Barycentric Map and Layer Topology on Simplices

Anas $\mathrm{E}^{\# 1}$, Baby Chacko ${ }^{* 2}$
Research and Development Centre, Bharatiar University,Coimatore-641046
\# Department of Mathematics, MES Mampad College, Malappuram, Kerala,India
*Department of Mathematics, St. Joseph's College, Devagiri, Calicut, India

Abstract

Simplicial maps mapssimplicial complexes to equal or lower dimensional complexes. In this paper, we wish to introduce a new topology on simplices which will help us to define mapping from a complex to higher dimensional complexes.

Keywords—Simplices, Barycentric Coordinates, Simplicial complexes, Simplicial Maps, Barycentric Maps, Layer Toplogy etc..

I. Introduction

Many of the Topological properties of a space can be explored through its triangulations. We are comparing topological properties of two spaces with the help of continuous functions or homeomorphisms from one space to other. But it is difficult to check the existence of such a homeomorphism in many cases. Simplicial maps are continuous functions from one complex to another complex.But it is a simplicial homeomorphism or an isomorphism if and only if the induced vertex map is a bijection[1].We can't define a simplicial map from a complex to another if the later has higher dimension.

II. Preliminaries

We use standard definitions related to simplicial complex and simplicial maps which can be found in textbooks such as Munkers[1]

Simplices and Simplicial Complexes.

Let $\left\{a_{0}, a_{1}, \ldots . a_{n}\right\}$ be geometrically independent set in $\boldsymbol{R}^{\boldsymbol{N}}$. We define the \mathbf{n}-simplex σ spanned by $a_{0}, a_{1}, \ldots . a_{n}$ be the set of all points x of $\boldsymbol{R}^{\boldsymbol{N}}$ such that $x=\sum_{i=0}^{n} t_{i} a_{i}$, where $\sum_{i=0}^{n} t_{i}=1$
and $t_{i} \geq 0$ for all i. The numbers t_{i} are uniquely determined by x; they are called the barycentriccoordinates of the point x of σ with respect to $a_{0}, a_{1}, \ldots . a_{n}$.
The points $a_{0}, a_{1}, \ldots . a_{n}$ that spans σ are called vertices of σ; the number n is called the dimension of σ.Any simplex spanned by a subset of $\left\{a_{0}, a_{1}, \ldots . a_{n}\right\}$ is called a face of σ. In particular, the face of σ spanned by $a_{1}, \ldots a_{n}$ is called the face opposite a_{0}. The faces of σ different from σ itself are called the proper faces of σ; their union is called the boundary of σ and is denoted by Bd σ. The interior of σ is defined by the equation

Int $\sigma=\sigma-B d \sigma$; the set Int σ is sometimes called open simplex.
A simplicial complex K in $\boldsymbol{R}^{\boldsymbol{N}}$ is a collection of simplices in $\boldsymbol{R}^{\boldsymbol{N}}$ such that
(1) Every face of a simplex of K is in K
(2) The intersection of any two simplexes of K is a face of each of them.
If L is a sub collectionof K that contains all faces of its elements, then L is a simplicial complex called subcomplex of K . Asubcomplex of K is the collection of all simplices of K of dimension at most p , called \mathbf{p}-skeleton of K and is denoted by $\mathrm{K}^{(\mathrm{p})}$. The points of the collection $\mathrm{K}^{(0)}$ are called vertices of K . Let $|K|$ be the subset of $\boldsymbol{R}^{\boldsymbol{N}}$ that is the union of the simplices of K . Giving each simplex, its natural topology as a subspace of \boldsymbol{R}^{N}, we toplogize $|K|$ by declaring a subset A of $|K|$ to be closed in $|K|$ if and only if $A \cap \sigma$ is closed in σ, for each σ in K. The space $|K|$ is called the underlying space of K, or the polytopof K.

BARYCENTRIC COORDINATES AND BARYCENTRIC MAPS

According to Munkers[1], if x is a point of the polyhedron $|K|$, then x is a point of one simplex K whose vertices are $a_{0}, a_{1}, \ldots . a_{n}$.Then

$$
x=\sum_{i=0}^{n} t_{i} a_{i}, \text { where } \sum_{i=0}^{n} t_{i}=1
$$

and $t_{i} \geq 0$ for all i.If v is an arbitrary vertex of K, then the barycentric coordinates $t_{v}(x)$ of x with respect to v is $t_{v}(x)=0$ if $v \neq a_{i}$ and

$$
t_{v}(x)=t_{i}, \text { if } v=a_{i}
$$

Lemma 1: Let $v=a_{i}$ be any vertex of a simplex σ of dimension $n \geq 1$ with vertices $a_{0}, a_{1}, \ldots . a_{n}$, then $t_{v}\left(a_{j}\right)=1$ for $i=j$ and $t_{v}\left(a_{j}\right)=0$ for $i \neq j$. Proof:

If $a_{0}, a_{1}, \ldots . a_{n}$ are the vertices of the simplex σ,then $a_{0}, a_{1}, \ldots . a_{n}$ are geometrically independent. We have $x=\sum_{i=0}^{n} t_{i} a_{i}$, where $\sum_{i=0}^{n} t_{i}=1$ for all $x \in \sigma$.

Therefore, $a_{i}=\sum_{i=0}^{n} t_{i} a_{i}$ ie, $t_{1} a_{1}+t_{2} a_{2}+\cdots+$ $\left(t_{i}-1\right) a_{i}+\cdots+t_{n} a_{n}=0$.
By independence of $a_{0}, a_{1}, \ldots . a_{n}$, we obtain

$$
t_{1}=0, t_{2}=0, \ldots, t_{i}=1, \quad . . t_{n}=0
$$

$$
\begin{aligned}
& t_{v}\left(a_{j}\right)=1 \text { for } i=j \text { and } \\
& t_{v}\left(a_{j}\right)=0 \text { for } i \neq j
\end{aligned}
$$

For fixed v on a simplex σ, the function $t_{v}(x)$ is continuous. If the dimension of $\sigma \geq 1$, then

$$
0 \leq t_{v}(x) \leq 1
$$

Without loss of generality hereafter we are taking $v=a_{0}$.If σ is a simplex of dimension $n \geq 1$, each 1 face of the form $a_{0} a_{i}$ are mapped to $[0,1]$ by the map t_{v} in such a way that $t_{v}\left(a_{0}\right)=1$ and
$t_{v}\left(a_{i}\right)=0$. Moreover, since t_{v} is continuous, by intermediate value theorem the map
$t_{v}: a_{0} a_{i} \rightarrow[0,1]$ issurjective and hence
$t_{v}: \sigma \rightarrow[0,1]$ is also surjective.
Lemma 2: Let $v=a_{0}$ be a vertex of a simplex $\sigma=a_{0} a_{1} \ldots a_{n}$ and let x be a point on $a_{0} a_{i}$ for some i, then $t_{a_{j}}(x)=0$ for $j \neq 0, i$.
Proof:
Since x being a point on $a_{0} a_{i}$, we have
$x=t_{0} a_{0}+t_{i} a_{i}$ where $0 \leq t_{0}, t_{i} \leq 1$ and
$t_{0}+t_{i}=1$. And at the same time since x being a point on the simplex $\sigma=a_{0} a_{1} \ldots a_{n}$,
$x=s_{0} a_{0}+s_{1} a_{1}+\cdots+s_{i} a_{i}+\cdots+s_{n} a_{n}$.
Thent $a_{a_{0}}(x)=s_{0}, t_{a_{1}}(x)=s_{1}, \ldots$,
$t_{a_{i}}(x)=s_{i}, \ldots, t_{a_{n}}(x)=s_{n}$.
Therefore, $t_{0} a_{0}+t_{i} a_{i}=s_{0} a_{0}+s_{1} a_{1}+\cdots+s_{i} a_{i}+$ $\cdots+s_{n} a_{n}$.
ie, $\quad\left(s_{0}-t_{0}\right) a_{0}+s_{1} a_{1}+\cdots+\left(s_{i}-t_{i}\right) a_{i}+\cdots+$ $s_{n} a_{n}=0$.
By independenceof $a_{0}, a_{1}, \ldots, a_{n}$, we have
$s_{0}=t_{0}, s_{1}=0, s_{2}=0, \ldots, s_{i}=t_{i}, \ldots, s_{n}=0$

$$
t_{a_{0}}(x)=t_{0}, t_{a_{1}}(x)=0, t_{a_{2}}(x)=0 \ldots
$$

$t_{a_{i}}(x)=s_{i}, \ldots, t_{a_{n}}(x)=0$.
Hence
$t_{a_{j}}(x)=0$ for $j \neq 0, i$.
Lemma 3:Letv $=a_{0}$ be a vertex of a simplex σ of dimension $n \geq 1$ with vertices $a_{0}, a_{1}, \ldots . a_{n}$ then the mapt $t_{v}: a_{0} a_{i} \rightarrow[0,1]$ is injective.

Proof:

Let x, y be points on the simplex $a_{0} a_{i}$.
Then $x=t_{0} a_{0}+t_{1} a_{1}$ wheret $_{1}=1-t_{0}$ and
$y=s_{0} a_{0}+s_{1} a_{1}$ where $s_{1}=1-s_{0}$.
Let $t_{v}(x)=t_{v}(y)$. Then $t_{0}=s_{0}$ and $t_{1}=s_{1}$ which imply
$x=y$
Theorem 1: Let $v=a_{0}$ be a vertex of a simplex σ of dimension $n \geq 1$ with vertices $a_{0}, a_{1}, \ldots . a_{n}$ and let $t_{v}\left(x_{i}\right)=t$ for $i=1,2,3, \ldots, n$, where x_{i} is a point on the face $a_{0} a_{i}$. Then $t_{v}(z)=t$ for all z belongs to the convex hull determined by $x_{1}, x_{2}, \ldots, x_{n}$.

Proof:

Let

$$
\begin{aligned}
& x_{1}=t_{1}^{\prime} a_{0}+t_{2}^{\prime} a_{1}+\cdots+t_{n}^{\prime \prime} a_{n} \\
& x_{2}=t_{1}^{\prime \prime} a_{0}+t_{2}^{\prime \prime} a_{1}+\cdots+t_{n}^{\prime \prime} a_{n}
\end{aligned}
$$

$$
x_{n}=t_{1}^{(n)} a_{0}+t_{2}^{(n)} a_{1}+\cdots+t_{n}^{(n)} a_{n}
$$

Since $t_{v}\left(x_{i}\right)=t$ for $i=1,2,3, \ldots, n$, we have

$$
t_{1}^{\prime}=t_{1}^{\prime \prime}=\cdots=t_{1}^{(n)}=t
$$

Let z belongs to the convex hull determined by $x_{1}, x_{2}, \ldots, x_{n}$. Then
$z=\sum_{i=1}^{n} s_{i} x_{i}$ where $\sum_{i=1}^{n} s_{i}=1$.
Therefore
$z=\left(s_{1} t_{1}^{\prime}+s_{2} t_{1}^{\prime \prime}+\cdots+s_{n} t_{1}^{(n)}\right) a_{0}+\left(s_{1} t_{2}^{\prime}+s_{2} t_{2}^{\prime \prime}+\right.$ $\left.\cdots+s_{n} t_{2}^{(n)}\right) a_{1}+\cdots+\left(s_{1} t_{n}^{\prime}+s_{2} t_{n}^{\prime \prime}+\cdots+\right.$
$\left.s_{n} t_{n}^{(n)}\right) a_{0}$.
Then $t_{v}(z)=\left(s_{1} t_{1}^{\prime}+s_{2} t_{1}^{\prime \prime}+\cdots+s_{n} t_{1}^{(n)}\right)$
$=\left(s_{1} t+s_{2} t+\cdots+s_{n} t\right)=t \sum_{i=1}^{n} s_{i}=t$
Definition:Let $v=a_{0}$ be a vertex of a simplex σ of dimension $n \geq 1$ with vertices $a_{0}, a_{1}, \ldots . a_{n}$, then the $\operatorname{map}_{v}: \sigma \rightarrow[0,1]$ is called barycentric map with respect to v.
From the above discussions, we have barycentric map is continuous and surjctive.
Definition:Let $v=a_{0}$ be a vertex of a simplex σ of dimension $n \geq 1$ with vertices $a_{0}, a_{1}, \ldots . a_{n}$ and let $t \in[0,1]$, then the set $l_{t}(\sigma)=\left\{x \in \sigma: t_{v}(x)=t\right\}$ is called the $\boldsymbol{t}^{\text {th }}$ layer of σ.
By lemmal, we have $1^{\text {st }}$ layer of σ is a_{0} and by using lemma 1 and theorem 1 we have $0^{\text {th }}$ layer of σ is face opposite to a_{0}. Also we have
$\sigma=\mathrm{U}_{t \in I} l_{t}(\sigma)$, where $I=[0,1]$.
Here we can define some subsets of σ as follows.
Let U be a subset of $\mathrm{I}=[0,1]$, then $l_{U}=\left\{l_{t}: t \in U\right\}$.
Whenever U is open we can call l_{U} as open layer.
Proposition 1: The collection \mathcal{L} of open layers
l_{U} form a basis for a topology on σ

Proof:

We note the following
a) Suppose $x \in \sigma$ and $t_{v}(x)=t$. Then there exist an open set U in $[0,1]$ such that $t \in U$ under the usual topology on $[0,1]$. Thus $x \in l_{U} \in \mathcal{L}$
b) Let $x \in l_{U_{1}} \cap l_{U_{2}}$ for some $l_{U_{1}}, l_{U_{2}} \in$ \mathcal{L}.Then $t_{v}(x) \in U_{1}$ and $t_{v}(x) \in U_{2}$. That is $t_{v}(x) \in U$ where $U=U_{1} \cap U_{2}$. Since U_{1} and U_{2} are open in [0,1], U is also open in $[0,1]$. Therefore $l_{U} \in \mathcal{L}$ and $x \in l_{U}$.
Since $U \subset U_{1}$ and $U \subset U_{2}$, we have $l_{U} \subset$ $l_{U_{1}} \cap l_{U_{2}}$.

This completes the proof.
Definition: Let $v=a_{0}$ be a vertex of a simplex σ of dimension $n \geq 1$ with vertices $a_{0}, a_{1}, \ldots . a_{n}$. Then the topology on σ in which open layers form a basis is called layer topology.

In view of this layer topology, we can easily verify that the inverse of the barycentric map is the multivalued function

$$
F:[0,1] \rightarrow \sigma
$$

whichis continuous. This multivalued function can be defined as

$$
F(t)=l_{t}(\sigma), t \in[0,1]
$$

III. CONCLUSIONS

The intention to define layer topology is to generate a relationship among simplices and the closed set $[0,1]$. As in the introduction,simplicial maps are restricted in the sense that it can be defined from one simplex to its lower dimensional simplices. But in the light of layer topology the inverse of barycentric map may be treated as a map from 1simplex to higher dimensional simplices. Such a map will open the ways of understanding of simplicial complexes and homology in a broader sense.

Acknowledgment

I wish to acknowledge my sincere thanks to the organisers of UAE math day 2017 and MESMAC International conference 2017 for giving me an opportunity to present papers on "Multivalued functions on simplices" and "Topology on simplices" respectively, the presentation and the related discussions lead me to new thoughts and encouraged me to prepare this paper.

References

[1] James R. Munkers, Elements of Algebraic Topology,Addison-Wesley Publishing Company, Menlo Park, California. 1984.
[2] K.D.Joshi.Introduction to General Topology, New Age International (P) Ltd., Publishers. New Delhi: 2006.
[3] J. Munkres, Topology, Prentice-Hall, Inc. Englewood Cliff s, N.J. 1975.
[4] John B Fraleigh,A First Course in Abstract Algebra, Dorling Kindersley(India) Pvt Ltd.,2006
[5] Tamal K Dey, Herbert EdelsBrunner,SumantaGuha and Dmitry V. Nekhayev. "Topology Preserving Edge Contraction". Publication De L'InstituteMathematique, Nouvilleserie tome66(80) (1999), 23-45
[6] Herbert Edelsbrunner and Nimish R. Shah. Triangulating Topological Spaces. International Journal of Computational Geometry\&Applications.Vol 7,No.4(1997) 365-378
[7] D.Burghelea and T.K.Dey. Topological persistence forcircle valued maps. Discrete Comput. Geom., 50(1)(2013), 69-98
[8] O. Busaryev, S.Cabello, C.Chen, T.K.Dey and Y wang. Annotating simplices with homology basis and its applications. Proc. $13^{\text {th }}$ Scandinavian Sympos. Workshops algorithm Theory(SWAT 2012),(2012), 189-200.
[9] G.Calsson and V. de Silva. Zigzag persistence. Fond. Comput. Math. 10(4), 367-405, 2010.
[10] G.Calsson, V. de Silva and D. Morozov. Zigzag persistent homology and real- valued functions. Proc. $26^{\text {th }}$ Annu. Sympos. Comput. Geom. (2009), 247-256
[11] Richard jerrard. Homology with Multiple-valued Functions Applied to Fixed Points. Transactions of The American Mathematical Society. Vol. 213, 1975.
[12] Allen Hatcher. Algebraic Topology. Cambridge University Press. 2002.

