International Journal of Mathematics Trends and Technology (IJMTT) — Volume 50 Number 2 October 2017

Behaviour of Solutions of Linear Systems

VijayalakshmiMenon R
Asst. Prof, Dept. of Mathematics, Govt. College, Madappally, Vatakara, Calicut, Kerala, S. India

Abstract wherea >0 and b(t)— 0 ast — .
This paper deals with the behaviour of solutions of linear Considering the solutions of (5) and (6)
systems. The notions of stability, boundedness and du o > 8y

asymptotic behaviour of solutions of a general linear system at -

are studied. =logu=—at+c

S u=ce > lim_,u=0
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1.INTRODUCTION = - =l-at+b®)]dt
We consider the behaviour of the solutions of the
linear differential equation

E—|ﬂ+H{r}Jz—,[l;. sv=e

= logv = —at + Jb(t)dt

—at+ [b(t)dt

dt = limv=0
where A is a constant matrix and B (t) is small as Thus bothts_E)LI)outions uand v tend to zero
t - . ast —» oo
Two particularly important cases are those where . logu _ .. log v
Also, lim,_,,, — = lim,_, =—-a
|[B()|| = 0 or where [“|[B(t)]|dt < o toe Ty t

The solutions of (1) share many properties with the So, both solutions u and v have the following

solutions of properties:
ay -
=A@ et
so far as their behaviours are concerned. i) limu=limv=0
In this paper, section 2 deals with the concept of and
stability of linear equations. In section 3, the
boundedness property of solutions and the ii) lim, "’% = lim, e l°§ Y= —a

sufficient conditions for boundedness of solutions
are studied in detail. Section 4 illustrates the

) . . ) Now =0an =1
asymptotic behaviour of solutions of linear systems. ow suppose a=0 and b(t) i

Then i—t =—au==u=ce "
2.STABILITY OF LINEAR EQ_ UATIONS [1] =>u=cwhena=0
2.1Defn: The solutions of d_'; = A(t)y = () and
arestable with respect to a property P and v _ [—a + b(t)]v
E_erturbationsB(t) of type T if the solutions of “zr) v |
ﬁ = [A(t) + B(t)]z — (4)also possess = [—a+b(t)]dt = l_ﬂ + ;I dt
property P. If this is not true, the solutions of =logv = —at +logt
(3) are said to be unstable with respect to Sv=te
property P under perturbations of type T. «vis unbounded as t — oo
To illustrate the above definition, we consider two With respect to property (ii), since a=0,
simple differential equations: “T“* =10
. logu
d_uz auw — (5) . th—g t
at Also=2% = 0= Jim ==* = 0
Thus, there is stability with respect to property
and (ii) but instability with respect to property (i) —
dv the property of boundedness.

—=[-a+b®]v - (6)
dt a v ( 2.2 Note:
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If we replace irby a function which is integrable

over (to, ), then boundedness will be
preserved.

2.3 Note:
The most important property of solutions is
that of boundedness. If a solution is bounded,
we are interested in knowing whether or not it
approaches zero at t —» o

3.1 BOUNDEDNESS OF SOLUTIONS([1],[2])
3.1.1 Definition:
We call the coefficient
matrix A(t) of the differential equation
% — A(t)zalmost constant if

lim A{t) = A, a constant matrix.

=00

3.1.2 Lemma(Fundamental lemma):
Ifuv=0, if C, isa positive constant,
[
and if

u<sCi+ fouvdt1—> @)
then, = C1Hh]'.2||{f vdty) = (8)
Proof: From (7), we have

(E1E)
[ +J weared £ =v=(9)
Integrating both sides of (9) between 0
and t, we get
log[C, + [, uvdty] — log€, = [ vdt,
ie.l R(W_”M')c:ftvdtl
juv&tpy vdt,) — (10)
m1) = (11)
us G +_| uvdl, = G E‘\{p(
which is the fundamental lemma.

3.1.3Theorem:
If all solutions of
dy/dt = Ay - (12)
where A is a constant matrix, are
bounded as t — oo, then the same is
true of the solutions of

—=[A+ B(t)]z - (13)
provided [ "||B(¢)[|dt < o

Proof:

Equation (13) can be written as
== Az +B(t)z - (14)
Every solution of (14) satisfies a linear

integral equation

=y+ fot Y(t —t1)B (t1) z(t1) dti-(@15)
where y is the solution of (12) for
which y(0) = z(0) and
Y is the matrix solution of
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S Av.Y(0) = 1 - (16)
we have y =Yy(0) = Yz(0)
Let €, = max(efollvl |, e 1Y1))
Then, from (15), we get

lizI] < |Ixl] + ] = eDI] |1BCeD] [IzCe)l| e,

< €+ [, IBEeDI| [lz(e)]| de> (17)

Applying the fundamental lemma in
(17), we get

llzl] < ¢ exp (€, [[1B(e)I] dt,) — (18)
Since J;;"||ﬂ(t)|| dt < eafrom (18),
it follows that || z|| is bounded.
i.e., the solutions of equation (13) are
bounded.
Hence, the theorem.

3.1.4Theorem

If all the solutions of the equation
dy

= Ay —= (19
approach zero as t — oo, the same
holds for the solutions of
Z=[A+B(®)z - (20)
provided that ||B(t)|| < C1 for t = t,
where C; is a constant which depends
upon A.

Proof

Every solution of (20)
satisfies a linear integral
equation
z=y+ [ Y(t—t;) B(ty)
z(t,) dt; — (21)
where Y is the matrix solution of
& Ay, V(0) =1
Now = A¥= —_ = A dt

dib ¥
>logY=At+B

=Y = eAt+B = (CeAt

Since ||Y]| = 0 as t — oo, 3 a positive
constant = such that
[1Y]]| < Ce=t fort =0 — (22) By
theorem 3.1.3, we have y =
Yy(0)~||y|| < Cre—=tfort =0 —
(23)
Hence, from (21),
o —E
llzl| = Ce™ + C; [, e -
Since ||B(t)|] < C1 for t > to, we get
lizl|e*t = €, + €,C, [, e** ||z(t))]] dty — (25)
Applying fundamental lemma in
equation (25), we get

C;_* ExXp (-i-l.:: E] E.d dtl) - (26)
e, ||zllext< Coetitst — (27)
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If CiC; <, then the above
equation gives ||z|| - 0 ast — oo. But
the constants C, and = depend upon
the characteristic roots of A. Hence, it
follows that Ci depends upon A. Let
Hence the theorem. B(t) = . 0

—al

If ‘a’ is any non-negative constant,
then every solution of (32) and (33)
approach zero asg— oo

:_.:] be the perturbing matrix

3.2SUFFICIENT CONDITIONS FOR The perturbed equation has the form

BOUNDEDNESS OF SOLUTIONS ([1]) ir
In this section, the sufficient conditions -
required for the solutions of a linear system to and
be bounded, are being dealt with — [sin(logt) + cos(logflg> 2a)z, + z,e ™" — (35)

The boundedness of the solutions of dt

= —az; — (34)

dy .

S= AWy > (28)

together with the condition ||B(t)|| > 0ast —
oo s not sufficient to ensure the boundedness

of all solutions of
T =[A() + B(D)]z — (29)

Equation (34) gives z; = Cie~2t and
Equation (35) givesz, =
e[tsin (log t)—2at]

[{.‘2 + {'-l 'lrl: 5] tysin{logt, :Idfl]

Lett = el

w

Even if we amend the condition ||B(t)|| = 0 as
t — oo, by the condition [ °||B(¢)]|dt < e,
the sufficiency remains unjustified. This fact is e sinlont.] o -

illustrated in the following theorem: J, e~tmntestidyy > [T emhisinloeflgy, >

—2n e Tt
tles —e™™)expl— ,

3.2.1TheoTr(;m . ion of th wt(1ich implies Zhe :ogutio;s)

ere is an equation of the type of (34) and (35) will be
fr—!: = A(t)y bounded only if ;=10
NOW, Ci=0& 21(0) =0
Thus, if z1(0) # 0, the solutions of
(35) are not bounded

If 1< 2a<14e+,then

with the property that all solutions
approach zero as t — oo, and a matrix B(t)

for which [||B(¢)]| dt < o, such that all 3.2.2Theorem:
If all the solutions of the equation

l.f!r' _
- A(t)y are bounded, then all the

solutions of the
equation% = [A(t) + B(t)]zare
bounded,provided

solutions of the equation
# = [A(t) + B(t)]z are not bounded.
al

Proof: Consider the equations
dyy

= —ay, — (30 -

de n = 30) () [IB(O)|dt < oo
and &

dys _ o : _ (b) = [ tr(A)dt > —co

T [sin(log) + cos(logt) — Zaly; = (31) Proof: Expressing z in terms
We solve for y1 and y- of y, we have
Equation (30) — ”yi = —adt ==y + fot Y () Y-1(t1)B(t1) z(t1)dt1
Integrating,log y1 = —at + log C1 “lzll < Nyl +
i = —at
He.yi= Ce LYY=l 1BEDI l1z(e|lde:

. : .

Equation (31) Since dety’ = exp [L, f-‘fliri]'dfl: if

- % = [sin(logt) + cos(logt) — 2ajdt condition(b) is satisfied, then

Integrating, [1Y=1(t)]| is bounded as t — oo
log y2 = [t sin(log t) — 2at] + log C: ||2|| <, +C, fur||3(h}||||z(t1)|| dt,

'.'yZ — Czetsin(logt)fzat .
Thus, the general solutions of (30) and ﬁptale)/;nb% I/i;eef;;iia(:?]en\s\?; IgeeTma

31) are respectivel
- et I2l] < ¢y exp (€ ]I e |dts)
and Since [ “[|B(t)||dt < o, ||z][is
o = Caetnen-2t ;5 (33) bounded
Hence, the theorem.

ISSN: 2231-5373 http://www.ijmttjournal.org Page 132



http://www.ijmttjournal.org/

International Journal of Mathematics Trends and Technology (IJMTT) — Volume 50 Number 2 October 2017

then every non-zero solution of (36) is
unbounded as t = +oo.

4. ASYMPTOTIC BEHAVIOUR OF SOLUTIONS

Proof: Let ¢ be a solution of (36)

3] . .

In the previous section, we have dealt with the Lo in the previous theorem, we have
necessary and sufficient conditions for the <@ (0)1* = @7(t) [A(t) + AT(£)]B(t) — (40)
boundedness of a solution. If a solution is bounded, Since m(t) is the smallest eigen value of
we are interested in knowing whether or not it (t) + AT(t), we get

approaches zero as t — 4o, which depicts the

asymptotic behaviour of the solutions. u 2 K

Consider the linear system ’fl{p“jl Ein(t_}.m_[t}l _
LAYy, t=0 = (36) Thus, E{&'_L" "“"""“|¢-(g}|3]

dt

where A(t) is a real-valued continuous nxn matrix
on0<t<oo

We want to find the behaviour of solutions of (36)
ast— o

If the eigen values of the matrix A are known, all
solutions of (36) are completely determined. Hence,
the eigen values determine the behaviour of
solutions as - oo

=t m[.x'ju!.x'{
=g ha

1B - m()BE)?} = 0
P = 1g(e)|? elo™ ' - (41)

By condition (39) the right side of (41) tends to
+00 ast — +oo,
a lim|@(t)]| = oo
T—eon
i.e, the solution ¢ is unbounded
Hence, the theorem

4.1Theorem:
Let A(t) be a real- valued, continuous, nxn 5.CONCLUSION
matrix on [0, o) . This paper is a work on the behaviour of solutions
Let M(t) be the largest eigen value of of linear systems, when the time is increased

indefinitely; which is a kind of stability property.
This provides an insight into the necessary steps to
be taken to avoid unwanted phenomena or criteria

(t) + AT(t), where AT(t) is the transpose of
the matrix A(t).

If lim,_c, ffo M(s)ds = —oo (to> 0 is fixed) -

in a system.
(37), then every solution of (36) tends to
zero as t — +oo,
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=" (OA@) d(1) + AT(D) ¢7(1) P(2)
=¢T(O[A[®) + AT([D](D)
Since M(t) is the largest eigen value of the
symmetric matrix A(t) + AT(t), we get
|p"(O[A®) + AT(D]P )] < M(D)[P (D)
Thus,

0 = |¢(017 < 1t (exp | [} M(s)ds|) - (38)
By condition (37), the right side of (38) tends
to zero
Hence, limg(t) =0

t— o

Hence, the theorem

4.2Theorem:
Let m(t) be the smallest eigen value of
A(t) + AT(D). If
_1ij supjfl mis)ds = 4o (ty; > 0is fixved) — (39)
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