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Abstract: This manuscript considers the transmuted 

model of the Exponentiated Inverse Weibull 

distribution. A comprehensive description of the 

mathematical properties of the proposed model is 

given in this article. The various properties which 

include reliability analysis, moments, quantile 

function, median, moment generating function, 

characteristic function and order statistics have 

been discussed in the paper. The method of 

maximum likelihood estimation has been used for 

estimating the parameters of the newly proposed 

distribution. The usefulness of the newly developed 

model over its sub models for better fitting is 

illustrated both by the simulated as well as real life 

data sets. 
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1.  INTRODUCTION  

The Weibull distribution was introduced by 

Waladdi Weibull, a Swedish physicist in 1951. This 

is one of the most widely used probability model for 

analyzing lifetime data and reliability of 

components. The basic model of Inverse Weibull 

distribution was studied by Keller et. al.  (1982). 

Further, Drapella (1993) worked on Inverse Weibull 

model and suggested the name as complementary 

Weibull distribution. This model is applicable in 

reliability analysis, medical sciences and modeling 

infant mortality rate, wear out periods, degradation 

of mechanical components etc. Aleem and Pasha 

(2003) studied some additional distributional 

properties of Inverse Weibull distribution. 

  Mudholkar et. al. (1995) studied the 

Exponentiated Weibull distribution and applied the 

model for the analysis bus motor failure data. Nassar 

and Eissa (2003) gave the detailed account of the 

exponentiated Weibull model. Gupta and Kundu 

(2001) introduced the Exponentiated exponential 

family of distributions as an alternate to gamma and 

Weibull distributions. Al-Hussaini (2010) discussed 

the exponentiated family of distributions in detail. A 

generalization of Inverted Weibull distribiton called 

Exponentiated Inverted Weibull distribution was 

introduced by Flaih et.al (2012) by adding a new 

shape parameter   through exponentiation to the 

distribution function.  

 A random variable X is said to follow 

standard exponentiated inverted Weibull distribution 

if its distribution function is given as: 

      
  .0and,, 








 




xexF x

     

 (1) 

where  and  are shape parameters.  

Then, the probability density function is of the 

following form: 

    0and,,1 







 


 xexxf x

. 

(2) 

 

2. TRANSMUTED EXPONENTIATED 

INVERTED WEIBULL DISTRIBUTION 

 In the recent past, a significant progress has been 

made towards the generalization of some well 

known distributions. These extended distributions 

find their application in many lifetime problems like 

engineering, finance, economics and biomedical 

sciences. Shaw and Buckley (2009) devised the new 

quadratic rank transmutation map (QRTM) 

technique for generalizing the different classical 

models and provide more flexible extension of these 

models for life testing and best fit. According 

quadratic rank transmutation map technique 

(QRTM) approach, a random variable X is said to 

have transmuted distribution if its cumulative 

distribution function is given by: 

         .1
2

xFxFxG     .1  (3) 

where  xG  is the cdf of the base distribution which 

on differentiation yields: 

      xFxfxg  21  . (4) 
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Here    xgxf and  are the corresponding pdfs 

associated with cdfs    xGxF and  respectively. 

It might be noted at 0 ; the model reduces to 

parent distribution. 

The main aim of this paper is to study a 

more flexible extension of exponentiated inverted 

Weibull distribution using the transmutation map 

technique called transmuted exponentiated inverted 

Weibull model. Different probability models have 

been discussed in the statistical literature based on 

transmutation map approach. Ashour and Eltehiwy 

(2013) introduced the transmuted Lomax 

distribution. Afaq et al. (2014) formulated the 

transmuted inverse Rayleigh distribution and 

presented a comprehensive account of its various 

structural properties. In addition to this, Ahmad et al. 

(2015) derived the structural properties of 

transmuted Weibull distribution. 

Now using the equations (1) and (3), the 

cumulative distribution function (cdf) of the random 

variable X following Transmuted Exponentiated 

Inverse Weibull (TEIW) distribution is given as: 

      

  .1 









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
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 xx eexG  (5) 

Also, the probability density function of the 

Transmuted Exponentiated Inverse Weibull (TEIW) 

distribution using the equations (2) and (4) with 

parameters  and, is given as: 

   













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
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
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
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 xx eexxg 211

,   (6) 

where  and are the shape parameters and  is 

the transmuted parameter. 

Figure 1 and 2 represents the possible shapes of the 

density function and distribution function of the 

proposed transmuted exponentiated inverse Weibull 

distribution for various possible values of the 

parameters. 

 

 

3. RELATIONSHIP WITH OTHER 

DISTRIBUTIONS 

 The different possible theoretical distributions 

which can be derived from the proposed TEIW 

distribution are given as follows: 

1. When ,0 the equation (6) reduces to 

two parameter Exponentiated Inverse 

Weibull distribution with probability 

density function as: 

     


 xexxg 1

,  

0and, x .                   

2. When ,1 the equation(6) reduces to 

two parameter Transmuted Inverse Weibull 

distribution with probability density 

function as: 

 

   
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
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

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
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,              
                  

.                         

1and0,  x  

3. When 0and1   ,the equation (6)  

reduces to one parameter Inverse Weibull 

distribution with probability density 

function as: 

   








  xexxg 1

,

 0, x .      

4. When ,2 the equation (6) reduces to 

two parameter transmuted inverse Rayleigh 

distribution with probability density 

function as: 

           

 

















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3
21

2
xx ee

x
xg






, 

1and0,  x .                    

5. When 0and2   , the equation (6) 

reduces to one parameter Inverse Rayleigh 

distribution with probability density 

function as: 

  3

3

2
xe

x
xg








 ,       0, x .

       

6. When ,1and2   the equation (6) 

reduces to one parameter Transmuted 
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Standard Inverse Rayleigh distribution with 

probability density function as: 

           

 




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
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 1,0  x . 

7. When ,01,2   and  the 

equation (6) reduces to Standard Inverse 

Rayleigh distribution with probability 

density function as: 

  2

1

3

2
xe

x
xg



 ,    0x .

       

8. When ,1  the equation (6) reduces to 

two parameter transmuted Inverse 

Exponential distribution with probability 

density function as: 
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9.  When ,1  the equation (6) 

reduces to one parameter transmuted 

Standard Inverse Exponential distribution 

with probability density function as: 

                   

 
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2
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,
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10. When ,0and1    the equation (6) 

reduces to one parameter Inverse 

Exponential distribution with probability 

density function as: 

  xe
x

xg


 


2

,     0, x .

       

11. When ,01,1   and  the 

equation (6) reduces to Standard Inverse 

Exponential distribution with probability 

density function as: 

  xe
x

xg

1

2

1 

  ,         0x . 

 

   

4.   RELIABILITY ANALYSIS 

 This section gives a comprehensive account of the 

survival function, hazard rate and reverse hazard rate 

of the transmuted exponentiated inverted Weibull 

distribution. 

 

4.1 Reliability function: The reliability function of 

the model is defined as the probability that an item 

does not fail prior to sometime t. The other names 

given to reliability function are the survival or 

survivor function of the model. Denoted by  xR , 

the survivor function can be mathematically 

computed as: 

   xGxR 1  

              

  .11 
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
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4.2 Hazard function: The hazard rate of the model 

can be derived as the ratio of the probability density 

function and the reliability function. Denoted by

 xh , it is also termed as the hazard rate, failure rate 

or force of mortality and is given as: 
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xh  (8) 

4.3 Reverse Hazard function: The reverse hazard 

rate is derived as the ratio of the probability density 

function and the cumulative distribution function. It 

is also an essential criterion for characterizing 

lifetime data and is given as: 

 
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
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







x

x

e

ex
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1

211

.      (9) 

The graphical representation of survival function, 

hazard rate and reverse hazard rate for different 

values of parameters are given in figure 3, 4 and 5 

respectively. 
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5.  STATISTICAL PROPERTIES OF THE 

TEIW DISTRIBUTION 

In this section, certain fundamental statistical 

properties of the transmuted exponentiated Inverse 

Weibull distribution have been obtained: 

5.1 Moments: The rth moments of the transmuted 

exponentiated inverted Weibull distribution are 

computed as follows: 
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This can be finally obtained as: 
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(10) 

Put 1r  in equation (10), we get the expected 

value of transmuted exponentiated inverse Weibull 

distribution as: 

.1,21
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1 


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For different values of r in equation (10), we can 

find the other moments of the proposed model. 

5.2 Harmonic mean: The harmonic mean of the 

proposed transmuted model can be calculated as: 

 
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5.3 Moment Generating Function: The moment 

generating function of the proposed distribution can 

be derived as follows: 
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5.4 Characteristic function: The characteristic 

function of the transmuted exponentiated Weibull 

distribution is given as follows: 

     dxxgeeEt itxitx
X 





0



 

   

 
 


















0

2

....
!2

1 dxxg
itx

itx  

                  

 
 





0 0 !

)(
dxxgx

r

it

r

r
r

  =

 


0 !

)(

r

r
r

xE
r

it
 

  .,211
!

)(

0

r
r

r

it
t

rr

r

r

X 































 

 (14) 

6. QUANTILE FUNCTION AND MEDIAN  

Quantile function and median Denoted by  uQ , the 

quantile function can be mathematically computed 

as: 
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),()( 1 xGuQ  where  1,0~ Uu . 

Since       ,1
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 xx eexG the 

quantile function for TEIW distribution is given as: 
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Putting u=0.5 in equation (23), we get the median of 

TEIW distribution: 
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Once the quantile function is computed, we can 

generate the random numbers for the distribution 

under discussion using the quantile function. 

 

7.     RENYI ENTROPY  

The entropy of a random variable X with 

probability density TEIW ),,;( x  is a measure 

of the variation of the uncertainty. The larger the 

entropy indicates the greater uncertainty in the data. 

The Renyi entropy (1960) denoted by  RI  for X 

is a measure of variation of uncertainty and is 

defined as: 
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If X has TEIWD ),,;( x , then by substituting 

equation (6) in (17) we have: 
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For the convenience, let
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Where 
j
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The β or q-entropy introduced by Havrda and 

Charvat (1967) is denoted by  qI H  and can be 

computed as: 

    ,1
1
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H where 

10  qandq (21) Suppose X has TEIWD

  ,,;x , then by substituting (6) in (21), we get 

the β entropy as follows: 
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8. ORDER STATISTICS 

 If nXXXX ,...,, 321 be a random sample of size n 

taken from TEIW distribution with ordered values as 

)()3()2()1( ,...,, nXXXX , then the probability 

density function of the ordered statistic is given as: 

 
   

        .1
!1!

! 1 rnr
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n
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 (23) 
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The density function of the rth order statistics 

following transmuted exponentiated inverse Weibull 

distribution is obtained by using the equation (5) and 

(6) in equation (23): 
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The density function of the smallest order statistics is obtained by 

putting 1r  in equation (20) as: 

   

.11

21

1

1
1

































































n

xx

xx

ee

eexnxg

















         

Similarly, by substituting nr   in equation (20) the 

density function of largest order statistic as follows: 
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9. PARAMETER ESTIMATION  

In this section, the unknown parameters

 and,  of the transmuted exponentiated 

Inverted Weibull distribution are estimated by the 

maximum likelihood estimation procedure. The 

sample consisting of n observations 

nxxxx ,....,, 321 is considered. The likelihood 

function of the proposed distribution is as follows: 
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The corresponding log likelihood function of the 

equation (24) is given as under:
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Hence, on differentiating the equation (25) with 

respect to the unknown parameters  and, of 

the TEIW model and equating these to zero yield the 

following three normal equations respectively: 
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It can be clearly seen that the equations are not in 

explicit form as such the estimates of the unknown 

parameters are obtained by solving the normal 

equations simultaneously using the Newton Raphson 

algorithm. 

 

10. APPLICATION 

In this section, both the simulated as well as 

real life data sets are considered for the comparison of 

the flexibility of the proposed transmuted model of 

exponentiated Inverse Weibull distribution over its 

different sub models. In order to compare the 

different models, criteria like AIC (Akaike 

information criterion) and HQIC (Hannan–Quinn 

information criterion) are used. The distribution 

which provides us lesser values of AIC and HQIC is 

rendered as best. The values of AIC and HQIC can be 

computed as follows: 

AIC=2k-2logL and HQIC=2klog (logn)-

2logL, 

where k is the number of parameters in the 

probability model, n is the sample size and  -2logL is 

the maximized value of the log-likelihood function of 

the  model under discussion. The analysis of both the 

data sets is performed through R software. The MLEs 

of the parameters are obtained with standard errors 

shown in parentheses. Moreover, the corresponding 

log-likelihood values, AIC and HQIC are displayed in 

Table 1and 2. 

 

10.1 Simulated Data Set: In the simulation study, a 

sample of size 100 has been generated from the R 

software to evaluate the performance of the proposed 

model over its sub models. Choosing the values of the 

parameters as 3.1,7.0   and transmutation 
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parameter 0.1  , the data set is obtained by using 

the inverse cdf method as discussed in section (8). 

The summary of the analysis is displayed in the table 

1as under: 

 

Table 1: MLEs of the model parameters using Generated data set, the resulting SEs in parentheses and Criteria for Comparison 

 

10.2 Real Life Data Sets: In order to confirm our 

simulated results, we use two real data sets to show 

that the transmuted Exponentiated Inverse Weibull 

distribution can be a better model than the sub 

models.  

 

Data Set I: Consider a data set corresponding to 

remission times (in months) of a random sample of 

124 bladder cancer patients given in Lee and Wang 

(2003). The data set is given as follows : 0.08, 2.09, 

2.73, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.22, 

3.52, 4.98, 6.99, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 

7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 

9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 

14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 

14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 

34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 

36.66, 1.05, 2.69, 4.23,  

5.41, 7.62, 10.75, 15.62, 43.01, 1.19, 2.75, 4.26, 5.41, 

7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 

17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 

1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10,  

 

 

1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 

6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 

20.28, 2.02, 3.36, 6.93, 8.65, 12.63 and 22.69.  

 

Data Set II: This data represents the survival times of 

121 patients with breast cancer obtained from a large 

hospital which is widely reported in some literatures 

like Ramos et al. (2013). 

0.3,0.3,4.0,5.0,5.6,6.2,6.3,6.6,6.8,7.4,7.5,8.4,8.4,10.3,

11.0,11.8,12.2,12.3,13.5,14.4,14.4,14.8,15.5,15.7,16.

2,16.3,16.5,16.8,17.2,17.3,17.5,17.9,19.8,20.4,20.9,2

1.0,21.0,21.1,23.0,23.4,23.6,24.0,24.0,27.9,28.2,29.1,

30.0,31.0,31.0,32.0,35.0,35.0,37.0,37.0,37.0,38.0,38.

0,38.0,39.0,39.0,40.0,40.0,40.0,41.0,41.0,41.0,42.0,4

3.0,43.0,43.0,44.0,45.0,45.0,46.0,46.0,47.0,48.0,49.0,

51.0,51.0,51.0,52.0,54.0,55.0,56.0,57.0,58.0,59.0,60.

0,60.0,60.0,61.0,62.0,65.0,65.0,67.0,67.0,68.0,69.0,7

8.0,80.0,83.0,88.0,89.0,90.0,93.0,96.0,103.0,105.0,10

9.0,109.0,111.0,115.0,117.0,125.0,126.0,127.0,129.0, 

129.0, 139.0, 154.0. These data sets are used here 

only for illustrative purposes. The required numerical 

evaluations are carried out using R software.  

Table 2: MLEs of the model parameters using real data sets, the resulting SEs parentheses and Criteria for Comparison 

        

Data Distribution              
 

  
  Log-

likelihood 
AIC HQIC 

 

Data Set 

I 

  TEIWD 
0.83317 
( 0.04759) 

-0.85352 
( 0.09540) 

1.54257 
( 0.17873) 

-422.0538 850.1076 853.5036 

EIWD 
0.74968 

(2.39809) 
_ 

2.39809 

(0.21942) 
-429.1313 862.2625 864.5266 

TIWD 
0.76989 
( 0.04883) 

-0.95757 
( 0.04022) 

_ -428.9819 861.9638 864.2278 

IWD 
0.00237 

( 0.67417) 
_ _ -464.1575 930.3151 931.447 

TIRD _ 
-0.95345 
( 0.03121) 

0.54227 
( 0.04981) 

-687.5907 1379.181 1381.445 

N Distribution              
 

  
  Log-

likelihood 
AIC HQIC 

 

100 

  TEIWD 
0.79934 

(0.12732) 

1.000000 

(0.31917) 

1.36156 

(0.22408) 
-163.9756 333.9511 337.1143 

EIWD 
1.12250 

(0.08409) 
_ 

0.75853 

(0.08664) 
-165.8498 335.6996 337.8083 

TIWD 
0.99074 

(0.07132) 

0.45494 

( 0.18799) 
_ -166.1402 336.2804 338.3891 

IWD 
1.02665 

(0.06755) 
_ _ -169.0442 340.0883 341.1428 

TIRD _ 
-0.71781 

(0.11434) 

0.26125 

 (0.03266) 
-195.282 394.564 396.6727 

IRD _ _ 
0.34507 

(0.03451) 
-207.4305 416.861 417.9154 

TSIRD _ 
0.10924 

(0.13486) 
_ -290.4998 582.9996 584.054 

TIED _ 
0.47911 

(0.29826) 

1.01965 

 (0.15169) 
-166.1403 336.2807 338.3893 

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume 50 Number 3 October 2017 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                 Page 167 

IRD _ _ 
0.59867 

(0.05376) 
-749.5542 1501.108 1502.24 

TSIRD _ 
-0.91974 
( 0.04027) 

_ -714.3615 1430.723 1431.855 

TIED _ 
-0.85782 

( 0.07868) 

1.65136 

( 0.17241) 
-428.1652 860.3303 862.5944 

Data set 

II 

  TEIWD 
0.75163 
(  0.03998) 

-0.91633 
( 0.05973) 

4.91329 
(  0.62503) 

-626.2907 1258.581 1261.988 

EIWD 
0.66602 

( 0.03644) 
_ 

6.81583 

( 0.78861) 
- 636.6115 1277.223 1279.494 

TIWD 
0.45686 
(0.03033) 

-1.00000 
(0.20954) 

_ -679.7679 1363.536 1365.807 

IWD 
0.38132 

(0.02878) 
_ _ -731.6091 1465.218 1466.354 

TIRD _ 
-0.96623 
(0.02366) 

5.23753 
(0.47615) 

-1021.173 2046.346 2048.617 

IRD _ _ 
5.33823 

( 0.48529) 
-1092.548 2187.096 2188.231 

TSIRD _ 
-0.96684 
( 0.02326) 

_ -1123.63 2249.259 2250.395 

TIED _ 
-0.94016 

(0.04189) 

7.35186 

(0.68099) 
-645.7979 1295.596 1297.867 

 

CONCLUSION 

 In this paper, we have studied the new 

distribution that is transmuted exponentiated inverse 

Weibull distribution, a generalization of inverse 

Weibull distribution to improve the flexibility of the 

parent model by adding an additional transmuted 

parameter. Different mathematical properties like 

reliability analysis, moments, moment generating 

function and characteristic function are derived. The 

parameters have been obtained using the maximum 

likelihood technique. In order to analyze the 

flexibility and applicability of the proposed 

distribution both the simulated as well as real life data 

sets are considered. Due to the lesser values of AIC 

and HQIC in data analysis, it can be concluded that 

the newly developed model has superiority over its 

sub models. 
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