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Abstract 

This paper deals with the behaviour of solutions of linear 

systems. The notions of stability, boundedness and 

asymptotic behaviour of solutions of a general linear system 

are studied. 
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1.INTRODUCTION 

We consider the behaviour of the solutions of the 

linear differential equation  

 

where A is a constant matrix and B (t) is small as 

𝑡 → ∞.  

Two particularly important cases are those where 

||B(𝑡)|| → 0 or where  

 

The solutions of (1) share many properties with the 

solutions of  

 

so far as their behaviours are concerned.  

 

In this paper, section 2 deals with the concept of 

stability of linear equations. In section 3, the 

boundedness property of solutions and the 

sufficient conditions for boundedness of solutions 

are studied in detail. Section 4 illustrates the 

asymptotic behaviour of solutions of linear systems.  

 

2.STABILITY OF LINEAR EQUATIONS [1] 

2.1Defn: The solutions of  

arestable with respect to a property P and 

perturbationsB(t) of type T if the solutions of 

 also possess 

property P. If this is not true, the solutions of 

(3) are said to be unstable with respect to 

property P under perturbations of type T. 

To illustrate the above definition, we consider two 

simple differential equations:   

  

and 

 
𝑑𝑣

𝑑𝑡
=  −𝑎 + 𝑏 𝑡) 𝑣 →  6) 

where𝑎 > 0  and 𝑏(𝑡)→ 0  as 𝑡 → ∞ .  
 

Considering the solutions of (5) and (6)  

⇒  
𝑑𝑡 𝑢 

          .⇒log 𝑢 = −𝑎𝑡 + 𝑐 

⇒. ⇒ lim𝑡→∞ 𝑢 = 0 

 
𝑑𝑣

𝑑𝑡
=  −𝑎 + 𝑏 𝑡) 𝑣 

⇒ 
𝑑𝑣

𝑣
=  −𝑎 + 𝑏 𝑡) 𝑑𝑡 

⇒ log 𝑣 =  −𝑎𝑡 +   𝑏 𝑡)𝑑𝑡 

⇒ 𝑣 =  𝑒−𝑎𝑡+  𝑏 𝑡)𝑑𝑡  

⇒ lim
𝑡→ ∞

𝑣 = 0  

Thus,both solutions u and v tend to zero 

as𝑡 →  ∞ 

Also, lim𝑡→∞
log 𝑢

𝑡
= lim𝑡→∞

log 𝑣

𝑡
= −𝑎 

 

So, both solutions u and v have the following 

properties:   

i) lim 𝑢 = lim 𝑣 = 0 

 

and 

 

ii) lim𝑡→∞
log 𝑢

𝑡
= lim𝑡→∞

log 𝑣

𝑡
= −𝑎 

 

Now suppose a=0 and b(t) =  

Then  

.  => 𝑢 = 𝑐 𝑤ℎ𝑒𝑛 𝑎 = 0 

and 

 

.⇒
𝑑𝑣

𝑣
 

..⇒log 𝑣 = −𝑎𝑡 + log 𝑡 

.⇒ 𝑣 = 𝑡𝑒−𝑎𝑡 

. is unbounded as 𝑡 → ∞ 

With respect to property (ii), since a=0,  

 

∴ lim
𝑡→∞

log 𝑢

𝑡
Also ⇒  

Thus, there is stability with respect to property 

(ii) but instability with respect to property (i) – 

the property of boundedness.  

2.2  Note: 
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If we replace by a function which is integrable 

over (𝑡0, ∞), then boundedness will be 

preserved.  

 

2.3  Note: 

The most important property of solutions is 

that of boundedness. If a solution is bounded, 

we are interested in knowing whether or not it 

approaches zero at 𝑡 → ∞ 

 

3.1 BOUNDEDNESS  OF SOLUTIONS([1],[2]) 

3.1.1 Definition:  

  We call the coefficient 

matrix A(t) of the differential equation 

almost constant if  

, a constant matrix.  

 

3.1.2 Lemma(Fundamental lemma):  

If u,v≥ 0, if C is a positive constant, 

and if  

        𝑢 ≤ 𝐶1 +  0 𝑢𝑣𝑑𝑡1 →  7) 

then,  

Proof: From (7), we have  

 

 

Integrating both sides of (9) between 0 

and t, we get  

 

i.e.,  𝑣 𝑑𝑡1
𝑡

0
 

𝐶1 +  𝑢𝑣 𝑑𝑡1

𝑡

0

≤ 𝐶1 

≤ 𝐶1 + 𝑣 

which is the fundamental lemma.  

 

3.1.3Theorem: 

If all solutions of   

𝑑𝑦/𝑑𝑡 = 𝐴𝑦 → (12) 

where A is a constant matrix, are 

bounded as 𝑡 → ∞, then the same is 

true of the solutions of  
𝑑𝑧

𝑑𝑡
 

provided  

 

Proof:   

Equation (13) can be written as  
𝑑𝑧

𝑑𝑡
 

Every solution of (14) satisfies a linear 

integral equation  

= 𝑦 +  𝑌
𝑡

0
(𝑡 − 𝑡1)B (𝑡1) 𝑧(𝑡1)  𝑑𝑡1→  15) 

where y is the solution of (12) for 

which y(0) = z(0) and  

Y is the matrix solution of  

 

𝑤𝑒 ℎ𝑎𝑣𝑒 𝑦 =Yy(0) = 𝑌z(0) 

Let  |𝑌| ) 

Then, from (15), we get  

𝑌 

→  17) 

Applying the fundamental lemma in 

(17), we get   

 

Since  𝑡) from (18), 

it follows that ||𝑧|| is bounded.  

i.e., the solutions of equation (13) are 

bounded.  

Hence, the theorem.  

 

3.1.4Theorem 

 

If all the solutions of the equation   
𝑑𝑦

𝑑𝑡
 

approach zero as 𝑡 → ∞, the same 

holds for the solutions of  
𝑑𝑧

𝑑𝑡
 

provided that ||B(𝑡)|| ≤ 𝐶1 for 𝑡 ≥ 𝑡0, 

where 𝐶1 is a constant which depends 

upon A.  

 

Proof 

 

Every solution of (20) 

satisfies a linear integral 

equation   

𝑧  

where Y is the matrix solution of 

 

Now ⇒  

⇒log Y = At + B 

⇒𝑌 = 𝑒𝐴𝑡+𝐵 = 𝐶𝑒𝐴𝑡

  

Since ||𝑌|| → 0 as 𝑡 → ∞, ∃ a positive 

constant  such that   

| |𝑌| | ≤ 𝐶2𝑒−∝t  for𝑡 ≥ 0 →    22) By 

theorem 3.1.3, we have 𝑦 = 
𝑌𝑦(0)∴||𝑦|| ≤ 𝐶2𝑒−∝𝑡for 𝑡 ≥ 0 →   
(23) 

Hence, from (21),    

 

Since ||B(𝑡)|| ≤ 𝐶1 for 𝑡 ≥ 𝑡0, we get  

 

Applying fundamental lemma in 

equation (25), we get  

𝑑𝑡1) →  26) 

i.e.,         ||𝑧||𝑒∝𝑡 ≤ 𝐶2𝑒𝐶1
𝐶

2
𝑡 →  27) 
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         If 𝐶1𝐶2 <∝, then the above 

equation gives ||𝑧|| → 0 as 𝑡 → ∞. But 

the constants 𝐶2 and  depend upon 

the characteristic roots of A. Hence, it 

follows that 𝐶1 depends upon A. 

Hence the theorem.   

 

3.2SUFFICIENT CONDITIONS FOR 

BOUNDEDNESS OF SOLUTIONS ([1]) 

In this section, the sufficient conditions 

required for the solutions of a linear system to 

be bounded, are being dealt with  

                The boundedness of the solutions of  

 

together with the condition ||𝐵(𝑡)|| → 0 as 𝑡 → 
∞ is not sufficient to ensure the boundedness 

of all solutions of  

 

Even if we amend the condition ||B(𝑡)|| → 0 as 

𝑡 → ∞, by the condition , 

the sufficiency remains unjustified. This fact is 

illustrated in the following theorem: 

 

3.2.1Theorem   

There is an equation of the type 

 

with the property that all solutions 

approach zero as 𝑡 → ∞, and a matrix B(𝑡) 

for which , such that all 

solutions of the equation   

 are not bounded.  

Proof: Consider the equations   

 

and 

 

We solve for 𝑦1 and 𝑦2 

Equation (30)  

Integrating,log 𝑦1 = −𝑎𝑡 + log 𝐶1 

i.e.,y1= 𝐶1𝑒−𝑎𝑡 

 

Equation (31)

 

Integrating,  

log 𝑦2 = [𝑡 sin(log 𝑡) − 2𝑎𝑡] + log 𝐶2 

∴𝑦2 = 𝐶2etsin(logt)−2at  

Thus, the general solutions of (30) and 

(31) are respectively  

𝑦1 = 𝐶1𝑒−𝑎𝑡 →  32) 

and 

𝑦2 = 𝐶2etsin(logt)−2at →  33) 
 

If ‘a’ is any non-negative constant, 

then every solution of (32) and (33) 

approach zero  as → ∞ 

 

Let  

 

The perturbed equation has the form  

 

 

and 

𝑑𝑧2

𝑑𝑡
 

Equation (34) gives 𝑧1 = 𝐶1𝑒−𝑎𝑡 and  

Equation (35) gives𝑧2 =

𝑒 𝑡𝑠𝑖𝑛  log 𝑡)−2𝑎𝑡  

 

Let  

If  , then  

 

𝑡  𝑒
−2𝜋

3 − 𝑒−𝜋 exp  −
𝑒−𝜋 𝑡

2
 , 

which implies the solutions 

of (34) and (35) will be 

bounded only if 𝐶1 = 0 

Now, 𝐶1 = 0 ⇔ 𝑧1(0) = 0 

Thus, if 𝑧1 0) ≠ 0, the solutions of 

(35) are not bounded   

3.2.2Theorem: 

If all the solutions of the equation 

 are bounded, then all the 

solutions of the  

equation are 

bounded,provided 

 

Proof: Expressing z in terms 

of y, we have  

= 𝑦 +  𝑌 𝑡)
𝑡

0
 𝑌−1(𝑡1)𝐵(𝑡1) 𝑧(𝑡1)𝑑𝑡1 

∴||𝑧|| ≤ ||𝑦|| + 

  |𝑌 𝑡)| 
𝑡

0
||𝑌−1(𝑡1)||  ||𝐵(𝑡1)||  ||𝑧(𝑡1)||𝑑𝑡1 

Since det , if 

condition(b) is satisfied,  then 

||𝑌−1(𝑡)|| is bounded as 𝑡 → ∞ 

 |𝑧 𝑡1)|  𝑑𝑡1 

Applying the fundamental lemma 

in the above equation,  we get  

 

 Since is 

bounded   

Hence, the theorem.  
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4. ASYMPTOTIC BEHAVIOUR OF SOLUTIONS 

[3] 
 In the previous section, we have dealt with the 

necessary and sufficient conditions for the 

boundedness of a solution. If a solution is bounded, 

we are interested in knowing whether or not it 

approaches zero as 𝑡 → +∞, which depicts the 

asymptotic behaviour of the solutions.  

Consider the linear system  

 
𝑑𝑡 

where A(t) is a real-valued continuous nxn matrix 

on 0 ≤ 𝑡 < ∞ 

We want to find the behaviour of solutions of (36) 

as 𝑡 → ∞ 

If the eigen values of the matrix A are known, all 

solutions of (36) are completely determined. Hence, 

the eigen values determine the behaviour of 

solutions as  t→ ∞ 

 

4.1Theorem: 

Let A(t) be a real- valued, continuous, nxn 

matrix on [0, ∞) .  

Let M(t) be the largest eigen value of  

(𝑡) + 𝐴𝑇(𝑡),  where 𝐴𝑇(𝑡) is the transpose of 

the matrix 𝐴(𝑡). 

If  lim𝑡→∞  𝑀
𝑡

𝑡0
(𝑠)𝑑𝑠 = −∞    𝑡0 > 0 𝑖𝑠 𝑓𝑖𝑥𝑒𝑑) →  

(37) , then every solution of (36) tends to 

zero as  𝑡 → +∞.  

 

Proof:  

 

Let  be a solution of (36)  

Then | (𝑡)|2 = 𝜙𝑇(𝑡)𝜙(𝑡) 

 

∴
𝑑

𝑑𝑡
|𝜙 𝑡)|2= 𝑇(𝑡)𝜙|(𝑡) +𝜙𝑇|

(𝑡)𝜙(𝑡) 

 = 𝑇(𝑡)𝐴(𝑡) 𝜙(𝑡) + 𝐴𝑇(𝑡) 𝜙𝑇(𝑡) 𝜙(𝑡) 

 = 𝜙𝑇(𝑡)[𝐴(𝑡) + 𝐴𝑇(𝑡)]𝜙(𝑡) 

Since M(𝑡) is the largest eigen value of the 

symmetric matrix (𝑡) + 𝐴T(𝑡), we get  

|𝜙𝑇(𝑡)[𝐴(𝑡) + 𝐴𝑇(𝑡)]𝜙(𝑡)| ≤ 𝑀(𝑡)|𝜙(𝑡)|2 

 Thus,  

 

By condition (37), the right side of (38) tends 

to zero  

Hence, lim𝜙(𝑡) = 0 
𝑡→ ∞ 

Hence, the theorem   

 

4.2Theorem: 

Let m(t) be the smallest eigen value of  

𝐴(𝑡) + 𝐴𝑇(𝑡). If 

then every non-zero solution of (36) is 

unbounded as 𝑡 → +∞.  

 

Proof: Let  be a solution of (36)  

As in the previous theorem, we have  

 

Since m(t) is the smallest eigen value of  

(𝑡) + 𝐴𝑇(𝑡), we get  

 

 

Thus,  

 

 

 

By condition (39) the right side of (41) tends to 

+∞  as𝑡 → +∞.  
 

i.e, the solution  is unbounded   

Hence, the theorem  

 

5.CONCLUSION 
 This paper is a work on the behaviour of solutions 

of linear systems, when the time is increased 

indefinitely; which is a kind of stability property. 

This provides an insight into the necessary steps to 

be taken to avoid unwanted phenomena or criteria 

in a system.  
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