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Abstract: The primary purpose of this paper is to introduce the notion of ∗-prime

near-rings, which is a special class of distributive near-rings and to investigate their

commutativity. Let N be a left near-ring. N is called distributive near-ring if

(x + y)z = xz + yz for all x, y, z ∈ N . Further, an additive mapping x 7→ x∗ on N is said

to be an involution on N if (i) (x∗)∗ = x and (ii) (xy)∗ = y∗x∗ hold for all x, y ∈ N . A

near-ring equipped with an involution ‘∗’ is called a ∗-near-ring. A ∗-near-ring N is called

∗-prime near-ring if xNy = xNy∗ = {0} implies that either x = 0 or y = 0. Analogues of

some ring theoretic results, regarding commutativity have been obtained in the setting

of ∗-prime near-rings satisfying some properties and identities involving derivations.

1. INTRODUCTION

Throughout the present paper, unless otherwise mentioned, N will denote a left near-

ring. N is called a prime near-ring if xNy = {0} implies x = 0 or y = 0. It is called

semiprime if xNx = {0} implies x = 0. Given an integer n > 1, near-ring N is said to

be n-torsion free, if for x ∈ N , nx = 0 implies x = 0. If K is a nonempty subset of N ,

then a normal subgroup (K,+) of (N,+) is called a right ideal (resp. a left ideal) of N if

(x + k)y − xy ∈ K (resp. xk ∈ K) holds for all x, y ∈ N and for all k ∈ K. K is called

an ideal of N if it is both a left ideal as well as a right ideal of N . The symbol Z will

denote the multiplicative center of N , that is, Z = {x ∈ N | xy = yx for all y ∈ N}.
For any x, y ∈ N the symbol [x, y] = xy − yx stands for multiplicative commutator of x

and y, while the symbol xoy will represent xy + yx. For terminologies concerning near-

rings, we refer to G.Pilz [1, 2]. Following [3], an additive mapping d : N −→ N satisfying

d(xy) = xd(y) + d(x)y for all x, y ∈ N is called a derivation on N . A ∗-near ring N is

called ∗-prime near-ring if xNy = xNy∗ = {0} implies that either x = 0 or y = 0. Let N

be a ∗-near-ring. An ideal I of N is called ∗-ideal if I∗ = I. An element x ∈ N is called

a symmetric element if x∗ = x and an element x ∈ N is called a skewsymmetric element

if x∗ = −x. We denote the collection of all symmetric and skewsymmetric elements
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of N by Sa∗(N) i.e.; Sa∗(N) = {x ∈ N | x∗ = ±x}. There has been a lot of work

on commutativity of ∗-prime rings costrained with derivations (see 4 − 7, where further

references can be found). Motivated by these works, we have investigated commutativity

of ∗-prime near-rings constrained with derivations.

2. PRELIMINARY RESULTS

We begin with the following lemmas which are essential for developing the proofs of our

main results.

Lemma 2.1. Let N be a ∗-near-ring. Then

(i) N is a distributive near-ring.

(ii) xy + zt = zt + xy for all x, y, z, t ∈ N .

(iii) n(xy) = (nx)y = x(ny) for all x, y ∈ N and n ∈ Z, where Z stands for the set of

integers.

(iv) [x, y + z] = [x, y] + [x, z] and [x + y, z] = [x, z] + [y, z] for all x, y, z ∈ N .

(v) [x, yz] = y[x, z] + [x, y]z and [xy, z] = x[y, z] + [x, z]y for all x, y, z ∈ N .

(vi) If I is an ideal of N then NI ⊆ I and IN ⊆ I.

Proof. (i) For all x, y, z ∈ N we have {(y + z)x}∗ = x∗y∗ + x∗z∗, now taking the image of

both the sides under ∗ we get (y + z)x = yx + zx. This means that N is a distributive

near-ring.

(ii) Since N has both distributive properties, expanding (x+z)(t+y) for all x, y, z, t ∈ N,

we have xt + xy + zt + zy = xt + zt + xy + zy. This implies our required result.

(iii) Since (N,+) is a group and N has both distributive properties, the result is obvious.

(iv) Using both distributive properties of N and (ii), we get the result.

(v) Same trick as used in (iv).

(vi) Under hypothesis it is a trivial fact.
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Lemma 2.2. Let N be a ∗-near-ring.

(i) If N is a prime near-ring then it is a ∗-prime near-ring.

(ii) If N is ∗-prime near-ring then it is a semiprime near-ring.

(iii) N is ∗-prime near-ring if and only if xNy = x∗Ny = {0} yields x = 0 or y = 0.

Proof. (i) Suppose that xNy = xNy∗ = {0}. If first case holds then primeness of N

insures that either x = 0 or y = 0. On the other hand if second case holds then primeness

of N again provides us either x = 0 or y∗ = 0. Including both the cases we arrive at

either x = 0 or y = 0. Hence N is ∗-prime near-ring .

(ii) Assume that xNx = {0} then xNxNx∗ = {0}. By ∗-primeness of N we get that ei-

ther x = 0 or xNx∗ = {0}. But xNx∗ = {0} together with xNx = {0} implies that x = 0.

(iii) Let N be a ∗-prime near-ring. Further suppose that xNy = x∗Ny = {0}. This

provides us y∗Nx∗ = y∗Nx = {0}. Using ∗-primeness of N we obtain that either y∗ = 0

or x = 0. This implies that either x = 0 or y = 0. Converse can be proved in a similar way.

Lemma 2.3. Let N be a ∗-prime near-ring.

(i) If Z 6= {0} then N is a ring.

(ii) If z ∈ Z\{0} and x is an element of N such that xz, xz∗ ∈ Z (resp. xz, x∗z ∈ Z)

then x ∈ Z.

Proof. (i) Since Z 6= {0}, there exists 0 6= z ∈ Z. By Lemma 2.1 we obtain that

zx + zy = zy + zx for all x, y ∈ N . Now we infer that z(x + y − x − y) = 0 for all

x, y ∈ N . This implies that zN(x+ y− x− y) = {0} and zN(x+ y− x− y)∗ = {0}. Now

∗-primeness of N provides us x + y = y + x for all x, y ∈ N . Hence (N,+) is abelian.

Using Lemma 2.1 again we conclude that N is a ring.

(ii) If xz, xz∗ ∈ Z, we have xzr = rxz and xz∗r = rxz∗ for all r ∈ N . It is obvious that

z∗ ∈ Z. These facts provide us zN [x, r] = {0} and z∗N [x, r] = {0} for all r ∈ N. Using

Lemma 2.2 we obtain that x ∈ Z. On the other hand if xz, x∗z ∈ Z, we have xzr = rxz

and x∗zr = rx∗z for all r ∈ N. It follows that zN [x, r] = {0} and zN [x∗, r] = {0} for all

r ∈ N. Replacing r by r∗ in the relation zN [x∗, r] = {0} we obtain that zN [x∗, r∗] = {0}
i.e.; zN [x∗, r∗] = {0}. Now we arrive at zN [x, r] = {0} and zN [x, r]∗ = {0} for all r ∈ N.
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Finally ∗-primeness of N finishes the proof.

In the year 2006, L.Oukhtite and S.Salhi [4, Lemma 3.1] proved that if R is a ∗-prime

ring possessing a nonzero ∗-ideal I and x, y ∈ R such that xIy = {0} = xIy∗, then x = 0

or y = 0. We have obtained its analogue in the setting of ∗-prime near-rings.

Lemma 2.4. Let N be a ∗-prime near-ring and I be a nonzero ∗-ideal of N . If x, y ∈ N

satisfy xIy = xIy∗ = {0} (resp. xIy = x∗Iy = {0}), then x = 0 or y = 0.

Proof. Assume x 6= 0, there exists some z ∈ I such that xz 6= 0. For otherwise

xNy = {0} and xNy∗ = {0} for all y ∈ I and thus ∗-primeness of N gives us x = 0. Since

xINy = {0} and xINy∗ = {0}, we then obtain xzNy = xzNy∗ = {0}. Now ∗-primeness

of N provides us y = 0. Using similar arguments with necessary variations one can easily

prove that xIy = x∗Iy = {0}) implies that x = 0 or y = 0.

Recently, L.Oukhtite and S.Salhi [6, Lemma 2 − 5] studied derivations in ∗-prime rings

and proved the following: Let R be a ∗-prime ring having nonzero ∗-ideal I then (i) If d

is a nonzero derivation on R which commutes with ∗ and [x,R]Id(x) = {0} for all x ∈ I,

then R is commutative. (ii) If d is a nonzero derivation on R which commutes with ∗
and [d(x), x] = 0 for all x ∈ I, then R is commutative. (iii) Let d be a derivation of R

satisfying d∗ = ± ∗ d. If d2(I) = {0}, then d = 0. (iv) Let d1 and d2 be derivations of R

such that d1∗ = ± ∗ d1 and d2∗ = ± ∗ d2. If d2(I) ⊆ I and d1d2(I) = {0}, then d1 = 0

or d2 = 0. We have obtained the analogues of these results in the setting of ∗-prime

near-rings as below.

Lemma 2.5. Let N be a ∗-prime near-ring admitting a nonzero derivation d, which

commutes with ∗. If I is a nonzero ∗-ideal of N and [x,N ]Id(x) = {0} for all x ∈ I, then

N is a commutative ring.

Proof. Let x ∈ I. Since y = x − x∗ ∈ I, then [y, z]Id(y) = 0 for all z ∈ N. As y ∈
Sa∗(N), then using Lemma 2.1 we arrive at [y, z]Id(y) = [y, z]∗Id(y) = {0} for all z ∈ N .

By Lemma 2.4 we obtain that d(y) = 0 or [y, z] = 0 for all z ∈ N. If d(y) = 0, then

d(x) = d(x∗) = (d(x))∗. Therefore [x, z]Id(x) = [x, z]I(d(x))∗ = {0} and by Lemma

2.4 we infer that either d(x) = 0 or x ∈ Z. On the other hand if [y, z] = 0 for all

z ∈ N , then y ∈ Z and hence [x − x∗, z] = 0 for all z ∈ N . By Lemma 2.1 we have

that [x, z] = [x∗, z] for all z ∈ N . Therefore using Lemma 2.1 again we obtain that

[x, z]Id(x) = [x, z]∗Id(x) = {0}. Again using Lemma 2.4 we get either d(x) = 0 or x ∈ Z.

Now we conclude that for each x ∈ I either d(x) = 0 or x ∈ Z.
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Let us consider H = {x ∈ I | d(x) = 0} and K = {x ∈ I | x ∈ Z}. Using Lemma 2.1 it

can be easily shown that H and K are additive subgroups of I such that I = H ∪K. But

a group can not be a union of two of its proper subgroups and hence I = H or I = K. If

I = H, then d(x) = 0 for all x ∈ I. For any t ∈ N , replacing x by xt we get xd(t) = 0,

for all x ∈ I i.e.; Id(t) = {0} for all t ∈ N . In particular pId(t) = p∗Id(t) = {0} for

all t ∈ N, where 0 6= p ∈ N. Now Lemma 2.4 gives us d = 0, a contradiction. Hence

I = K so that I ⊆ Z. I 6= {0} implies that Z 6= {0}. Hence by Lemma 2.3, N is a ring.

Let z, t ∈ N and x ∈ I. From ztx = zxt = tzx we conclude that [z, t]I = {0} and then

[z, t]Ip = [z, t]Ip∗ = {0}, where 0 6= p ∈ N. In view of Lemma 2.4, we conclude that

[z, t] = 0 for all z, t ∈ N . Therefore, N is a commutative ring.

Lemma 2.6. Let N be a ∗-prime near-ring admitting a nonzero derivation d, which

commutes with ∗. If I is a nonzero ∗-ideal of N and [d(x), x] = 0 for all x ∈ I, then N is

a commutative ring.

Proof. Let x, y ∈ I. Linearizing [d(x), x] = 0 with the help of Lemma 2.1 and using the

hypothesis we get

[d(x), y] + [d(y), x] = 0 (2.1)

for all x, y ∈ I. Now replacing y by yx and using Lemma 2.1 we obtain that

[d(x), y]x + [d(y), x]x + [y, x]d(x) = 0 (2.2)

for all x, y ∈ I. Relations 2.1 and 2.2 yield [x, y]d(x) = 0, for all x, y ∈ I. Thus,

for any z ∈ N , we have [x, zy]d(x) = [x, z]yd(x) = 0 by Lemma 2.1 and therefore

[x,N ]Id(x) = {0} for all x ∈ I. Finally by Lemma 2.5 we get the required result.

Lemma 2.7. Let N be a 2-torsion free ∗-prime near-ring admitting a derivation d such

that d∗ = ± ∗ d. If I is a nonzero ∗-ideal of N and d2(I) = {0}, then d = 0.

Proof. For any x ∈ I, we have d2(x) = 0. Putting xy for x where y ∈ I, and using

Lemma 2.1 we arrive at d2(x)y + 2d(x)d(y) + xd2(y) = 0 for all x, y ∈ I. 2-torsion

freeness of N and d2(I) = {0}, provide us d(x)d(y) = 0. Replacing x by xz where

z ∈ I in the last relation and using Lemma 2.1, we get d(x)zd(y) = 0 for all x, y, z ∈ N

i.e.;d(x)Id(y) = {0}. Since d∗ = ± ∗ d, by Lemma 2.4 I infer that d(x) = 0 for all x ∈ I.

Now replacing x by xt where t ∈ N we have xd(t) = 0 and therefore INd(t) = {0} for

all t ∈ N . Since I is a nonzero ∗-ideal and N is a ∗-prime near-ring, We get d(z) = 0 for

all z ∈ N and consequently d = 0.
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Lemma 2.8. Let N be a 2-torsion free ∗-prime near-ring admitting derivations d1 and

d2 such that d1∗ = ± ∗ d1 and d2∗ = ± ∗ d2. If I is a nonzero ∗-ideal of N such that

d2(I) ⊆ I and d1d2(I) = 0, then d1 = 0 or d2 = 0.

Proof. Let x, y ∈ I. Then d1d2(xy) = d1(x)d2(y) + d2(x)d1(y) = 0. Replacing x by d2(x)

We get d22(x)d1(y) = 0 for all x, y ∈ I. Now putting yz where z ∈ I for y we obtain that

d22(x)yd1(z) = 0 for all x, y, z ∈ I. It then gives us d22(x)Id1(z) = {0} for all x, z ∈ I.

The conditions I∗ = I and d1∗ = ± ∗ d1 provide us d22(x)Id1(z) = d22(x)I{d1(z)}∗ = {0}
and by Lemma 2.4 it follows that either d1(z) = 0 for all z ∈ I or d22(x) = 0

for all x ∈ I. If d1(z) = 0 for all z ∈ I, then replacing z by zt where t ∈ N ,

we obtain that zd1(t) = 0 i.e.; Id1(t) = {0}. As d1∗ = ± ∗ d1, this implies that

pId1(t) = pI{d1(t)}∗ = {0} for 0 6= p ∈ N . In view of Lemma 2.4 We obtain that

d1 = 0. On the other hand if d22(x) = 0 for all x ∈ I, We obtain by Lemma 2.7 that d2 = 0.

3. MAIN RESULTS

In the year 2006, L. Oukhtite and S. Salhi [4 ,Theorem 3.2] obtained the following: Let

d be a nonzero derivation of a 2-torsion free ∗-prime ring R and I a nonzero ∗-ideal

of R. If r ∈ Sa∗(R) satisfies [d(x), r] = 0 for all x ∈ I, then r ∈ Z(R). Furthermore,

if d(I) ⊆ Z(R), then R is commutative. we have obtained its analogue for ∗-prime

near-rings with derivation.

Theorem 3.1. Let N be a 2-torsion free ∗-prime near-ring admitting a nonzero derivation

d and a nonzero ∗-ideal I. If t ∈ Sa∗(N) satisfies [d(x), t] = 0 for all x ∈ I, then t ∈ Z.

Furthermore, if d(I) ⊆ Z, then N is a commutative ring.

Proof. Since [d(xy), t] = 0 for all x, y ∈ I, using Lemma 2.1 it provides us d(x)yt +

xd(y)t− td(x)y − txd(y) = 0. Conditions [d(x), t] = [d(y), t] = 0 give us

d(x)[y, t] + [x, t]d(y) = 0 (3.1)

for all x, y ∈ I. Replacing y by yt and using Lemma 2.1, we conclude that [x, t]Id(t) =

{0}. The fact that I is a ∗-ideal together with t ∈ Sa∗(N) and Lemma 2.1, provide

[x, t]∗Id(t) = [x, t]Id(t) = {0}. Applying Lemma 2.4, either d(t) = 0 or [x, t] = 0.

If d(t) 6= 0, then [x, t] = 0 for all x ∈ I. Let s ∈ N , from [sx, t] = 0 it follows by

Lemma 2.1 that [s, t]x = 0. Let 0 6= x0 ∈ I, as [s, t]Nx0 = [s, t]Nx∗
0. Since N is ∗-prime

near-ring, which proves that [s, t] = 0 i.e.; t ∈ Z. On the other hand if d(t) = 0, then

d([x, t]) = [d(x), t] = 0 and consequently

d([I, t]) = {0}. (3.2)

6
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Replacing y by yz where z ∈ I in the relation (3.1) and using Lemma 2.1, we see that

d(x)y[z, t] + [x, t]yd(z) = 0. (3.3)

Taking [z, t] instead of z in relation (3.3) and applying relation (3.2) and Lemma 2.1

we then arrive at d(x)y[[z, t], t] = 0 so that d(x)I[[z, t], t] = {0} = d(x)I[[z, t], t]∗. Hence

d(I) = {0} or [[z, t], t] = 0 for all z ∈ I, by Lemma 2.4. If d(I) = {0}, then for any

s ∈ N we get d(sx) = d(s)x = 0 for all x ∈ I. Therefore d(s)NI = {0} = d(s)NI∗

and as I is nonzero, then ∗-primeness of N provides us d(t) = 0 which implies that

d = 0, a contradiction. Thus we conclude that [[z, t], t] = 0. Now putting zx for z

and using Lemma 2.1 we obtain that 0 = [[zx, t], t] = [z, t][x, t] + [z, t][x, t]. It follows

that [z, t][x, t] = 0, by 2-torsion freeness of N . Replacing z by sz where s ∈ N and

using Lemma 2.1 again we obtain that 0 = [sz, t][x, t] = [s, t]z[x, t] and consequently

[s, t]I[x, t] = {0} for all x ∈ I. Therefore by Lemma 2.1, [s, t]I[x, t] = [s, t]I[x, t]∗ = {0}.
Once again using Lemma 2.4 we arrive at [s, t] = 0 or [x, t] = 0. If [s, t] = 0, then t ∈ Z.

If [x, t] = 0 for all x ∈ I, then for any s ∈ N we have 0 = [sx, t] = s[x, t] + [s, t]x = [s, t]x

by Lemma 2.1. Hence {0} = [s, t]I = [s, t]Ip = [s, t]Ip∗, where 0 6= p ∈ N. Using Lemma

2.4 once again we conclude that [s, t] = 0, which proves that t ∈ Z.

Now suppose that d(I) ⊆ Z. Hence from the first part of the theorem we conclude that

Sa∗(N) ⊆ Z. It is obvious that for each s ∈ N , s − s∗ ∈ Sa∗(N). Now for any given

s ∈ N , there are two possibilities either s − s∗ 6= 0, or s − s∗ = 0. If first case occurs,

then 0 6= s − s∗ ∈ Z. Therefore in this case Z 6= {0} and by Lemma 2.3, N becomes

a ring. If first case does not occur, then s = s∗ for all s ∈ N. Which implies that

s1s2 = (s1s2)
∗ = s∗2s

∗
1 = s2s1 for all s1, s2 ∈ N and we conclude that in this case N = Z

i.e.; Z 6= {0}. Again Lemma 2.3 shows that N is a ring. Finally we get a fact that if

d(I) ⊆ Z holds, then N is a ring. As N is a ring, s+ s∗, s− s∗ ∈ Sa∗(N). We then obtain

s + s∗, s − s∗ ∈ Z and hence 2s ∈ Z. Since N is 2-torsion free, then s ∈ Z proving the

commutativity of N . Hence N is a commutative ring.

Recently, L.Oukhtite and S.Salhi [4, Theorem 3.3] proved the following: Let d be a

nonzero derivation of a 2-torsion free ∗-prime ring R and let t ∈ Sa∗(R). If d([R, t]) = 0,

then t ∈ Z(R). In particular, if d[x, y] = 0, for all x, y ∈ R, then R is commutative. we

have obtained its analogue in the setting of ∗-prime near-rings with derivation.

Theorem 3.2. Let N be a 2-torsion free ∗-prime near-ring admitting a nonzero derivation

d and let t ∈ Sa∗(N). If d([N, t]) = 0, then t ∈ Z. In particular, if d[x, y] = 0, for all

x, y ∈ N , then N is commutative ring.

Proof. If d(t) = 0, from our hypothesis and using Lemma 2.1, for any x ∈ N we obtain,

0 = d([x, t]) = d(x)t+xd(t)−d(t)x− td(x) = d(x)t− td(x) = [d(x), t]. Hence we arrive at

7
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[d(x), t] = 0 for all x ∈ N . Applying Theorem 3.2, this gives t ∈ Z and in this case proof

finishes. Now assume that d(t) 6= 0. For all x ∈ N , we have 0 = d([tx, t]) = d(t[x, t]) =

td[x, t] + d(t)[x, t]. This implies that

d(t)[x, t] = 0. (3.4)

Putting xy where y ∈ N for x, and using Lemma 2.1 we arrive at 0 = d(t)[xy, t] =

d(t)x[y, t] + d(t)[x, t]y. Which reduces to d(t)x[y, t] = 0 i.e.; d(t)R[y, t] = {0} for all

y ∈ R, with the help of relation (3.4). Since t ∈ Sa∗(N), then by Lemma 2.1 we have

d(t)R[y, t] = d(t)R[y, t]∗ = {0}. Now ∗-primeness of N insures that [y, t] = 0 i.e.; t ∈ Z.

Now suppose that d[x, y] = 0, for all x, y ∈ N and using first part of the theorem, we

conclude that Sa∗(N) ⊆ Z. Further onward using the same argument as used in the

Theorem 3.1, we obtain that N is a commutative ring.

Recently, L.Oukhtite and S.Salhi [6, Theorem 1] proved the following: Let R be a

2-torsion free ∗-prime ring, admitting a nonzero derivation d, which commutes with ∗
and I a nonzero ∗-ideal. If [d(x), x] ∈ Z(R), for all x ∈ I, then it is commutative. we

have proved its analogue for ∗-prime near-rings with derivation.

Theorem 3.3. Let N be a 2-torsion free ∗-prime near-ring, admitting a nonzero deriva-

tion d, which commutes with ∗. If [d(x), x] ∈ Z, for all x ∈ I, then N is a commutative

ring.

Proof. Linearizing [d(x), x] ∈ Z with the help of Lemma 2.1, we arrive at

[d(x), y] + [d(y), x] ∈ Z for all x, y ∈ I. Replacing y by x2 and using Lemma 2.1,

we obtain that 4x[d(x), x] ∈ Z. Now 2-torsion freeness of N forces x[d(x), x] ∈ Z for

all x ∈ I. Thus for any t ∈ N , we have that tx[d(x), x] = x[d(x), x]t = xt[d(x), x]

and so by Lemma 2.1 we arrive at [t, x][d(x), x] = 0, for all x ∈ I and for all t ∈ N.

Replacing t by d(x), we obtain [d(x), x]2 = 0 for all x ∈ I. Since [d(x), x] ∈ Z, then

[d(x), x]N [d(x), x][d(x), x]∗ = {0}. As [d(x), x][d(x), x]∗ ∈ Sa∗(N). Now ∗-prime ness of

N provides us [d(x), x] = 0 or [d(x), x][d(x), x]∗ = 0. Suppose [d(x), x][d(x), x]∗ = 0 holds

then the condition [d(x), x] ∈ Z gives us [d(x), x]N [d(x), x]∗ = {0}. Including the both

cases we infer that [d(x), x]N [d(x), x]∗ = {0} = [d(x), x]N [d(x), x]. ∗-primeness of N

yields [d(x), x] = 0 for all x ∈ I. Now using Lemma 2.6, we get our required result.

In the year 2007, L.Oukhtite and S.Salhi [7, Theorem 1.2-1.3] obtained the following

results: Let R be a 2-torsion free ∗-prime ring admitting a nonzero derivation d, which

commutes with ∗ and I a nonzero ∗-ideal. If R satisfies any one of the following

conditions: (i) [d(x), d(y)] = 0, for all x, y ∈ I, (ii) d([x, y]) = 0 for all x, y ∈ I, then
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it is commutative. we have proved analogues of these results in the setting of ∗-prime

near-rings with derivation. Finally it is also shown that the restriction of 2-torsion

freeness of R used by authors while proving above (ii) is redundant.

Theorem 3.4. Let N be a 2-torsion free ∗-prime near-ring and I a nonzero ∗-ideal of

N . If N admits a nonzero derivation d such that [d(x), d(y)] = 0, for all x, y ∈ I and d

commutes with ∗, then N is a commutative ring.

Proof. By hypothesis we have, [d(x), d(y)] = 0, for all x, y ∈ I. Now replacing y

by xy and using Lemma 2.1, we obtain that d(x)[d(x), y] + [d(x), x]d(y) = 0, for all

x, y ∈ I. Putting yz where z ∈ N for y in the last expression and using Lemma 2.1,

we get d(x)y[d(x), z] + [d(x), x]yd(z) = 0, for all x, y ∈ I, z ∈ N. Replacing z by d(t)

where t ∈ I and using hypothesis, we arrive at [d(x), x]yd2(t) = 0, for all x, y, t ∈ I.

This implies that [d(x), x]Id2(t) = {0}. Since d∗ = ∗d and d is a ∗-ideal, we get

[d(x), x]Id2(t) = [d(x), x]∗Id2(t) = {0} by Lemma 2.1. Applying Lemma 2.4, either

d2(t) = 0 for all t ∈ I or [d(x), x] = 0 for all x ∈ I. If d2(t) = 0 for all t ∈ I, then by

Lemma 2.7 we conclude that d = 0, a contradiction. Thus we conclude that [d(x), x] = 0

for all x ∈ I and hence Lemma 2.6 finishes the proof.

Theorem 3.5. Let N be a ∗-prime near-ring and I a nonzero ∗-ideal of N . If N admits

a nonzero derivation d such that d([x, y]) = 0, for all x, y ∈ I and d commutes with ∗,
then N is a commutative ring.

Proof. By hypothesis we have d([x, y]) = 0, for all x, y ∈ I. Now replacing y by yx, we

obtain that d([x, yx]) = 0. Using hypothesis and Lemma 2.1 we obtain that [x, y]d(x) = 0

for all x, y ∈ I. This implies that, for any z ∈ N , replacing y by zy and using Lemma 2.1

again we arrive at [x, z]yd(x) = 0 for all x, y ∈ I i.e.;[x,N ]Id(x) = {0} for all x ∈ I. Now

by Lemma 2.5, the result follows.

Theorem 3.6. Let N be a ∗-prime near-ring and I a nonzero ∗-ideal of N . If N admits

a nonzero derivation d, which commutes with ∗ and one of the following conditions hold

(i) d([x, y]) = ±[x, y], (ii) d([x, y]) = ±(xoy), (iii) d(xoy) = 0, (iv) d(xoy) = ±(xoy) and

(v) d(xoy) = ±[x, y] for all x, y ∈ I, then N is a commutative ring.

Proof. It can be proved using the same techniques, as in Theorem 3.5.

The following example justifies the existence of ∗-primeness in the hypotheses of the

Theorems 3.5 and 3.6.
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Example 3.1. Let S be a left near-ring. Suppose N =


 0 x y

0 0 0
0 0 0

 | x, y, 0 ∈ S

 .

Define d, ∗ : N −→ N such that

d

 0 x y
0 0 0
0 0 0

 =

 0 x 0
0 0 0
0 0 0


and  0 x y

0 0 0
0 0 0

∗

=

 0 x y
0 0 0
0 0 0

 .

It is straightforward to check that N is ∗-near-ring and I =


 0 x 0

0 0 0
0 0 0

 | x, 0 ∈ S


is a ∗-ideal of N . If we set p =

 0 0 s
0 0 0
0 0 0

 with 0 6= s ∈ S, then pNp = {0} = pNp∗

proving that N is not ∗-prime near-ring. Furthermore d is a nonzero derivation, which

commutes with ∗ and satisfies the following conditions:

(i) d([x, y]) = 0, (ii) d([x, y]) = ±[x, y], (iii) d([x, y]) = ±(xoy), (iv) d(xoy) = 0,

(v) d(xoy) = ±(xoy) and (vi) d(xoy) = ±[x, y] for all x, y ∈ I. However N is not a

commutative ring.

Recently, L.Oukhtite and S.Salhi [6, Theorem 2] obtained the following result: Let R be

∗-prime ring with characteristic not 2 and I be a nonzero ∗-ideal of R. Suppose there

exist derivations d1 and d2 which commute with ∗ such that d1(x)x− xd2(x) ∈ Z(R) for

all x ∈ I. If d2 6= 0, then R is commutative. The main purpose of the following theorem

is to prove its analogue for ∗-prime near-rings.

Theorem 3.7. Let N be a 2-torsion free ∗-prime near-ring and I a nonzero ∗-ideal

of N . Suppose there exist derivations d1 and d2 which commute with ∗ such that

d1(x)x− xd2(x) ∈ Z for all x ∈ I. If d2 6= 0, then N is a commutative ring.

Proof. If I ∩ Z = {0}; as d1(x)x − xd2(x) ∈ I ∩ Z, then d1(x)x = xd2(x) for all x ∈ I.

Linearizing this relation with the help of Lemma 2.1 we get d1(x)y + d1(y)x = xd2(y) +

yd2(x) for all x, y ∈ I. Replacing y by yx in the last relation and using the same again,

combined with the fact that d1(x)x = xd2(x) and Lemma 2.1, we arrive at [x, yd2(x)] = 0

for all x, y ∈ I. Now putting ty, where t ∈ N and using Lemma 2.1, to get [x, t]yd2(x) = 0

i.e.; [x,N ]Id2(x) = {0} for all x ∈ I. Since d2 6= 0, from Lemma 2.5 we conclude that N
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is a commutative ring.

Next, assume that I∩Z 6= {0}. This implies that Z 6= {0}. Therefore by Lemma 2.3, N is

a ring. Choose 0 6= z ∈ I∩Z in such way z∗ = ±z. If z∗ = z, then nothing to do, otherwise

we consider t = z − z∗, then t ∈ I ∩ Z and t∗ = −t. Linearizing d1(x)x− xd2(x) ∈ Z, we

get

d1(x)y + d1(y)x− xd2(y)− yd2(x) ∈ Z (3.5)

for all x, y ∈ I. Replacing y by z and using d2(z) ∈ Z in the relation (3.5), we arrive at

z(d1(x)− d2(x)) + (d1(z)− d2(z))x ∈ Z (3.6)

for all x ∈ I. Putting y = z2 in the relation (3.5) and using the relation

(3.6), we conclude that z(d1(z) − d2(z))x ∈ Z for all x ∈ I. This implies that

z(d1(z) − d2(z))N [x, t] = {0} = z(d1(z) − d2(z))N [x, t]∗ for all x ∈ I, t ∈ N. Which

leads us to I ⊆ Z and by Lemma 2.6, N is a commutative ring or d1(z) = d2(z). If

d1(z) = d2(z), then by relation (3.6) we conclude that z(d1(x) − d2(x)) ∈ Z and so

(d1(x)− d2(x)) ∈ Z for all x ∈ I. Hence, d(I) ⊆ Z where d = d1 − d2. Then it follows by

Lemma 2.6 that N is a commutative ring. If d1 = d2 then d1(x)x−xd1(x) = [d1(x), x] ∈ Z

for all x ∈ I and by Theorem 3.3, we conclude that N is a commutative ring.

Recently, L.Oukhtite and S.Salhi [5, Theorem 3.3] obtained the following result for prime

near-rings: Let N be a prime near-ring, which admits a nonzero derivation d. If d acts

as a homomorphism on N , then d is the identity map. Motivated by this result we

investigated its analogue in the setting of ∗-prime near-rings under some constraints.

Theorem 3.8. Let N be ∗-prime near-ring, admitting a derivation d and a nonzero

∗-ideal I. If d acts as a homomorphism on I and d∗ = ∗d, then d = 0.

Proof. Assume that d acts as a homomorphism on I. Then one obtains that

d(xy) = d(x)d(y) = d(x)y + xd(y) for all x, y ∈ I. Replacing y by yz, where

z ∈ I, we obtain that d(x)d(yz) = d(x)yz + xd(yz). Since d acts as a ho-

momorphism on I, we deduce that d(xy)d(z) = d(x)yz + xyd(z) + xd(y)z. Us-

ing Lemma 2.1 we arrive at xd(y)d(z) + d(x)yd(z) = d(x)yz + xyd(z) + xd(y)z

i.e.;xd(yz) + d(x)yd(z) = d(x)yz + xyd(z) + xd(y)z. This implies that

xyd(z) + xd(y)z + d(x)yd(z) = d(x)yz + xyd(z) + xd(y)z. Using Lemma 2.1 we

arrive at d(x)yd(z) = d(x)yz i.e.; d(x)y(d(z) − z) = 0 for all x, y, z ∈ I. Since I is a

∗-ideal and d∗ = ∗d, we conclude that d(x)I(d(z)− z) = {0} = {d(x)}∗I(d(z)− z) for all

x, z ∈ I. By Lemma 2.4 we infer that either d(z) = z or d(x) = 0. If first case holds,

then replacing z by zx we obtain that d(zx) = zx i.e.; zd(x) + d(z)x = zx. This implies

that zd(x) = 0 i.e.;Id(x) = {0}. Finally we get tId(x) = t∗Id(x) = {0}, where 0 6= t ∈ N.
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By Lemma 2.4 we obtain that d(x) = 0. Now combining both the cases we conclude that

d(x) = 0 for all x ∈ I. Putting xt for x where t ∈ N , we obtain that xd(t) + d(x)t = 0

i.e.; xd(t) = 0. Finally we get that sId(t) = {0} = s∗Id(t), where 0 6= s ∈ N. Again

Lemma 2.4 insures that d = 0.
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