Deriving Shape Functions For 8-Noded Rectangular Serendipity Element in Horizontal Channel Geometry and Verified

P. Reddaiah ${ }^{\# 1}$
\# Professor of Mathematics, Global College of Engineering and Technology, kadapa, Andhra Pradesh, India.

Abstract

In this paper, I derived shape functions for 8 -noded rectangular serendipity element in horizontal channel geometry and also I verified two verification conditions for shape functions. First verification condition is sum of all the shape functions is equal to one and second verification condition is each shape function has a value of one at its own node and zero at the other nodes. For computational purpose I used Mathematica 9 Software [2].

Keywords - Serendipity element, Horizontal Channel Geometry, Shape functions.

I. INTRODUCTION

In between two parallel planes due to flow takes along the x-axis of the channel three dimensional plane changes to two dimensional yz- plane. Shape functions have great significance in finite element method. Once if we find shape functions for that particular geometry we can easily analyze heat and mass analysis. In geometry if nodes are located on the boundary only then we call it as serendipity element [1].

II. GEOMETRICAL DESCREPTION

We choose the Cartesian frame of reference $0(\mathrm{x}, \mathrm{y}, \mathrm{z})$, such that the imposed pressure gradient is along x axis and $y= \pm h$ are the boundary planes shown in Fig.1. The flow occurs at low concentration difference so that the thermo-diffusion effects and the interfacial velocity due to mass diffusion can be neglected. In the absence of extraneous forces the flow is unidirectional along x -axis.

In view of the two dimensionality and symmetry of the flow w.r.t. the midplane of the channel we analyse the flow features in a domain in the upper half of the channel bounded by the impermeable wall lying between two parallel planes normal to the wall at unit distance apart. The finite element analysis with quadratic approximation functions is carried out using eight noded serendipity elements.

Fig.1: Schematic diagram of Horizontal Channel
For computational purpose we choose a serendipity element with $(0,0),(0,1),(1,0)$ and $(1,1)$ as its vertices. The eight nodes of the element are shown in Fig.2.

Fig.2: Eight noded Rectangular serendipity Element.

The element consists of eight nodes all of which are located on the boundary.

III. DERIVING SHAPE FUNCTIONS FOR 8-NODED RECTANGULAR SERENDIPITY ELEMENT IN HORIZONTAL CHANNEL GEOMETRY
 Our task is to define shape functions N_{i} such that $N_{i}=1$ at node i and 0 at all other nodes.

(I a) Shape function for Node 1
Corner node 1

Z,y

At $\operatorname{Node} 1(0,0)$
$\therefore z=0, y=0$ at node 1
$\begin{array}{rr}\mathrm{z}_{1}, y_{1} & \mathrm{z}_{2}, y_{2} \\ \operatorname{Node} 2\left(\frac{1}{2}, 0\right) & \text { and Node8 }\left(0, \frac{1}{2}\right)\end{array}$
Two point formulat for Node2 and Node8
$\frac{z-z_{1}}{z_{2}-z_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}$
$\frac{z-\frac{1}{2}}{0-\frac{1}{2}}=\frac{y-0}{\frac{1}{2}-0} \Rightarrow \frac{z-\frac{1}{2}}{-\frac{1}{2}}=\frac{y}{\frac{1}{2}} \Rightarrow z-\frac{1}{2}=-\frac{1}{2}\left(\frac{y}{\frac{1}{2}}\right)$
$\Rightarrow z-\frac{1}{2}=-y \Rightarrow z+y-\frac{1}{2}=0$
$N_{1}=1$ at node 1 and 0 at other nodes.
Thus N_{1} has to vanish along the lines
$\mathrm{z}=1, \mathrm{y}=1$ and $\mathrm{z}+\mathrm{y}-\frac{1}{2}=0$
$\binom{$ For node 1 we should not take }{$y=0 \& z=0}$
Consequently, N_{1} is of the form
$\mathrm{N}_{1}=C(z-1)(y-1)\left(z+y-\frac{1}{2}\right)$
Where C is some constant. The constant is determined from the condition $\mathrm{N}_{1}=1$ at node 1.
we should find constant c value
Node1 $(0,0)$
$z=0, y=0$ at node 1
$\mathrm{N}_{1}=C(0-1)(0-1)\left(0+0-\frac{1}{2}\right)=C(-1)(-1)\left(-\frac{1}{2}\right)$
$=C\left(-\frac{1}{2}\right) \quad\left(\because \mathrm{N}_{1}=1\right)$
$1=C\left(-\frac{1}{2}\right) \Rightarrow C=\frac{2}{-1} \Rightarrow C=-2$
$(1) \Rightarrow \mathbf{N}_{1}=-2(z-1)(y-1)\left(z+y-\frac{1}{2}\right)$
(II a) Shape function for Node 3
Corner node 3
z,y
At Node3(1,0)
$\therefore z=1, y=0$ at node 3
z_{1}, y_{1}
$\operatorname{Node} 2\left(\frac{1}{2}, 0\right)$$\quad$ and Node4 $\left(1, \frac{1}{2}\right)$
Two point formula for Node2 and Node4
$\frac{z-z_{1}}{z_{2}-z_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}$
$\frac{z-\frac{1}{2}}{1-\frac{1}{2}}=\frac{y-0}{\frac{1}{2}-0} \Rightarrow \frac{z-\frac{1}{2}}{\frac{1}{2}}=\frac{y}{\frac{1}{2}} \Rightarrow z-\frac{1}{2}=-\frac{1}{2}\left(\frac{y}{\frac{1}{2}}\right)$
$\Rightarrow z-\frac{1}{2}=y \Rightarrow z-y-\frac{1}{2}=0$
$N_{3}=1$ at node 3 and 0 at other nodes.
Thus N_{3} has to vanish along the lines
$\mathrm{z}=0, \mathrm{y}=1$ and $\mathrm{z}-\mathrm{y}-\frac{1}{2}=0$
(For node 3 we should not take $\mathrm{y}=0 \& \mathrm{z}=1$)
Consequently, N_{3} is of the form
$\mathrm{N}_{3}=C(z-0)(y-1)\left(z+y-\frac{1}{2}\right)$
Where C is some constant. The constant is determined from the condition $\mathrm{N}_{3}=1$ at node 3 .
we should find constant c value
Node3(1,0)
$z=1, y=0$ at node 3
$\mathrm{N}_{3}=C(1-0)(0-1)\left(1-0-\frac{1}{2}\right)$
$=\mathrm{C}(1)(-1)\left(1-\frac{1}{2}\right)=C\left(-\frac{1}{2}\right) \quad\left(\because \mathrm{N}_{3}=1\right)$
$1=C\left(-\frac{1}{2}\right) \Rightarrow C=\frac{2}{-1} \Rightarrow C=-2$
$(3) \Rightarrow \mathbf{N}_{3}=-2 z(y-1)\left(z-y-\frac{1}{2}\right)$

(III a) Shape function for Node 5

Corner node 5
z,y

At Node5(1,1)
$\therefore z=1, y=1$ at node 5

$$
\mathrm{z}_{1}, y_{1} \quad \mathrm{z}_{2}, y_{2}
$$

$\operatorname{Node} 4\left(1, \frac{1}{2}\right)$ and $\operatorname{Node6}\left(\frac{1}{2}, 1\right)$
Two point formula for Node4 and Node6
$\frac{z-z_{1}}{z_{2}-z_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}$
$\frac{z-1}{\frac{1}{2}-1}=\frac{y-\frac{1}{2}}{1-\frac{1}{2}} \Rightarrow \frac{z-1}{-\frac{1}{2}}=\frac{y-\frac{1}{2}}{\frac{1}{2}}$
$\Rightarrow z-1=-\frac{1}{2}\left(\frac{y-\frac{1}{2}}{\frac{1}{2}}\right)$
$\Rightarrow z-1=-y+\frac{1}{2} \Rightarrow z+y-1-\frac{1}{2}=0$
$z+y+\left(\frac{-2-1}{2}\right)=0 \Rightarrow z+y-\frac{3}{2}=0$
$N_{5}=1$ at node 5 and 0 at other nodes.
Thus N_{5} has to vanish along the lines
$\mathrm{y}=0, \mathrm{z}=0$ and $\mathrm{z}+\mathrm{y}-\frac{3}{2}=0$
$\binom{$ For node 5 we should not }{ take $\mathrm{y}=1 \& \mathrm{z}=1}$
Consequently, N_{5} is of the form
$\mathrm{N}_{5}=C(y-0)(z-0)\left(z+y-\frac{3}{2}\right)$
Where C is some constant. The constant is determined from the condition $\mathrm{N}_{5}=1$ at node 5 .
we should find constant c value
Node5(1,1)
$z=1, y=1$ at node 5
$\mathrm{N}_{5}=C(1-0)(1-0)\left(1+1-\frac{3}{2}\right)$
$=\mathrm{C}(1)(1)\left(2-\frac{3}{2}\right)=C\left(\frac{4-3}{2}\right) \quad\left(\because \mathrm{N}_{5}=1\right)$
$1=C\left(\frac{1}{2}\right) \Rightarrow C=2$
(5) $\Rightarrow \mathrm{N}_{5}=2 y z\left(z+y-\frac{3}{2}\right)$
(IV a) Shape function for Node 7
Corner node 7
z,y

At Node5(0,1)
$\therefore z=0, y=1$ at node 7
z_{1}, y_{1}
$\operatorname{Node6}\left(\frac{1}{2}, 1\right)$ and $\operatorname{Node} 8\left(0, \frac{1}{2}\right)$
Two point formula for Node6 and Node8
$\frac{z-z_{1}}{z_{2}-z_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}$
$\frac{z-\frac{1}{2}}{0-\frac{1}{2}}=\frac{y-1}{\frac{1}{2}-1} \Rightarrow \frac{z-\frac{1}{2}}{-\frac{1}{2}}=\frac{y-1}{-\frac{1}{2}}$
$\Rightarrow z-\frac{1}{2}=-\frac{1}{2}\left(\frac{y-1}{-\frac{1}{2}}\right)$
$\Rightarrow z-\frac{1}{2}=y-1 \Rightarrow z-y-\frac{1}{2}+1=0$
$z-y+\left(\frac{-1+2}{2}\right)=0 \Rightarrow z-y+\frac{1}{2}=0$
$N_{7}=1$ at node 7 and 0 at other nodes.
Thus N_{7} has to vanish along the
lines $y=0, z=1$ and $z-y+\frac{1}{2}=0$
$\binom{$ For node 7 we should not }{ take $\mathrm{z}=0$ \& $\mathrm{y}=1}$
Consequently, N_{7} is of the form
$\mathrm{N}_{7}=C(y-0)(z-1)\left(z-y+\frac{1}{2}\right)$
Where C is some constant. The constant is determined from the condition $\mathrm{N}_{7}=1$ at node 7 .
we should find constant c value
Node7(0,1)
$z=0, y=1$ at node 7
$\mathrm{N}_{7}=C(1-0)(0-1)\left(0-1+\frac{1}{2}\right)$
$=\mathrm{C}(1)(-1)\left(-1+\frac{1}{2}\right)=C(-1)\left(\frac{-2+1}{2}\right)$
$\left(\because \mathrm{N}_{7}=1\right)$
$1=C\left(\frac{1}{2}\right) \Rightarrow C=2$
(7) $\Rightarrow \mathrm{N}_{7}=2 y(z-1)\left(z-y+\frac{1}{2}\right)$

' V a) Shape function for Mid Node 2

Shape function for Node $2\left(\frac{1}{2}, 0\right)$
$z=\frac{1}{2}, y=0$
$N_{2}=1$ at node 2 and 0 at other nodes.
Thus N_{2} has to vanish along the
lines $\mathrm{z}=0, \mathrm{y}=1$ and $\mathrm{z}=1$
(For Node 2 we should not take $\mathrm{y}=0$)
Consequently, N_{2} is of the form
$N_{2}=C(z-0)(y-1)(z-1)$
We should find constant C value
Node $2\left(\frac{1}{2}, 0\right) \Rightarrow z=\frac{1}{2}, y=0$
$N_{2}=C\left(\frac{1}{2}-0\right)(0-1)(z-1)$
$=C\left(\frac{1}{2}\right)(-1)\left(\frac{1}{2}-1\right)=C\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)$
$=C\left(\frac{1}{4}\right) \quad\left(\because \mathrm{N}_{1}=1\right)$
$1=C\left(\frac{1}{4}\right) \Rightarrow C=4$
(9) $\Rightarrow N_{2}=4 z(y-1)(z-1)$

VI a) Shape function for Mid Node 4

Shape function for Node $4\left(1, \frac{1}{2}\right)$ $z=1, y=\frac{1}{2}$ at node 4
$N_{4}=1$ at node 4 and 0 at other nodes.
Thus N_{4} has to vanish along the lines
$\mathrm{y}=0, \mathrm{z}=0$ and $\mathrm{y}=1$
(For Node 4 we should not take $\mathrm{z}=1$)
Consequently, N_{4} is of the form
$N_{4}=C(y-0)(z-0)(y-1)$
We should find constant C value
Node $4\left(1, \frac{1}{2}\right) \Rightarrow z=1, y=\frac{1}{2}$
$N_{4}=C\left(\frac{1}{2}-0\right)(1-0)\left(\frac{1}{2}-1\right)$
$=C\left(\frac{1}{2}\right)(1)\left(\frac{1-2}{2}\right)=C\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)$
$=C\left(-\frac{1}{4}\right) \quad\left(\because \mathrm{N}_{4}=1\right)$
$1=C\left(-\frac{1}{4}\right) \Rightarrow C=-4$
(11) $\Rightarrow N_{4}=-4 y z(y-1)$

- VII a) Shape function for Mid node 6

Shape function for $\operatorname{Node} 6\left(\frac{1}{2}, 1\right)$
$z=\frac{1}{2}, y=1$ at node 6
$N_{6}=1$ at node 6 and 0 at other nodes.
Thus N_{6} has to vanish along the lines
$\mathrm{z}=0, \mathrm{y}=0$ and $\mathrm{z}=1$
(For Node 6 we should not take $y=1$)
Consequently, N_{6} is of the form
$N_{6}=C(z-0)(y-0)(z-1)$
We should find constant C value
Node $6\left(\frac{1}{2}, 1\right) \Rightarrow z=\frac{1}{2}, y=1$
$N_{6}=C\left(\frac{1}{2}-0\right)(1-0)\left(\frac{1}{2}-1\right)$
$=C\left(\frac{1}{2}\right)(1)\left(\frac{1-2}{2}\right) \quad\left(\because \mathrm{N}_{6}=1\right)$
$1=C\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right) \Rightarrow 1=C\left(-\frac{1}{4}\right)$
$\Rightarrow C=\frac{4}{-1} \Rightarrow C=-4$
$(13) \Rightarrow N_{6}=-4 z y(z-1)$
(VIII a) Shape function for Mid Node 8
Shape function for Node $6\left(0, \frac{1}{2}\right)$
$z=0, y=\frac{1}{2}$ at node 6
$N_{8}=1$ at node 8 and 0 at other nodes.
Thus N_{8} has to vanish along the lines
$\mathrm{y}=0, \mathrm{z}=1$ and $\mathrm{y}=1$
(For Node 8 we should not take $\mathrm{z}=0$)
Consequently, N_{8} is of the form
$N_{8}=C(y-0)(z-1)(y-1)$
We should find constant C value
Node $8\left(0, \frac{1}{2}\right)$
$z=0, y=\frac{1}{2}$ at node 8
$N_{8}=C\left(\frac{1}{2}-0\right)(0-1)\left(\frac{1}{2}-1\right)$
$=C\left(\frac{1}{2}\right)(-1)\left(\frac{1-2}{2}\right)=\mathrm{C}\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)$
$\mathrm{N}_{8}=C\left(\frac{1}{4}\right) \Rightarrow 1=C\left(\frac{1}{4}\right)$
$\Rightarrow C=4 \quad\left(\because \mathrm{~N}_{8}=1\right)$
(15) $\Rightarrow N_{8}=4 y(z-1)(y-1)$

IV. VERIFICATION

(I b) $1^{s t}$ Condition
Sum of all the shape functions is equal to one

$$
\begin{aligned}
& N_{1}+N_{2}+N_{3}+N_{4}+N_{5}+N_{6}+N_{7}+ \\
& +N_{8}=(2)+(4)+(6)+(8)++(10)+ \\
& +(12)+(14)+(16)
\end{aligned}
$$

Output
$N_{1}+N_{2}+N_{3}+N_{4}+N_{5}+N_{6}+$
$+N_{7}+N_{8}=1$
(II b) $2^{\text {nd }}$ Condition
Each shape function has a value of one at its own node and zero at the other nodes.
(i) At Node $1(0,0) \quad \mathrm{z}=0$, $\mathrm{y}=0$
$\begin{array}{llllllllllll}N_{1} & \mathrm{~N}_{2} & \mathrm{~N}_{3} & \mathrm{~N}_{4} & \mathrm{~N}_{5} & \mathrm{~N}_{6} & \mathrm{~N}_{7} & \mathrm{~N}_{8}\end{array}$
Output $1 \begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
(ii) At Node $2\left(\frac{1}{2}, 0\right) \quad \mathrm{z}=\frac{1}{2} \quad \mathrm{y}=0$
$\begin{array}{lllllllllllll}N_{1} & \mathrm{~N}_{2} & \mathrm{~N}_{3} & \mathrm{~N}_{4} & \mathrm{~N}_{5} & \mathrm{~N}_{6} & \mathrm{~N}_{7} & \mathrm{~N}_{8}\end{array}$
Output $0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$
(iii) At Node $3(1,0) \quad \mathrm{z}=1, \mathrm{y}=0$
$\begin{array}{llllllllllllll}N_{1} & \mathrm{~N}_{2} & \mathrm{~N}_{3} & \mathrm{~N}_{4} & \mathrm{~N}_{5} & \mathrm{~N}_{6} & \mathrm{~N}_{7} & \mathrm{~N}_{8}\end{array}$
Output $0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$
(iv) At Node $4\left(1, \frac{1}{2}\right) \quad \mathrm{z}=1, \mathrm{y}=\frac{1}{2}$
$\begin{array}{lllllllllllll}N_{1} & \mathrm{~N}_{2} & \mathrm{~N}_{3} & \mathrm{~N}_{4} & \mathrm{~N}_{5} & \mathrm{~N}_{6} & \mathrm{~N}_{7} & \mathrm{~N}_{8}\end{array}$
Output $0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0$
(v) At Node 5(1,1) $\quad \mathrm{z}=1, \mathrm{y}=1$
$\begin{array}{lllllllll}N_{1} & \mathrm{~N}_{2} & \mathrm{~N}_{3} & \mathrm{~N}_{4} & \mathrm{~N}_{5} & \mathrm{~N}_{6} & \mathrm{~N}_{7} & \mathrm{~N}_{8}\end{array}$
Output $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0$
(vi) At Node $6\left(\frac{1}{2}, 1\right) \quad \mathrm{z}=\frac{1}{2}, y=1$
$\begin{array}{llllllllllllll}N_{1} & \mathrm{~N}_{2} & \mathrm{~N}_{3} & \mathrm{~N}_{4} & \mathrm{~N}_{5} & \mathrm{~N}_{6} & \mathrm{~N}_{7} & \mathrm{~N}_{8}\end{array}$
Output $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0$
(vii) At Node 7(0,1) $\quad \mathrm{z}=0, \mathrm{y}=1$
$\begin{array}{llllllllllll}N_{1} & \mathrm{~N}_{2} & \mathrm{~N}_{3} & \mathrm{~N}_{4} & \mathrm{~N}_{5} & \mathrm{~N}_{6} & \mathrm{~N}_{7} & \mathrm{~N}_{8}\end{array}$
Output $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0$ (viii) At $\operatorname{Node} 8\left(0, \frac{1}{2}\right) \quad z=0, y=\frac{1}{2}$
$\begin{array}{llllllllllllllll}N_{1} & \mathrm{~N}_{2} & \mathrm{~N}_{3} & \mathrm{~N}_{4} & \mathrm{~N}_{5} & \mathrm{~N}_{6} & \mathrm{~N}_{7}\end{array}$
Output $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1$

V. AUTHOR'S CONTRIBUTION

1. Derived Shape functions for 8 -noded Rectangular serendipity element in

Horizontal Channel Geometry.
2. Verified sum of all the shape functions is equal to one.
3. Verified each shape function has a value of one at its own node and zero at the other nodes.

References

[1]. S.S. Bhavikatti, Finite Element Analysis, New Age International (P) Limited, Publishers, 2 Edition, 2010.
[2]. Mathematica 9 Software, Wolfram Research, Version number 9.0.0.0, 1988-2012.

