# ON COMMUTATIVITY OF *-PRIME NEAR-RINGS WITH DERIVATIONS 

Mohammad Aslam Siddeeque<br>Department of Mathematics<br>Aligarh Muslim University<br>Aligarh -202002(India)


#### Abstract

The primary purpose of this paper is to introduce the notion of $*$-prime near-rings, which is a special class of distributive near-rings and to investigate their commutativity. Let $N$ be a left near-ring. $N$ is called distributive near-ring if $(x+y) z=x z+y z$ for all $x, y, z \in N$. Further, an additive mapping $x \mapsto x^{*}$ on $N$ is said to be an involution on $N$ if $(i)\left(x^{*}\right)^{*}=x$ and $(i i)(x y)^{*}=y^{*} x^{*}$ hold for all $x, y \in N$. A near-ring equipped with an involution ' $*$ ' is called a $*$-near-ring. A $*$-near-ring $N$ is called *-prime near-ring if $x N y=x N y^{*}=\{0\}$ implies that either $x=0$ or $y=0$. Analogues of some ring theoretic results, regarding commutativity have been obtained in the setting of $*$-prime near-rings satisfying some properties and identities involving derivations.


## 1. INTRODUCTION

Throughout the present paper, unless otherwise mentioned, $N$ will denote a left nearring. $N$ is called a prime near-ring if $x N y=\{0\}$ implies $x=0$ or $y=0$. It is called semiprime if $x N x=\{0\}$ implies $x=0$. Given an integer $n>1$, near-ring $N$ is said to be $n$-torsion free, if for $x \in N, n x=0$ implies $x=0$. If $K$ is a nonempty subset of $N$, then a normal subgroup $(K,+)$ of $(N,+)$ is called a right ideal (resp. a left ideal) of $N$ if $(x+k) y-x y \in K$ (resp. $x k \in K$ ) holds for all $x, y \in N$ and for all $k \in K . K$ is called an ideal of $N$ if it is both a left ideal as well as a right ideal of $N$. The symbol $Z$ will denote the multiplicative center of $N$, that is, $Z=\{x \in N \mid x y=y x$ for all $y \in N\}$. For any $x, y \in N$ the symbol $[x, y]=x y-y x$ stands for multiplicative commutator of $x$ and $y$, while the symbol $x o y$ will represent $x y+y x$. For terminologies concerning nearrings, we refer to G.Pilz [1, 2]. Following [3], an additive mapping $d: N \longrightarrow N$ satisfying $d(x y)=x d(y)+d(x) y$ for all $x, y \in N$ is called a derivation on $N$. A $*$-near ring $N$ is called $*$-prime near-ring if $x N y=x N y^{*}=\{0\}$ implies that either $x=0$ or $y=0$. Let $N$ be a $*$-near-ring. An ideal $I$ of $N$ is called $*$-ideal if $I^{*}=I$. An element $x \in N$ is called a symmetric element if $x^{*}=x$ and an element $x \in N$ is called a skewsymmetric element if $x^{*}=-x$. We denote the collection of all symmetric and skewsymmetric elements

[^0]of $N$ by $S a_{*}(N)$ i.e.; $S a_{*}(N)=\left\{x \in N \mid x^{*}= \pm x\right\}$. There has been a lot of work on commutativity of $*$-prime rings costrained with derivations (see $4-7$, where further references can be found). Motivated by these works, we have investigated commutativity of $*$-prime near-rings constrained with derivations.

## 2. PRELIMINARY RESULTS

We begin with the following lemmas which are essential for developing the proofs of our main results.

Lemma 2.1. Let $N$ be a *-near-ring. Then
(i) $N$ is a distributive near-ring.
(ii) $x y+z t=z t+x y$ for all $x, y, z, t \in N$.
(iii) $n(x y)=(n x) y=x(n y)$ for all $x, y \in N$ and $n \in Z$, where $Z$ stands for the set of integers.
(iv) $[x, y+z]=[x, y]+[x, z]$ and $[x+y, z]=[x, z]+[y, z]$ for all $x, y, z \in N$.
(v) $[x, y z]=y[x, z]+[x, y] z$ and $[x y, z]=x[y, z]+[x, z] y$ for all $x, y, z \in N$.
(vi) If $I$ is an ideal of $N$ then $N I \subseteq I$ and $I N \subseteq I$.

Proof. (i) For all $x, y, z \in N$ we have $\{(y+z) x\}^{*}=x^{*} y^{*}+x^{*} z^{*}$, now taking the image of both the sides under $*$ we get $(y+z) x=y x+z x$. This means that $N$ is a distributive near-ring.
(ii) Since $N$ has both distributive properties, expanding $(x+z)(t+y)$ for all $x, y, z, t \in N$, we have $x t+x y+z t+z y=x t+z t+x y+z y$. This implies our required result.
(iii) Since $(N,+)$ is a group and $N$ has both distributive properties, the result is obvious.
(iv) Using both distributive properties of $N$ and (ii), we get the result.
(v) Same trick as used in (iv).
(vi) Under hypothesis it is a trivial fact.

Lemma 2.2. Let $N$ be a $*$-near-ring.
(i) If $N$ is a prime near-ring then it is a $*$-prime near-ring.
(ii) If $N$ is $*$-prime near-ring then it is a semiprime near-ring.
(iii) $N$ is $*$-prime near-ring if and only if $x N y=x^{*} N y=\{0\}$ yields $x=0$ or $y=0$.

Proof. (i) Suppose that $x N y=x N y^{*}=\{0\}$. If first case holds then primeness of $N$ insures that either $x=0$ or $y=0$. On the other hand if second case holds then primeness of $N$ again provides us either $x=0$ or $y^{*}=0$. Including both the cases we arrive at either $x=0$ or $y=0$. Hence $N$ is $*$-prime near-ring .
(ii) Assume that $x N x=\{0\}$ then $x N x N x^{*}=\{0\}$. By $*$-primeness of $N$ we get that either $x=0$ or $x N x^{*}=\{0\}$. But $x N x^{*}=\{0\}$ together with $x N x=\{0\}$ implies that $x=0$.
(iii) Let $N$ be a $*$-prime near-ring. Further suppose that $x N y=x^{*} N y=\{0\}$. This provides us $y^{*} N x^{*}=y^{*} N x=\{0\}$. Using $*$-primeness of $N$ we obtain that either $y^{*}=0$ or $x=0$. This implies that either $x=0$ or $y=0$. Converse can be proved in a similar way.

Lemma 2.3. Let $N$ be a *-prime near-ring.
(i) If $Z \neq\{0\}$ then $N$ is a ring.
(ii) If $z \in Z \backslash\{0\}$ and $x$ is an element of $N$ such that $x z, x z^{*} \in Z$ (resp. $x z, x^{*} z \in Z$ ) then $x \in Z$.

Proof. (i) Since $Z \neq\{0\}$, there exists $0 \neq z \in Z$. By Lemma 2.1 we obtain that $z x+z y=z y+z x$ for all $x, y \in N$. Now we infer that $z(x+y-x-y)=0$ for all $x, y \in N$. This implies that $z N(x+y-x-y)=\{0\}$ and $z N(x+y-x-y)^{*}=\{0\}$. Now *-primeness of $N$ provides us $x+y=y+x$ for all $x, y \in N$. Hence $(N,+)$ is abelian. Using Lemma 2.1 again we conclude that $N$ is a ring.
(ii) If $x z, x z^{*} \in Z$, we have $x z r=r x z$ and $x z^{*} r=r x z^{*}$ for all $r \in N$. It is obvious that $z^{*} \in Z$. These facts provide us $z N[x, r]=\{0\}$ and $z^{*} N[x, r]=\{0\}$ for all $r \in N$. Using Lemma 2.2 we obtain that $x \in Z$. On the other hand if $x z, x^{*} z \in Z$, we have $x z r=r x z$ and $x^{*} z r=r x^{*} z$ for all $r \in N$. It follows that $z N[x, r]=\{0\}$ and $z N\left[x^{*}, r\right]=\{0\}$ for all $r \in N$. Replacing $r$ by $r^{*}$ in the relation $z N\left[x^{*}, r\right]=\{0\}$ we obtain that $z N\left[x^{*}, r^{*}\right]=\{0\}$ i.e.; $z N\left[x^{*}, r^{*}\right]=\{0\}$. Now we arrive at $z N[x, r]=\{0\}$ and $z N[x, r]^{*}=\{0\}$ for all $r \in N$.

Finally *-primeness of $N$ finishes the proof.

In the year 2006, L.Oukhtite and S.Salhi [4, Lemma 3.1] proved that if $R$ is a $*$-prime ring possessing a nonzero $*$-ideal $I$ and $x, y \in R$ such that $x I y=\{0\}=x I y^{*}$, then $x=0$ or $y=0$. We have obtained its analogue in the setting of $*$-prime near-rings.

Lemma 2.4. Let $N$ be a $*$-prime near-ring and $I$ be a nonzero $*$-ideal of $N$. If $x, y \in N$ satisfy $x I y=x I y^{*}=\{0\}$ (resp. $x I y=x^{*} I y=\{0\}$ ), then $x=0$ or $y=0$.

Proof. Assume $x \neq 0$, there exists some $z \in I$ such that $x z \neq 0$. For otherwise $x N y=\{0\}$ and $x N y^{*}=\{0\}$ for all $y \in I$ and thus $*$-primeness of $N$ gives us $x=0$. Since $x I N y=\{0\}$ and $x I N y^{*}=\{0\}$, we then obtain $x z N y=x z N y^{*}=\{0\}$. Now $*$-primeness of $N$ provides us $y=0$. Using similar arguments with necessary variations one can easily prove that $\left.x I y=x^{*} I y=\{0\}\right)$ implies that $x=0$ or $y=0$.

Recently, L.Oukhtite and S.Salhi [6, Lemma $2-5]$ studied derivations in $*$-prime rings and proved the following: Let $R$ be a $*$-prime ring having nonzero $*$-ideal $I$ then $(i)$ If $d$ is a nonzero derivation on $R$ which commutes with $*$ and $[x, R] I d(x)=\{0\}$ for all $x \in I$, then $R$ is commutative. (ii) If $d$ is a nonzero derivation on $R$ which commutes with * and $[d(x), x]=0$ for all $x \in I$, then $R$ is commutative. (iii) Let $d$ be a derivation of $R$ satisfying $d *= \pm * d$. If $d^{2}(I)=\{0\}$, then $d=0$. (iv) Let $d_{1}$ and $d_{2}$ be derivations of $R$ such that $d_{1} *= \pm * d_{1}$ and $d_{2} *= \pm * d_{2}$. If $d_{2}(I) \subseteq I$ and $d_{1} d_{2}(I)=\{0\}$, then $d_{1}=0$ or $d_{2}=0$. We have obtained the analogues of these results in the setting of $*$-prime near-rings as below.

Lemma 2.5. Let $N$ be a $*$-prime near-ring admitting a nonzero derivation $d$, which commutes with $*$. If $I$ is a nonzero $*$-ideal of $N$ and $[x, N] \operatorname{Id}(x)=\{0\}$ for all $x \in I$, then $N$ is a commutative ring.

Proof. Let $x \in I$. Since $y=x-x^{*} \in I$, then $[y, z] \operatorname{Id}(y)=0$ for all $z \in N$. As $y \in$ $S a_{*}(N)$, then using Lemma 2.1 we arrive at $[y, z] \operatorname{Id}(y)=[y, z]^{*} I d(y)=\{0\}$ for all $z \in N$. By Lemma 2.4 we obtain that $d(y)=0$ or $[y, z]=0$ for all $z \in N$. If $d(y)=0$, then $d(x)=d\left(x^{*}\right)=(d(x))^{*}$. Therefore $[x, z] \operatorname{Id}(x)=[x, z] I(d(x))^{*}=\{0\}$ and by Lemma 2.4 we infer that either $d(x)=0$ or $x \in Z$. On the other hand if $[y, z]=0$ for all $z \in N$, then $y \in Z$ and hence $\left[x-x^{*}, z\right]=0$ for all $z \in N$. By Lemma 2.1 we have that $[x, z]=\left[x^{*}, z\right]$ for all $z \in N$. Therefore using Lemma 2.1 again we obtain that $[x, z] \operatorname{Id}(x)=[x, z]^{*} \operatorname{Id}(x)=\{0\}$. Again using Lemma 2.4 we get either $d(x)=0$ or $x \in Z$. Now we conclude that for each $x \in I$ either $d(x)=0$ or $x \in Z$.

Let us consider $H=\{x \in I \mid d(x)=0\}$ and $K=\{x \in I \mid x \in Z\}$. Using Lemma 2.1 it can be easily shown that $H$ and $K$ are additive subgroups of $I$ such that $I=H \cup K$. But a group can not be a union of two of its proper subgroups and hence $I=H$ or $I=K$. If $I=H$, then $d(x)=0$ for all $x \in I$. For any $t \in N$, replacing $x$ by $x t$ we get $x d(t)=0$, for all $x \in I$ i.e.; $\operatorname{Id}(t)=\{0\}$ for all $t \in N$. In particular $p I d(t)=p^{*} I d(t)=\{0\}$ for all $t \in N$, where $0 \neq p \in N$. Now Lemma 2.4 gives us $d=0$, a contradiction. Hence $I=K$ so that $I \subseteq Z . I \neq\{0\}$ implies that $Z \neq\{0\}$. Hence by Lemma $2.3, N$ is a ring. Let $z, t \in N$ and $x \in I$. From $z t x=z x t=t z x$ we conclude that $[z, t] I=\{0\}$ and then $[z, t] I p=[z, t] I p^{*}=\{0\}$, where $0 \neq p \in N$. In view of Lemma 2.4, we conclude that $[z, t]=0$ for all $z, t \in N$. Therefore, $N$ is a commutative ring.

Lemma 2.6. Let $N$ be a *-prime near-ring admitting a nonzero derivation $d$, which commutes with $*$. If $I$ is a nonzero $*$-ideal of $N$ and $[d(x), x]=0$ for all $x \in I$, then $N$ is a commutative ring.

Proof. Let $x, y \in I$. Linearizing $[d(x), x]=0$ with the help of Lemma 2.1 and using the hypothesis we get

$$
\begin{equation*}
[d(x), y]+[d(y), x]=0 \tag{2.1}
\end{equation*}
$$

for all $x, y \in I$. Now replacing $y$ by $y x$ and using Lemma 2.1 we obtain that

$$
\begin{equation*}
[d(x), y] x+[d(y), x] x+[y, x] d(x)=0 \tag{2.2}
\end{equation*}
$$

for all $x, y \in I$. Relations 2.1 and 2.2 yield $[x, y] d(x)=0$, for all $x, y \in I$. Thus, for any $z \in N$, we have $[x, z y] d(x)=[x, z] y d(x)=0$ by Lemma 2.1 and therefore $[x, N] \operatorname{Id}(x)=\{0\}$ for all $x \in I$. Finally by Lemma 2.5 we get the required result.

Lemma 2.7. Let $N$ be a 2 -torsion free $*$-prime near-ring admitting a derivation $d$ such that $d *= \pm * d$. If $I$ is a nonzero $*$-ideal of $N$ and $d^{2}(I)=\{0\}$, then $d=0$.

Proof. For any $x \in I$, we have $d^{2}(x)=0$. Putting $x y$ for $x$ where $y \in I$, and using Lemma 2.1 we arrive at $d^{2}(x) y+2 d(x) d(y)+x d^{2}(y)=0$ for all $x, y \in I$. 2-torsion freeness of $N$ and $d^{2}(I)=\{0\}$, provide us $d(x) d(y)=0$. Replacing $x$ by $x z$ where $z \in I$ in the last relation and using Lemma 2.1, we get $d(x) z d(y)=0$ for all $x, y, z \in N$ i.e. $; d(x) \operatorname{Id}(y)=\{0\}$. Since $d *= \pm * d$, by Lemma 2.4 I infer that $d(x)=0$ for all $x \in I$. Now replacing $x$ by $x t$ where $t \in N$ we have $x d(t)=0$ and therefore $I N d(t)=\{0\}$ for all $t \in N$. Since $I$ is a nonzero $*$-ideal and $N$ is a $*$-prime near-ring, We get $d(z)=0$ for all $z \in N$ and consequently $d=0$.

Lemma 2.8. Let $N$ be a 2-torsion free $*$-prime near-ring admitting derivations $d_{1}$ and $d_{2}$ such that $d_{1} *= \pm * d_{1}$ and $d_{2} *= \pm * d_{2}$. If $I$ is a nonzero $*$-ideal of $N$ such that $d^{2}(I) \subseteq I$ and $d_{1} d_{2}(I)=0$, then $d_{1}=0$ or $d_{2}=0$.

Proof. Let $x, y \in I$. Then $d_{1} d_{2}(x y)=d_{1}(x) d_{2}(y)+d_{2}(x) d_{1}(y)=0$. Replacing $x$ by $d_{2}(x)$ We get $d_{2}^{2}(x) d_{1}(y)=0$ for all $x, y \in I$. Now putting $y z$ where $z \in I$ for $y$ we obtain that $d_{2}^{2}(x) y d_{1}(z)=0$ for all $x, y, z \in I$. It then gives us $d_{2}^{2}(x) I d_{1}(z)=\{0\}$ for all $x, z \in I$. The conditions $I^{*}=I$ and $d_{1} *= \pm * d_{1}$ provide us $d_{2}^{2}(x) I d_{1}(z)=d_{2}^{2}(x) I\left\{d_{1}(z)\right\}^{*}=\{0\}$ and by Lemma 2.4 it follows that either $d_{1}(z)=0$ for all $z \in I$ or $d_{2}^{2}(x)=0$ for all $x \in I$. If $d_{1}(z)=0$ for all $z \in I$, then replacing $z$ by $z t$ where $t \in N$, we obtain that $z d_{1}(t)=0$ i.e.; $I d_{1}(t)=\{0\}$. As $d_{1} *= \pm * d_{1}$, this implies that $p I d_{1}(t)=p I\left\{d_{1}(t)\right\}^{*}=\{0\}$ for $0 \neq p \in N$. In view of Lemma 2.4 We obtain that $d_{1}=0$. On the other hand if $d_{2}^{2}(x)=0$ for all $x \in I$, We obtain by Lemma 2.7 that $d_{2}=0$.

## 3. MAIN RESULTS

In the year 2006, L. Oukhtite and S. Salhi [4,Theorem 3.2] obtained the following: Let $d$ be a nonzero derivation of a 2 -torsion free $*$-prime ring $R$ and $I$ a nonzero $*$-ideal of $R$. If $r \in S a_{*}(R)$ satisfies $[d(x), r]=0$ for all $x \in I$, then $r \in Z(R)$. Furthermore, if $d(I) \subseteq Z(R)$, then $R$ is commutative. we have obtained its analogue for $*$-prime near-rings with derivation.

Theorem 3.1. Let $N$ be a 2 -torsion free $*$-prime near-ring admitting a nonzero derivation $d$ and a nonzero $*$-ideal $I$. If $t \in S a_{*}(N)$ satisfies $[d(x), t]=0$ for all $x \in I$, then $t \in Z$. Furthermore, if $d(I) \subseteq Z$, then $N$ is a commutative ring.

Proof. Since $[d(x y), t]=0$ for all $x, y \in I$, using Lemma 2.1 it provides us $d(x) y t+$ $x d(y) t-t d(x) y-t x d(y)=0$. Conditions $[d(x), t]=[d(y), t]=0$ give us

$$
\begin{equation*}
d(x)[y, t]+[x, t] d(y)=0 \tag{3.1}
\end{equation*}
$$

for all $x, y \in I$. Replacing $y$ by $y t$ and using Lemma 2.1, we conclude that $[x, t] I d(t)=$ $\{0\}$. The fact that $I$ is a $*$-ideal together with $t \in S a_{*}(N)$ and Lemma 2.1, provide $[x, t]^{*} I d(t)=[x, t] I d(t)=\{0\}$. Applying Lemma 2.4, either $d(t)=0$ or $[x, t]=0$. If $d(t) \neq 0$, then $[x, t]=0$ for all $x \in I$. Let $s \in N$, from $[s x, t]=0$ it follows by Lemma 2.1 that $[s, t] x=0$. Let $0 \neq x_{0} \in I$, as $[s, t] N x_{0}=[s, t] N x_{0}^{*}$. Since $N$ is $*$-prime near-ring, which proves that $[s, t]=0$ i.e.; $t \in Z$. On the other hand if $d(t)=0$, then $d([x, t])=[d(x), t]=0$ and consequently

$$
\begin{equation*}
d([I, t])=\{0\} . \tag{3.2}
\end{equation*}
$$

Replacing $y$ by $y z$ where $z \in I$ in the relation (3.1) and using Lemma 2.1, we see that

$$
\begin{equation*}
d(x) y[z, t]+[x, t] y d(z)=0 . \tag{3.3}
\end{equation*}
$$

Taking $[z, t]$ instead of $z$ in relation (3.3) and applying relation (3.2) and Lemma 2.1 we then arrive at $d(x) y[[z, t], t]=0$ so that $d(x) I[[z, t], t]=\{0\}=d(x) I[[z, t], t]^{*}$. Hence $d(I)=\{0\}$ or $[[z, t], t]=0$ for all $z \in I$, by Lemma 2.4. If $d(I)=\{0\}$, then for any $s \in N$ we get $d(s x)=d(s) x=0$ for all $x \in I$. Therefore $d(s) N I=\{0\}=d(s) N I^{*}$ and as $I$ is nonzero, then $*$-primeness of $N$ provides us $d(t)=0$ which implies that $d=0$, a contradiction. Thus we conclude that $[[z, t], t]=0$. Now putting $z x$ for $z$ and using Lemma 2.1 we obtain that $0=[[z x, t], t]=[z, t][x, t]+[z, t][x, t]$. It follows that $[z, t][x, t]=0$, by 2-torsion freeness of $N$. Replacing $z$ by $s z$ where $s \in N$ and using Lemma 2.1 again we obtain that $0=[s z, t][x, t]=[s, t] z[x, t]$ and consequently $[s, t] I[x, t]=\{0\}$ for all $x \in I$. Therefore by Lemma 2.1, $[s, t] I[x, t]=[s, t] I[x, t]^{*}=\{0\}$. Once again using Lemma 2.4 we arrive at $[s, t]=0$ or $[x, t]=0$. If $[s, t]=0$, then $t \in Z$. If $[x, t]=0$ for all $x \in I$, then for any $s \in N$ we have $0=[s x, t]=s[x, t]+[s, t] x=[s, t] x$ by Lemma 2.1. Hence $\{0\}=[s, t] I=[s, t] I p=[s, t] I p^{*}$, where $0 \neq p \in N$. Using Lemma 2.4 once again we conclude that $[s, t]=0$, which proves that $t \in Z$.

Now suppose that $d(I) \subseteq Z$. Hence from the first part of the theorem we conclude that $S a_{*}(N) \subseteq Z$. It is obvious that for each $s \in N, s-s^{*} \in S a_{*}(N)$. Now for any given $s \in N$, there are two possibilities either $s-s^{*} \neq 0$, or $s-s^{*}=0$. If first case occurs, then $0 \neq s-s^{*} \in Z$. Therefore in this case $Z \neq\{0\}$ and by Lemma $2.3, N$ becomes a ring. If first case does not occur, then $s=s^{*}$ for all $s \in N$. Which implies that $s_{1} s_{2}=\left(s_{1} s_{2}\right)^{*}=s_{2}^{*} s_{1}^{*}=s_{2} s_{1}$ for all $s_{1}, s_{2} \in N$ and we conclude that in this case $N=Z$ i.e.; $Z \neq\{0\}$. Again Lemma 2.3 shows that $N$ is a ring. Finally we get a fact that if $d(I) \subseteq Z$ holds, then $N$ is a ring. As $N$ is a ring, $s+s^{*}, s-s^{*} \in S a_{*}(N)$. We then obtain $s+s^{*}, s-s^{*} \in Z$ and hence $2 s \in Z$. Since $N$ is 2-torsion free, then $s \in Z$ proving the commutativity of $N$. Hence $N$ is a commutative ring.

Recently, L.Oukhtite and S.Salhi [4, Theorem 3.3] proved the following: Let $d$ be a nonzero derivation of a 2-torsion free $*$-prime ring $R$ and let $t \in S a_{*}(R)$. If $d([R, t])=0$, then $t \in Z(R)$. In particular, if $d[x, y]=0$, for all $x, y \in R$, then $R$ is commutative. we have obtained its analogue in the setting of $*$-prime near-rings with derivation.

Theorem 3.2. Let $N$ be a 2-torsion free $*$-prime near-ring admitting a nonzero derivation $d$ and let $t \in S a_{*}(N)$. If $d([N, t])=0$, then $t \in Z$. In particular, if $d[x, y]=0$, for all $x, y \in N$, then $N$ is commutative ring.

Proof. If $d(t)=0$, from our hypothesis and using Lemma 2.1, for any $x \in N$ we obtain, $0=d([x, t])=d(x) t+x d(t)-d(t) x-t d(x)=d(x) t-t d(x)=[d(x), t]$. Hence we arrive at
$[d(x), t]=0$ for all $x \in N$. Applying Theorem 3.2, this gives $t \in Z$ and in this case proof finishes. Now assume that $d(t) \neq 0$. For all $x \in N$, we have $0=d([t x, t])=d(t[x, t])=$ $t d[x, t]+d(t)[x, t]$. This implies that

$$
\begin{equation*}
d(t)[x, t]=0 . \tag{3.4}
\end{equation*}
$$

Putting $x y$ where $y \in N$ for $x$, and using Lemma 2.1 we arrive at $0=d(t)[x y, t]=$ $d(t) x[y, t]+d(t)[x, t] y$. Which reduces to $d(t) x[y, t]=0$ i.e.; $d(t) R[y, t]=\{0\}$ for all $y \in R$, with the help of relation (3.4). Since $t \in S a_{*}(N)$, then by Lemma 2.1 we have $d(t) R[y, t]=d(t) R[y, t]^{*}=\{0\}$. Now $*$-primeness of $N$ insures that $[y, t]=0$ i.e.; $t \in Z$. Now suppose that $d[x, y]=0$, for all $x, y \in N$ and using first part of the theorem, we conclude that $S a_{*}(N) \subseteq Z$. Further onward using the same argument as used in the Theorem 3.1, we obtain that $N$ is a commutative ring.

Recently, L.Oukhtite and S.Salhi [6, Theorem 1] proved the following: Let $R$ be a 2 -torsion free $*$-prime ring, admitting a nonzero derivation $d$, which commutes with $*$ and $I$ a nonzero $*$-ideal. If $[d(x), x] \in Z(R)$, for all $x \in I$, then it is commutative. we have proved its analogue for $*$-prime near-rings with derivation.

Theorem 3.3. Let $N$ be a 2 -torsion free $*$-prime near-ring, admitting a nonzero derivation $d$, which commutes with $*$. If $[d(x), x] \in Z$, for all $x \in I$, then $N$ is a commutative ring.

Proof. Linearizing $[d(x), x] \in Z$ with the help of Lemma 2.1, we arrive at $[d(x), y]+[d(y), x] \in Z$ for all $x, y \in I$. Replacing $y$ by $x^{2}$ and using Lemma 2.1, we obtain that $4 x[d(x), x] \in Z$. Now 2-torsion freeness of $N$ forces $x[d(x), x] \in Z$ for all $x \in I$. Thus for any $t \in N$, we have that $t x[d(x), x]=x[d(x), x] t=x t[d(x), x]$ and so by Lemma 2.1 we arrive at $[t, x][d(x), x]=0$, for all $x \in I$ and for all $t \in N$. Replacing $t$ by $d(x)$, we obtain $[d(x), x]^{2}=0$ for all $x \in I$. Since $[d(x), x] \in Z$, then $[d(x), x] N[d(x), x][d(x), x]^{*}=\{0\}$. As $[d(x), x][d(x), x]^{*} \in S a_{*}(N)$. Now $*$-prime ness of $N$ provides us $[d(x), x]=0$ or $[d(x), x][d(x), x]^{*}=0$. Suppose $[d(x), x][d(x), x]^{*}=0$ holds then the condition $[d(x), x] \in Z$ gives us $[d(x), x] N[d(x), x]^{*}=\{0\}$. Including the both cases we infer that $[d(x), x] N[d(x), x]^{*}=\{0\}=[d(x), x] N[d(x), x]$. *-primeness of $N$ yields $[d(x), x]=0$ for all $x \in I$. Now using Lemma 2.6, we get our required result.

In the year 2007, L.Oukhtite and S.Salhi [7, Theorem 1.2-1.3] obtained the following results: Let $R$ be a 2 -torsion free $*$-prime ring admitting a nonzero derivation $d$, which commutes with $*$ and $I$ a nonzero $*$-ideal. If $R$ satisfies any one of the following conditions: $(i)[d(x), d(y)]=0$, for all $x, y \in I$, (ii) $d([x, y])=0$ for all $x, y \in I$, then
it is commutative. we have proved analogues of these results in the setting of $*$-prime near-rings with derivation. Finally it is also shown that the restriction of 2 -torsion freeness of $R$ used by authors while proving above (ii) is redundant.

Theorem 3.4. Let $N$ be a 2 -torsion free $*$-prime near-ring and $I$ a nonzero $*$-ideal of $N$. If $N$ admits a nonzero derivation $d$ such that $[d(x), d(y)]=0$, for all $x, y \in I$ and $d$ commutes with $*$, then $N$ is a commutative ring.

Proof. By hypothesis we have, $[d(x), d(y)]=0$, for all $x, y \in I$. Now replacing $y$ by $x y$ and using Lemma 2.1, we obtain that $d(x)[d(x), y]+[d(x), x] d(y)=0$, for all $x, y \in I$. Putting $y z$ where $z \in N$ for $y$ in the last expression and using Lemma 2.1, we get $d(x) y[d(x), z]+[d(x), x] y d(z)=0$, for all $x, y \in I, z \in N$. Replacing $z$ by $d(t)$ where $t \in I$ and using hypothesis, we arrive at $[d(x), x] y d^{2}(t)=0$, for all $x, y, t \in I$. This implies that $[d(x), x] I d^{2}(t)=\{0\}$. Since $d *=* d$ and $d$ is a $*$-ideal, we get $[d(x), x] I d^{2}(t)=[d(x), x]^{*} I d^{2}(t)=\{0\}$ by Lemma 2.1. Applying Lemma 2.4, either $d^{2}(t)=0$ for all $t \in I$ or $[d(x), x]=0$ for all $x \in I$. If $d^{2}(t)=0$ for all $t \in I$, then by Lemma 2.7 we conclude that $d=0$, a contradiction. Thus we conclude that $[d(x), x]=0$ for all $x \in I$ and hence Lemma 2.6 finishes the proof.

Theorem 3.5. Let $N$ be a $*$-prime near-ring and $I$ a nonzero $*$-ideal of $N$. If $N$ admits a nonzero derivation $d$ such that $d([x, y])=0$, for all $x, y \in I$ and $d$ commutes with $*$, then $N$ is a commutative ring.

Proof. By hypothesis we have $d([x, y])=0$, for all $x, y \in I$. Now replacing $y$ by $y x$, we obtain that $d([x, y x])=0$. Using hypothesis and Lemma 2.1 we obtain that $[x, y] d(x)=0$ for all $x, y \in I$. This implies that, for any $z \in N$, replacing $y$ by $z y$ and using Lemma 2.1 again we arrive at $[x, z] y d(x)=0$ for all $x, y \in I$ i.e.; $[x, N] I d(x)=\{0\}$ for all $x \in I$. Now by Lemma 2.5, the result follows.

Theorem 3.6. Let $N$ be a $*$-prime near-ring and $I$ a nonzero $*$-ideal of $N$. If $N$ admits a nonzero derivation $d$, which commutes with $*$ and one of the following conditions hold (i) $d([x, y])= \pm[x, y],(i i) d([x, y])= \pm(x o y)$, (iii) $d($ xoy $)=0,(i v) d($ xoy $)= \pm(x o y)$ and (v) $d($ xoy $)= \pm[x, y]$ for all $x, y \in I$, then $N$ is a commutative ring.

Proof. It can be proved using the same techniques, as in Theorem 3.5.

The following example justifies the existence of $*$-primeness in the hypotheses of the Theorems 3.5 and 3.6.

Example 3.1. Let $S$ be a left near-ring. Suppose $N=\left\{\left.\left(\begin{array}{ccc}0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \right\rvert\, x, y, 0 \in S\right\}$. Define $d, *: N \longrightarrow N$ such that

$$
d\left(\begin{array}{lll}
0 & x & y \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & x & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and

$$
\left(\begin{array}{lll}
0 & x & y \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)^{*}=\left(\begin{array}{lll}
0 & x & y \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

It is straightforward to check that $N$ is $*$-near-ring and $I=\left\{\left.\left(\begin{array}{ccc}0 & x & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \right\rvert\, x, 0 \in S\right\}$ is a $*$-ideal of $N$. If we set $p=\left(\begin{array}{ccc}0 & 0 & s \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ with $0 \neq s \in S$, then $p N p=\{0\}=p N p^{*}$ proving that $N$ is not $*$-prime near-ring. Furthermore $d$ is a nonzero derivation, which commutes with $*$ and satisfies the following conditions:
(i) $d([x, y])=0$, (ii) $d([x, y])= \pm[x, y]$, (iii) $d([x, y])= \pm(x o y)$, (iv) $d(x o y)=0$, (v) $d($ xoy $)= \pm($ xoy $)$ and (vi) $d(x o y)= \pm[x, y]$ for all $x, y \in I$. However $N$ is not a commutative ring.

Recently, L.Oukhtite and S.Salhi [6, Theorem 2] obtained the following result: Let $R$ be *-prime ring with characteristic not 2 and $I$ be a nonzero $*$-ideal of $R$. Suppose there exist derivations $d_{1}$ and $d_{2}$ which commute with $*$ such that $d_{1}(x) x-x d_{2}(x) \in Z(R)$ for all $x \in I$. If $d_{2} \neq 0$, then $R$ is commutative. The main purpose of the following theorem is to prove its analogue for $*$-prime near-rings.

Theorem 3.7. Let $N$ be a 2-torsion free $*$-prime near-ring and $I$ a nonzero $*$-ideal of $N$. Suppose there exist derivations $d_{1}$ and $d_{2}$ which commute with $*$ such that $d_{1}(x) x-x d_{2}(x) \in Z$ for all $x \in I$. If $d_{2} \neq 0$, then $N$ is a commutative ring.

Proof. If $I \cap Z=\{0\}$; as $d_{1}(x) x-x d_{2}(x) \in I \cap Z$, then $d_{1}(x) x=x d_{2}(x)$ for all $x \in I$. Linearizing this relation with the help of Lemma 2.1 we get $d_{1}(x) y+d_{1}(y) x=x d_{2}(y)+$ $y d_{2}(x)$ for all $x, y \in I$. Replacing $y$ by $y x$ in the last relation and using the same again, combined with the fact that $d_{1}(x) x=x d_{2}(x)$ and Lemma 2.1, we arrive at $\left[x, y d_{2}(x)\right]=0$ for all $x, y \in I$. Now putting $t y$, where $t \in N$ and using Lemma 2.1, to get $[x, t] y d_{2}(x)=0$ i.e.; $[x, N] I d_{2}(x)=\{0\}$ for all $x \in I$. Since $d_{2} \neq 0$, from Lemma 2.5 we conclude that $N$
is a commutative ring.
Next, assume that $I \cap Z \neq\{0\}$. This implies that $Z \neq\{0\}$. Therefore by Lemma 2.3, $N$ is a ring. Choose $0 \neq z \in I \cap Z$ in such way $z^{*}= \pm z$. If $z^{*}=z$, then nothing to do, otherwise we consider $t=z-z^{*}$, then $t \in I \cap Z$ and $t^{*}=-t$. Linearizing $d_{1}(x) x-x d_{2}(x) \in Z$, we get

$$
\begin{equation*}
d_{1}(x) y+d_{1}(y) x-x d_{2}(y)-y d_{2}(x) \in Z \tag{3.5}
\end{equation*}
$$

for all $x, y \in I$. Replacing $y$ by $z$ and using $d_{2}(z) \in Z$ in the relation (3.5), we arrive at

$$
\begin{equation*}
z\left(d_{1}(x)-d_{2}(x)\right)+\left(d_{1}(z)-d_{2}(z)\right) x \in Z \tag{3.6}
\end{equation*}
$$

for all $x \in I$. Putting $y=z^{2}$ in the relation (3.5) and using the relation (3.6), we conclude that $z\left(d_{1}(z)-d_{2}(z)\right) x \in Z$ for all $x \in I$. This implies that $z\left(d_{1}(z)-d_{2}(z)\right) N[x, t]=\{0\}=z\left(d_{1}(z)-d_{2}(z)\right) N[x, t]^{*}$ for all $x \in I, t \in N$. Which leads us to $I \subseteq Z$ and by Lemma 2.6, $N$ is a commutative ring or $d_{1}(z)=d_{2}(z)$. If $d_{1}(z)=d_{2}(z)$, then by relation (3.6) we conclude that $z\left(d_{1}(x)-d_{2}(x)\right) \in Z$ and so $\left(d_{1}(x)-d_{2}(x)\right) \in Z$ for all $x \in I$. Hence, $d(I) \subseteq Z$ where $d=d_{1}-d_{2}$. Then it follows by Lemma 2.6 that $N$ is a commutative ring. If $d_{1}=d_{2}$ then $d_{1}(x) x-x d_{1}(x)=\left[d_{1}(x), x\right] \in Z$ for all $x \in I$ and by Theorem 3.3, we conclude that $N$ is a commutative ring.

Recently, L.Oukhtite and S.Salhi [5, Theorem 3.3] obtained the following result for prime near-rings: Let $N$ be a prime near-ring, which admits a nonzero derivation $d$. If $d$ acts as a homomorphism on $N$, then $d$ is the identity map. Motivated by this result we investigated its analogue in the setting of $*$-prime near-rings under some constraints.

Theorem 3.8. Let $N$ be $*$-prime near-ring, admitting a derivation $d$ and a nonzero *-ideal $I$. If $d$ acts as a homomorphism on $I$ and $d *=* d$, then $d=0$.

Proof. Assume that $d$ acts as a homomorphism on $I$. Then one obtains that $d(x y)=d(x) d(y)=d(x) y+x d(y)$ for all $x, y \in I$. Replacing $y$ by $y z$, where $z \in I$, we obtain that $d(x) d(y z)=d(x) y z+x d(y z)$. Since $d$ acts as a homomorphism on $I$, we deduce that $d(x y) d(z)=d(x) y z+x y d(z)+x d(y) z$. Using Lemma 2.1 we arrive at $x d(y) d(z)+d(x) y d(z)=d(x) y z+x y d(z)+x d(y) z$ i.e. $; x d(y z)+d(x) y d(z)=d(x) y z+x y d(z)+x d(y) z$. This implies that $x y d(z)+x d(y) z+d(x) y d(z)=d(x) y z+x y d(z)+x d(y) z$. Using Lemma 2.1 we arrive at $d(x) y d(z)=d(x) y z$ i.e.; $d(x) y(d(z)-z)=0$ for all $x, y, z \in I$. Since $I$ is a *-ideal and $d *=* d$, we conclude that $d(x) I(d(z)-z)=\{0\}=\{d(x)\}^{*} I(d(z)-z)$ for all $x, z \in I$. By Lemma 2.4 we infer that either $d(z)=z$ or $d(x)=0$. If first case holds, then replacing $z$ by $z x$ we obtain that $d(z x)=z x$ i.e.; $z d(x)+d(z) x=z x$. This implies that $z d(x)=0$ i.e. $; \operatorname{Id}(x)=\{0\}$. Finally we get $t I d(x)=t^{*} I d(x)=\{0\}$, where $0 \neq t \in N$.

By Lemma 2.4 we obtain that $d(x)=0$. Now combining both the cases we conclude that $d(x)=0$ for all $x \in I$. Putting $x t$ for $x$ where $t \in N$, we obtain that $x d(t)+d(x) t=0$ i.e.; $x d(t)=0$. Finally we get that $s \operatorname{Id}(t)=\{0\}=s^{*} I d(t)$, where $0 \neq s \in N$. Again Lemma 2.4 insures that $d=0$.

## REFERENCES

[1] Pilz G., Near-rings, 2nd ed., North Holland / American Elsevier, Amsterdam, (1983).
[2] Ferrero, C.C. and Ferrero, G., Near-rings-Some Developments Linked to Semigroups and Groups, Kluwer Academic Publishers Dordrecht, The Netherlands, 2002.
[3] Bell H.E. and Mason G., On derivations in near-rings, Near-rings and Near-fields (G. Betsch editor), North-Holland / American Elsevier, Amsterdam, 137, (1987), $31-35$.
[4] Oukhtite, L. and Salhi, S., On commutativity of *-prime rings, Glasnik Matematicki, 41, no.1, (2006), $57-64$.
[5] Oukhtite, L. and Salhi, S., Derivations as homomorphisms and antihomomorphisms in *-prime rings, Algebras, Groups and Geometries, 23, no.1, (2006), $67-72$.
[6] Oukhtite, L. and Salhi, S., Derivations and commutativity of *-prime rings, Int. J. Contemp. Math. Sci., Vol. 1, no.9, (2006), $439-448$.
[7] Oukhtite, L. and Salhi, S., On Derivations in *-prime rings, Int. J. Algebra, Vol. 1, no.5, (2007), $241-246$.


[^0]:    ${ }^{1}$ Mathematics Subject Classification (2010) : 16W25, 16Y30.
    ${ }^{2}$ Keywords and Phrases: Derivation, involution, *-prime near-ring, *-ideal and commutativity.

