))	
Thus from (4.3) and (4.4) we get			
$\tilde{R}(X,Y,Z,W)=R(X,Y,W,Z)$			(4.5)
Also, the curvature tentsor R satisfies			
$\tilde{R}(X,Y,Z) + \tilde{R}(Y,Z,X) + \tilde{R}(Z,X,Y) = 0$		(4.6)	
which is the Bianchi's first identity for connection $\widetilde{\nabla}$			
Again contracting (4.2) over X and W, we get			
$\tilde{S}(Y,Z)=S(Y,Z)$			(4.7)
where \tilde{S} and S denote the Ricci tensor of the connection	ion $\widetilde{\nabla}$ and ∇ respectively.		
Contracting (4.7)over Y and Z , we have as			
$ ilde{r}$ =r	(4.8)		

Thus we have the following proposition

Page-95

PROPOSITION4.2. From- dimensional SP-Sasakian manifold with special semi-symmetric recurrent metric connection $\overline{\nabla}$

(1) The curvature tensor R is given by the equation (4.1)

(2) The Ricci tensor S is given by the equation (4.7)

 $(3)\tilde{r}=r$

5.CONCIRCULAR CURVATURE TENSOR OF SP-SASAKIAN MANIFOLD WITH RESPECT TO THE SPECIAL SEMI-SYMMETRIC RECURRENT METRIC CONNECTION

Define concircular curvature tensor with respect to the special semi-symmetric recurrent metric connection \tilde{V}

$$C(X,Y,Z) = R(X,Y,Z) - \frac{r}{n(n-1)}g(Y,Z)X - g(X,Z)Y$$
(5.1)

Using (4.1) in the above equation , we get

 $\tilde{\mathcal{C}}(X,Y,Z)=C(X,Y,Z)$

(5.2)

Therefore, we have

PROPOSITION5.1 ;The manifold Mⁿ coincides with Riemannian manifold.

An n-dimensional SP-Sasakian manifold is called (ϕ) concircularly flat if it

satisfied the condition

$\phi^2 C(\phi X, \phi Y) \phi Z=0$

Let us suppose that M be an n- dimensional ϕ - concircularly flat SP-Sasakian manifold with respect to special semi-symmetric recurrent metric connection. Thus

 $\phi^2 C(\phi X, \phi Y) \phi Z = 0(5.4)$

if $g(C(\phi X, \phi Y)\phi Z, \phi W)=0$ (5.5)

for all X,Y,Z,W \in T(M)

Using (5.1) in (5.5) we have

 $g(R(\phi X, \phi Y)\phi Z, \phi W = r/n(n-1)\{g(\phi Y, \phi Z)g(\phi X, \phi W) - g(\phi X, \phi Z)g(\phi Y, \phi W)\}$ (5.6)

Let $\{e_1, e_2, \dots, \xi\}$ be a local orthogonal basis of the vector in Mⁿ. Thus using the fact that

 $\{\phi e_1, \phi e_2, \dots, \xi\}$ is also a orthogonal basis, taking X=W=e_i in (5.6) and summing

with respect to i, we have

 $S(\phi Y, \phi Z) = \frac{r}{2n} g(\phi Y, \phi Z)$ (5.7)

Putting $Y=\phi Y, Z=\phi Z$ in (5.7) and using the fact that S is symmetric, we have

 $g(R(\phi X,\phi Y)\phi Z,\phi W)=0$

This can be stated as:

THEOREM 5.1; An n- dimensional ϕ - concircularly flat SP-Sasakian manifold with respect to special semisymmetric recurrent metric connection coincides with Riemannian manifold.

Also, if M^n is ϕ - concircularly flat SP-Sasakian manifold with respect to special semi-symmetric recurrent metric connection, them from (5.05) we have

 $g(\mathbf{R}(\phi \mathbf{X}, \phi \mathbf{Y})\phi \mathbf{Z}, \phi \mathbf{W}) = \frac{r}{n(n-1)} \{g(\phi \mathbf{Y}, \phi \mathbf{Z})g(\phi \mathbf{X}, \phi \mathbf{W}) - g(\phi \mathbf{X}, \phi \mathbf{Z})g(\phi \mathbf{Y}, \phi \mathbf{W})\}$

Contracting over X and W and summing over i, we get

$$S(\phi Y,\phi Z) + g(\phi Y,\phi Z) = \frac{r}{n(n-1)} \{ (n-1)g(\phi Y,\phi Z) - g(\phi Y,\phi Z) \}$$

 $\mathbf{S}(\boldsymbol{\phi}\mathbf{Y}, \boldsymbol{\phi}\mathbf{Z}) = \frac{r(n-2)}{n(n-1)-1} \mathbf{g}(\boldsymbol{\phi}\mathbf{Y}, \boldsymbol{\phi}\mathbf{Z})$

Using (2.12) and (2.3) in the above equation, we get

$$S(Y,Z) = \frac{r(n-2)}{n(n-1)-1} g(Y,Z) - \frac{r(n-2)}{n(n-1)-n} \eta(Y) \eta(Z)$$
(5.8)

Which is of the form.

 $S(Y,Z)=ag(Y,Z)+b\eta(Y)\eta(Z)$

Where
$$a = \frac{r(n-2)}{n(n-1)-1}$$
 and $b = \frac{r(n-2)}{n(n-1)-n}$

Thus we have the following theorem:

THEOREM 5.2 ; . ϕ -concircularly flat SP-Sasakian manifold with respect to special semi-symmetric metric connections an η -Einstein manifold.

(5.3)

6.PROJECTIVE CURVATURE TENSOR OF SP-SASAKIAN MANIFOLD WITH RESPECT TO SPECIAL SEMI-SYMMETRIC RECURRENT METRIC CONNECTION **7**

Analogous to the definition of projective curvature tensor in a Riemannian manifold

we define the projective curvature tensor P with respect to special semi-symmetric recurrent metric connection by

$$P(X,Y,Z) = R(X,Y,Z) - \frac{1}{(n-1)} S(Y,Z) X - S(X,Z) Y) \} (6.1)$$

Using (4.1) and (4.7) in (6.1) we have

$$\tilde{P}(X,Y,Z) = P(X,Y,Z)$$
 (6.2)

DEFINITION6.1 ;An SP-Sasakian manifold Mⁿ is said to be quasi projectively flat with respect to special semisymmetric recurrent metric connection if

$$g(P(\phi X, Y)Z, \phi W)=0$$

(6.3)

Where P is the projective curvature tensor with respect to special semi-symmetric recurrent metric connection .

Using (6.1) in (6.3)

 $g(R(\phi X,Y)Z,\phi W) = \{S(Y,Z)g(\phi X,\phi W) - S(\phi X,Z)g(Y,\phi W)\}(6.4)$

Now from (4.1) in (4.7), above equation becomes

$$g(R(\phi X, Y)Z, \phi W) = \frac{1}{(n-1)} \{S(Y, Z)g(\phi X, \phi W)\}$$
(6.5)

 $-\frac{1}{(n-1)}\{S(\phi X,Z)g(Y,\phi W)\}$

Substituting X=W=eiand summing over i, 1≤i≤n-1

$$\sum g(R(\phi e_i, Y)Z, \phi e_i) = \frac{1}{(n-1)} \sum [S(Y,Z)g(\phi e_i, \phi e_i)S(\phi e_i, Z)g(Y, \phi e_i)]$$

This implies

 $S(Y,Z)+g(Y,Z)=\frac{1}{(n-1)}\{(n-1)S(Y,Z)-S(Y,Z)\}$

This gives

S(Y,Z) = -(n-1)g(Y,Z)

Which is of the form

S(Y,Z)=ag(Y,Z)

Where a=-(n-1)

So we have following theorem

THEOREM 6.1; A quasi-projectively flat SP- Sasakian manifold with respect to semi-symmetric recurrent metric is an Einstien manifold.

7.PROJECTIVE RICCI CURVATURE TENSOR OF SP-SASAKIAN MANIFOLD WITH RESPECT TO SPECIAL SEMI-SYMMETRIC RECURRENT METRIC CONNECTION ₱

we define the projective ricci curvature tensor L with respect to special semi-symmetric recurrent metric connection by

(6.7)

$$L(X,Y) = \frac{n}{(n-1)} S(X,Y) - \frac{r}{(n-1)} g(X,Y)$$
(7.1)

Analogous to this definition of projective ricci curvature tensor in a Riemannian manifold.we define the projective ricci curvature tensor L with respect to special semi-symmetric recurrent metric connection by

$$\tilde{L}(\mathbf{X},\mathbf{Y}) = \frac{n}{(n-1)} \tilde{S}(\mathbf{X},\mathbf{Y}) - \frac{\tilde{r}}{(n-1)} g(\mathbf{X},\mathbf{Y})$$
(7.2)

THEOREM7.1 ;The projective ricci curvature tensor of SP-sasakian manifold admitting special semisymmetric recurrent metric connection is identical with the the projective ricci curvature tensor of SP- Sasakian manifold with levi-civita connection.

PROOF7.1; using (4.7)and(4.8)in equation (7.2)

$$\tilde{L}(X,Y) = \frac{n}{(n-1)} S(X,Y) - \frac{r}{(n-1)} g(X,Y)$$
(7.3)

And equating (7.3) and (7.1), we have

 $\tilde{L}(X,Y) = L(X,Y)$ (7.4)

Thus the theorem follows.

8. M-PROJECTIVE CURVATURE TENSOR OF SP-SASAKIAN MANIFOLD WITH RESPECT TO SPECIAL SEMI-SYMMETRIC RECURRENT METRIC CONNECTION

we define the M-projective curvature tensor W with respect to special semi-symmetric recurrent metric connection by

DEFINITION 8.1; The M-projective curvature tensor (W) is defined as [21]

$$W(X,Y,Z,U) = R(X,Y,Z,U)$$

$$-\frac{1}{2(n-1)}S(Y,Z)g(X,U)-S(X,Z)g(Y,U)]$$

$$-\frac{1}{2(n-1)}[g(Y,Z)S(X,U)-g(X,Z)S(Y,U)]$$
(8.1)

Analogous to this definition of M-projective curvature tensor in a Riemannian manifold .we define the Mprojective curvature tensor W with respect to special semi-symmetric recurrent metric connection by

$$\widetilde{W}(X,Y,Z,U) = \widetilde{R}(X,Y,Z,U)$$

$$-\frac{1}{2(n-1)} [\tilde{S}(Y,Z)g(X,U) - \tilde{S}(X,Z)g(Y,U)] -\frac{1}{2(n-1)} [g(Y,Z)\tilde{S}(X,U) - g(X,Z)\tilde{S}(Y,U)]$$
(8.2)

THEOREM 8.1; The M-projective curvature tensor of SP-sasakian manifold admitting special semisymmetric recurrent metric connection is identical with the theM-projective curvature tensor of SP- Sasakian manifold with Levi-civita connection.

PROOF; using (4.2),(4.7)and(4.8)in equation (8.2)

$$\widetilde{W}(X,Y,Z,U)=R(X,Y,Z,U)$$

$$-\frac{1}{2(n-1)} [S(Y,Z)g(X,U)-S(X,Z)g(Y,U)]$$

$$-\frac{1}{2(n-1)} [g(Y,Z)S(X,U)-g(X,Z)S(Y,U)]$$
(8.3)

And equating (8.3) and (8.1), we have

 $\widetilde{W}(X,Y,Z,U) = W(X,Y,Z,U)$

Thus the theorem follows.

REFERENCES

- [1] Golab,S.(1975) on semi symmetric and Quarter symmetric linear connectionsTensors,N.S.29,293-301.Sato,I.(1976) On structure similar to almost contact structure I. Tensor,N.S.,Vol.30,219-224,
- [2] Adati,T. and Motsumoto, K(1977); On conformally recurrent and conformally symmetric P-Sasakian manifolds. TRU Math., Vol.13,25-32,
- [3] Adati, T. and Miyazama, T, (1977), Some properties of P-Sasakian manifold, TRU, Math, Vol, 13(1), 33-42
- [4] Sinha ,B.B.andKalpana (1980) :Semi-symmetric connection in an SP-Sasakian manifold, Progress of Mathematics, Vol. 14, Nos. 1 & 2, 77-83.
- [5] Mishra ,R.S. and Pandey S.N.(1980) On Quarter symmetric metrc F-connections, Tensors, N.S..34.1,-07,
- [6] Yano,K,and Imai, T.(1982) Quarter symmetric connections and their curvature tensor, Tensors, N.S.. 38.13-18;
- [7] Rastogi,S,C,(1987) A note On Quarter symmetric metric onections, indian J. Pure App. Math 18-12, 1107-112,
- [8] Mukhopadhyay, S, Roy A.K. and Barua, B(1991) Some properties of a Quarter-symmetric metric connection on a riemannian manifold, Soochow J.Math. 17, 205-211,
- [9] Tarafdar, D. and De, U.C (1993) On a type of P-Sasakian manifold. Extracta Mathematicae, Vol. 8, 31-36
- Biswas, S.C.andDe,U.C.(1997) Quarter symmetric metric connection in SP-Sasakian manifold commun.fac, Sci. Univ. Ank.series 46, 49-56.
- [11] Singh, R.N., On quarter-symmetric connections, Vikram Mathematical J. 17 (1997) 45--54.
- [12] De,U.C,andJ,Sengupta ,(2000)Quarter symmetric metric connection in Sasakian manifold .commun.fac,Sci.Univ.Ank.seriesAl Vol49,7-13,
- [13] Jaiswal, V.K,Ojha,R.H.andprasad,B.(2001).A semi symmetric φ-connection in an LP-Sasakian , J.Nat.Acad . Math.15,73-78,
- [14] "Ozg"ur C. "Ozg"ur,(2005): On a class of Para-Sasakian manifolds. Turk. J. Math., Vol.29, 249-257,
- [15] Singh,R.N.,andPandey, M.K.(2007) On a type of Quarter Symmetric non metric connection in a Kenmotsu manifold, Bull.Cal. Math. Soc., 99(4),433-444,
- [16] De,U.C.andMondal,A.K.(2008) Quarter symmetric connection on sasakianmanifold,Bull Math.Anal.App.1,99-108.
- [17] Sular, SOzgur, C and De, U.C. (2008) Quarter Symmetric non metric connection in a Kenmotsu manifold, S.U.T.J.Math.44, 297-308,
- [18] Chaube,S.K.andOjha.R.H.(2010)Quarter symmetric non- metric connection in on an almost Hermitian manifold, Bull.of math anal.and application. Vol,2pp77-83,
- [19] Shukla, N.V.C and Saha, R.J. (2014) On semi-symmetric non metric connection in p- sasakian Manifolds Bull.cal. math soc., 106(1) 73-7.
- [20] Shukla, N.V.C and Pandey, A.C. (2014) Some properties on semi-symmetric metric T-connection on sasakian Manifold J.A.M.1946-1954.
- [21] Shukla, N.V.C and Jaiswal, jyoti (2014)Some curvature properties of LP- sasakian manifold with Quarter-symmetric metric connection JRAPS Vol13, pp.193-202.

Department of Mathematics & Astronomy University of Lucknow Lucknow, 226007, UP INDIA

Department of Mathematics & Astronomy University of Lucknow Lucknow, 226007, UP INDIA (8.4)