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Abstract: In a graph G = (V, E), a set SV(G) is said 

to be a distance closed set if for each vertex uS and 

for each wV – S, there exists at least one vertex v
S such that d<S>(u, v) = dG(u, w). A dominating set S is 

said to be a Distance Closed Dominating (D.C.D) set 

if S is distance closed.The cardinality of a minimum 

distance closed dominating set of G is called the 

distance closed domination number of G and is 

denoted by γdcl(G). The definition and the extensive 

study of the distance closed dominating sets in graphs 

are studied in [6].In this paper,the distance closed 

domatic number of some special classes of graphs are 

studied.Also, a general algorithm to find the structure 

of graphs with a given domatic number is proposed. 
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1. INTRODUCTION 

For a graph, let V(G) and E(G) denotes its 

vertex and edge set respectively. The degree of a 

vertex v in a graph G is the number of edges incident 

with v and is denoted by degG(v). A graph with every 

vertex of degree k is called a k-regular graph. The 

length of the shortest path between any two vertices u 

and v of a connected graph G is called the distance 

between u and v and it is denoted by dG(u, v).For a 

connected graph G, the eccentricity eG(v) = max{dG(u, 

v) : uV(G)}.  The minimum and maximum 

eccentricities are called the radius and diameter of G, 

denoted by r(G) and d(G) respectively. If these two 

are equal in a graph, that graph is called self-centered 

graph with radius r and is called an r self-centered 

graph. A graph G is called complete if every pair of 

vertices of G are adjacent. We denote a complete 

graph of order n byKn.The complement G of a graph 

G has V( G ) = V(G) and uv ∈ E( G ) if and only if 

uv ∉ E(G). In particular, nK has n vertices and no 

edges. A bipartite graph is a graph G for which V can 

be partitioned as V = V1 ∪ V2 with no two adjacent 

vertices in the same Vi and if G contains every edge 

joining V1 and V2, then G is a complete bipartite 

graph. In this case, if V1 and V2 have m and n 

vertices, we write G = Km, n. The concept of distance 

and related properties are studied in [1] and [2]. One 

important aspect of the concept of distance and 

eccentricity is the existence of polynomial time 

algorithm to analyze them.                                                                                                                                                                           

  A cut vertex of a connected graph is a vertex 

whose removal increases the number of components. 

Thus if v is a cut vertex of a connected graph G, then 

G – v is disconnected.  A non-separable graph is 

connected, non-trivial and has no cut vertices.  A 

block of a graph is a maximal non-separable 

subgraph.An Openpath of G is a finite, alternating 

sequence v0, e1, v1, e2 … vn – 1, en,vn beginning with 

vertex v0 and ending with vertex vn, such that ei= vi–1vi 

and vi ≠ vj for i, j = 1, 2 … n.  The number n (the 

number of occurrences of edges) is called the length of 

the path.  A path of order n is denoted by Pn.  

Therefore, Pn= v1v2 … vn indicates a path of order n on 

the vertices v1, v2 … vn.  A cycle of G is a path v1v2 … 

vn (n ≥ 3) with the additional edge vnv1. A cycle of 

order n is denoted by Cn, represented as Cn = v1v2 … 

vnv1.  A tree is a connected graph, which has no 

cycles.  

The concept of domination in graphs was 

introduced by Ore [7] in 1962. It is originated from the 

chess game theory which paved the way to the 

development of the study of various domination 

parameters and then relation to various other graph 

parameters.  A set DV(G) is called a dominating set 

of G if every vertex in V(G) –  D is adjacent to some 

vertex in D and the domination number γ(G) is the 

minimum cardinality of a dominating set.  Different 

types of dominating sets have been studied by 

imposing conditions on the dominating sets. The list 

of survey of domination theory papers are in [3] and 

[4]. At present, domination is considered to be one of 

the fundamental concepts in graph theory and its 

various applications to ad-hoc networks, biological 

networks, distributed computing, social networks and 

web graphs partly explain the increased interest. Such 

applications usually aim at selecting a subset of nodes 

that will provide some definite services such that 

every node in the network is „close‟ to some node in 

the subset. 
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An interesting variant of domination problem 

is to ask how many dominating sets one can pack into 

a given graph G and the main question is how to 

partition the vertex set of a graph into maximum 

number of disjoint dominating sets. The word 

“domatic” arises from two words “dominating” and 

“chromatic”, since the definition is related to both 

domination and coloring concepts. The 

domaticnumber of a graph was defined by Cockayne 

and Hedetniemi (1977) and the concepts were defined 

for undirected graphs in [3]. Zelinka (1984) 

transferred the concept of domatic number to directed 

graphs in [8]. The concept of domatic partition deals 

with the partition of a given graph into vertex disjoint 

distance closed dominating sets. Thus, it will be useful 

to partition the given communication network into 

parallel fault tolerant central location models, each of 

which behaves as a sub-model/network which could 

perform independently without affecting the 

remaining system. Thus, identification of such disjoint 

sub-networks is helpful in the parallel architecture 

design of the given network. 

2. PRIOR RESULTS 

The concept of distance closed set is defined and 

studied in the doctoral thesis of Janakiraman [5] and 

the concept of distance closed sets in graph theory is 

due to the related concept of ideals in ring theory in 

algebra. The ideals in a ring are defined with respect 

to the multiplicative closure property with the 

elements of that ring. Similarly, the distance closed 

dominating set is defined with respect to the distance 

closed property and the dominating set of the graph. 

Thus, the distance closed dominating set of a graph G 

is defined as follows: 

 A subset SV(G) is said to be a Distance Closed 

Dominating (D.C.D) set if 

                (i)  S is distance closed and                       

                (ii) S is a dominating set. 

          The cardinality of a minimum distance closed 

dominating set of G is called the distance closed 

domination number of G and is denoted by γdcl(G). For 

example, in the graph G given in Figure 2.1, the set S 

= {1, 3, 5, 6} forms a D.C.D set and γdcl(G) = 4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 - An example of D.C.D set of a graph 

 

           Clearly from the definition, 1 ≤ γdcl≤ p and the 

graph with γdcl= p is called a 0-distance closed 

dominating graph. The definition and the extensive 

study of the above said distance closeddominating sets 

in graphs are studied in[6]. The following are some 

important results proved in [6] has used here. 

Proposition 2.1: If T is a tree with number of vertices 

p ≥ 2, then γdcl(T) = p – k + 2, where k is the number 

of pendant vertices in T. 

Proposition2.2: If G is a 2 self-centered graph with a 

dominating edge, then γdcl(G) = 4. 

Theorem 2.1: Let G be a graph of order p. Then 

γdcl(G) = 2 if and only if G has at least two vertices of 

degree p – 1. 

Theorem 2.2: Let G be a graph of order p. Then 

γdcl(G) = 3 if and only if G has exactly one vertex of 

degree p – 1.  

Theorem 2.3: If a graph G is connected and d(G) ≥ 3, 

then γdcl( G ) = 4. 

 

3. MAIN RESULTS 

 

In this paper, the distance closed domatic number of 

some special classes of graphs are discussed. Also, the 

structure of graphs with a given distance closed 

domatic number are analyzed. 

 

Definition 3.1: 

The distance closed domatic numberddcl(G) = 

n of a graph G is the maximum partition {V1, V2 … 

Vn} of V(G) such that each Vi, 1 ≤ i ≤ n is a D.C.D set 

of G. 

 

3.1 The bounds on distance closed domatic number 

The following theorems give the bounds of distance 

closed domatic number in terms of the number of 

vertices and minimum degree of a graph. 

 

Proposition 3.1.1: For any graph G, ddcl(G) ≤ δ. 

Proof: If a graph G has domatic number k, then 

clearly every vertex must be adjacent to at least k 

vertices, one in each dominating subset of a distance 

closed domatic partition of order k. Hence, ddcl(G) ≤ δ. 
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Corollary 3.1.1: If G is a graph with δ(G) = 1, then G 

must have ddcl(G) = 1. 

 

Corollary 3.1.2: For any tree T with p ≥ 1, ddcl(T) = 1. 

 

Proposition 3.1.2: If G is a graph with ddcl(G) ≥ 2, 

then G is a block. 

Proof: If G has a cut vertex v, then every D.C.D set of 

G must contain the vertex v, which is not possible as 

ddcl(G) ≥ 2. Hence, G must be a block. 

 

Proposition 3.1.3: For any cycle Cn, ddcl(Cn) = 1, n ≥ 

3. 

 

Proposition 3.1.4: If G is a complete graph on p 

vertices, thenddcl(G) = 








2

p
. 

Proof: If G = Kp, then clearly γdcl(Kp) = 2. Also for 

any graph G,  

γdcl(G)*ddcl(G) = p. 

ddcl(G) = 








2

p
. 

 

Proposition 3.1.5: If G is a complete bipartite graph 

Km, n on p vertices, p = m + n, then 

ddcl(G) = 































mnif,
2

n

nmif,
2

m

 

Proof: Let G be a complete bipartite graph Km, n on p 

vertices and let {V1, V2}, where |V1| = m and |V2| = n 

be the bipartition of V(G). Then G is 2 self-centered 

and γdcl(G) = 4. Also, any D.C.D set of G must have 

exactly two vertices from each of V1 and V2. 

Hence, ddcl(G) = 































mnif,
2

n

nmif,
2

m

 

 

Proposition 3.1.6: If G is a (p – 2) regular graph, then 

ddcl(G) = 








4

p
. 

Proof: If G is a (p – 2) regular graph, then G is 2 self-

centered and γdcl(G) = 4.  

Hence, ddcl(G) = 








4

p
. 

 

Proposition 3.1.7: For the Petersen graph G (2 self-

centered), ddcl(G) = 2. 

 

Proposition3.1.8: If G is a 2 self-centered graph such 

that for every vV(G), both <N1(v)> and <N2(v)> are 

independent, then ddcl(G) ≤ 








4

p
. 

Proof: Let G be a 2 self-centered graph such that for 

every vV(G), both <N1(v)> and <N2(v)> are 

independent. Then every vertex in N1(v) is adjacent to 

all the vertices of N2(v) and vice versa. Thus, G can be 

partitioned into at most 








4

p
disjoint cycles of length 

4 and also each cycle represents a D.C.D set of G. 

Hence, ddcl(G) ≤  








4

p
. 

 

Remark 3.1.1: The upper bound for the above result 

ddcl = 








4

p
 is attainable for any complete bipartite 

graph Kn, n and the lower bound ddcl =1 is attainable 

for any K2, m. 

 

Proposition 3.1.9: Let G be a graph with p vertices 

and radius r, then ddcl(G) ≤ 








r2

p
. 

Proof: For any graph G with radius r, the radius of 

any D.C.D set is at least r. Thus, any D.C.D set of G 

must have cardinality at least 2r. Hence, γdcl(G) ≥ 2r 

and hence ddcl(G) ≤ 








r2

p
. 

 

Proposition 3.1.10: If G is a graph with p vertices and 

it contains m1 number of vertices of degree           p – 

1, then  

ddcl(G) ≤ 






 

4

mp 1
. 

Proof: Since G has a vertex of degree p – 1, G is of 

radius 1 and diameter 2. Let S = {v   V(G) | deg(v) = 

p – 1} and |S| = m1. Then, we have the following two 

cases. 

Case (i): 
2

mp 1
<m1 
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If 
2

mp 1
<m1, then G contains 









2

m1
 number of 

disjoint D.C.D sets for <S> and for the remaining 

graph the maximum partition is 






 

4

mp 1
. 

Therefore,  ddcl(G) ≤  






 

4

mp 1
 +  









2

m1
 

ddcl(G) ≤ 






 

4

mp 1
 

Case (ii): 
2

mp 1
>m1 

 If 
2

mp 1
>m1, then G contains at most m1 

number of disjoint D.C.D sets, each has cardinality 

equal to 3 and for the remaining (p – 3m1) vertices, the 

maximum partition is 






 

4

m3p 1
. 

Therefore,  ddcl(G) ≤ m1 + 






 

4

m3p 1
 

                                ≤  











 

4

m3pm4 11
 

ddcl(G) ≤  






 

4

mp 1
 

 Hence, from cases (i) and (ii) we have the 

result. 

 

Theorem 3.1.4: Let G be a graph with diameter ≥ 3. If 

ddcl(G) = k, then ddcl( G ) ≥ k. 

Proof: If G is a graph with diameter ≥ 3, then γdcl( G ) 

= 4. Also, if ddcl(G) = k, then G has k disjoint D.C.D 

sets Di, i = 1 to k such that each <Di>, i = 1 to k is 

either a tree or a cycle. In both the cases, <Di>, i = 1 to 

k has at least one induced P4 on it. Clearly the 4 

vertices in P4 of each <Di>, i = 1 to k forms a D.C.D 

set for G . Hence, each Di, i = 1 to k has at least one 

subset which is a D.C.D set of G  and hence ddcl( G ) 

≥  k. 

 

3.2 Nordhaus-Gaddum results for distance closed 

domatic number 

 

Proposition 3.2.1: For any graph G with p vertices,  

ddcl(G) + ddcl( G ) ≤  p – 1. 

Proof: We know that for any graph G, ddcl(G) ≤ δ(G). 

Hence, ddcl( G ) ≤ δ ( G ) = p –  ∆(G) – 1 

Therefore,  

ddcl(G) + ddcl( G ) ≤ δ(G) + p –  ∆(G) – 1 

                                         ≤ p + δ(G) –  ∆(G) – 1 

Hence, ddcl(G) + ddcl( G ) ≤  p – 1. 

 

Proposition 3.2.2: For any cycle Cn with n ≥ 6, 

ddcl(Cn) + ddcl( nC ) ≤ 








4

n
 + 1.    

Proof: For any cycle Cn with n ≥ 6, ddcl(Cn) = 1.  Also, 

any two vertices at distance 3 in Cn form a dominating 

edge for nC and therefore nC is 2 self-centred. 

Hence, γdcl( nC ) = 4 and hence ddcl( nC ) ≤ 








4

n

.Therefore, ddcl(Cn) + ddcl( nC ) ≤ 








4

n
 + 1. 

 

3.3 Structure of graphs with a given distance closed 

domatic number 

 

We can construct graphs with a given distance closed 

domatic number. For example, the structure of graphs 

with ddcl(G) = 
4

)mp( 
, where m is the number of (p 

– 1) degree vertices in G is given below. 

If ddcl(G) = 
4

)mp( 
= k, then G has k disjoint D.C.D 

sets V1, V2 …Vk such that each Vi, i =1 to k is an 

D.C.D set of G and the structure of G is obtained as 

follows: 

 

Construction procedure: 

 

1. Consider m cycles C1, C2…. Cm, each of 

length 7 (that is |Ci| = 7, i = 1, 2 …m) and 

label the vertices of each Ci (i = 1, 2,…m) by 

v1, v2, …v7. 

2. Now, join the vertex v1 of C1 to the vertices 

in C1 – {v2, v3} and all the vertices of C2, 

C3...Cm. Also, join the vertex v4 of C1 to the 

vertices v2 and v4 of C2, C3...Cm.  Similarly, 

join the vertex v5 of C1 to the vertices v3 and 

v5 ofC2, C3…Cm. 

3. Finally, join the vertex v6 of C1 to the vertex 

v6 of C2, C3...Cm and join the vertex v7 of C1 
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to the vertex v7 of C2, C3...Cm. Repeat this 

procedure for the remaining cycles C2, 

C3…Cm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 - Structure of graphs with ddcl= 
4

)mp( 

 
 

Now the resultant graph G is of radius 1 and 

diameter 2. Also G has exactly mvertices of degree p – 

1. In each Ci, i = 1, 2 …m the set of vertices {v1, v2, 

v3} and {v4, v5, v6, v7} form two disjoint D.C.D sets 

for G. That is G has exactly 2m = 
4

)mp( 
 number 

of disjoint D.C.D sets.  

 

3.4 Algorithm to construct a graph with a given 

domatic number 

 

In this section, an algorithm to construct an r self-

centered graph G with a given domatic number ddcl(G) 

= 
r2

p
 is given. The validity and complexity of the 

algorithm is also given and it can be checked in 

polynomial time. 

 

In general, the distance closed property in a 

graph can be checked in polynomial time.  However, 

finding the connected domination number of a graph 

G is NP-complete. Hence, finding a minimum distance 

closed dominating set in a general graph is NP-

complete and so attempts are made to develop 

polynomial time algorithms for finding D.C.D sets in 

some special classes of graphs. In all the algorithms, 

the distance matrix of G is computed as a pre-

processing step, whose time complexity is O(p
3
).  

Further it is assumed that any graph G given as input 

is in the form of adjacency matrix and it is also 

assumed that the degrees of all vertices are part of the 

input. Hence, the complexity of the algorithm 

discussed in this section is given excluding the pre-

processing time. 

 

Algorithm to construct a 2k regular graph G with 

drdcl(G) = k, where G is r self-centered and k =
r2

p
 

Input : Positive integers r, k 

Output :  A 2k regular graph G with drdcl(G) = k  

 

Pseudocode: 

Step 1: 

 Consider k cycles Ci (i = 1 to k) each of 

length 2r; 

 SetV(Ci) = {
)i(

1v ,
)i(

2v , …
)i(

r2v } (i=1 to k),  

V = 
k

1i
i )C(V



;  

Step 2:  

 For eachCi(i = 1 to k) do { 

 For each 
)i(

jv V(Ci) (j = 1 to 2r) do 

 u
)i(

jv E,  uN( )v )m(
j , m = 1 to k and 

m i;  

 } 

Step 3: 

 Output G = (V, E); //G is a 2k regular 

graph 

with drdcl(G)= k  

Step 4: 

 Exit 

 

Validity of the algorithm: 

 Validity follows directly from the 

construction of a 2k regular graph G, which is r self-

centered with drdcl(G) = k and k = 
r2

p
. 

 

Complexity of the algorithm: 

 Step 1 takes constant time to set V and 

forming the edge set E using the for loops given in 

step 2 takes O(2kr(k – 1)) = O(p
2
) as k = 

r2

p
.  Thus 

the complexity of the algorithm is O(p
2
). 

 

 4 CONCLUSION 

In this paper, the distance closed domatic 

number of some special classes of graphs are studied. 
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Also the Nordhaus-Gaddum results for the above 

domatic number of a graph and its complement are 

given and the structure of a graph with a given 

distance closed domatic number is analyzed. Also, a 

general algorithm to find the structure of graphs with a 

given domatic number is proposed. The validity and 

complexity of the algorithm is also given and it can be 

checked in polynomial time. Since the distance closed 

dominating set is distance preserving, in most of the 

cases, it is useful to find a sub-network in a given 

communication network, which is fault tolerant. It is 

not true that all graphs have at least one distance 

preserving subset which is a dominating set. Also, 

every graph has at least one distance closed 

dominating set even if it does not have a distance 

preserving dominating set. In those cases, we can 

cover at most all the vertices using this distance closed 

domination. Hence, this concept is very useful to 

analyze the worst case complexity in fault tolerance. 

Also, the above obtained results are used to analyze 

the behavior of different communication networks in 

different situations. In particular, in fault tolerance 

analysis of networks, parallel architecture designing 

and signal processing. 
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