Generalized Multiplicative Derivations in Near-Rings

Mohammad Aslam Siddeeque

Department of Mathematics Aligarh Muslim University Aligarh -202002(India)

Abstract: In the present paper, we investigate the commutativity of 3-prime near-rings satisfying certain conditions and identities involving left generalized multiplicative derivations. Moreover, examples have been provided to justify the necessity of 3-primeness condition in the hypotheses of various results.

1. Introduction

Throughout the paper, \mathcal{N} will denote a left near-ring. \mathcal{N} is called a 3-prime near-ring if $x\mathcal{N}y = \{0\}$ implies x = 0 or y = 0. \mathcal{N} is called a semiprime near-ring if $x\mathcal{N}x = \{0\}$ implies x = 0. A nonempty subset \mathfrak{A} of \mathcal{N} is called a semigroup left ideal (resp. semigroup right ideal) if $\mathcal{N}\mathfrak{A} \subseteq \mathfrak{A}$ (resp. $\mathfrak{A}\mathcal{N} \subseteq \mathfrak{A}$) and if \mathfrak{A} is both a semigroup left ideal as well as a semigroup right ideal, it will be called a semigroup ideal of \mathcal{N} . The symbol Z will denote the multiplicative center of \mathcal{N} , that is, $Z = \{x \in \mathcal{N} \mid xy = yx \text{ for all }$ $y \in \mathcal{N}$. For any $x, y \in \mathcal{N}$ the symbol [x, y] = xy - yx stands for the multiplicative commutator of x and y, while the symbol xoy stands for xy + yx. An additive mapping $d: \mathcal{N} \to \mathcal{N}$ is called a derivation of \mathcal{N} if d(xy) = xd(y) + d(x)y holds for all $x, y \in \mathcal{N}$. The concept of derivation has been generalized in different directions by various authors (for reference see [1,3,9]). A map $d: \mathcal{N} \to \mathcal{N}$ is called a multiplicative derivation of \mathcal{N} if d(xy) = xd(y) + d(x)y holds for all $x, y \in \mathcal{N}$. We, together with M. Ashraf and A. Boua have generalized the notion of multiplicative derivation by introducing the notion of generalized multiplicative derivations in [1] as follows: A map $f: \mathcal{N} \longrightarrow \mathcal{N}$ is called a left generalized multiplicative derivation of \mathcal{N} if there exists a multiplicative derivation d of \mathcal{N} such that f(xy) = xf(y) + d(x)y for all $x, y \in \mathcal{N}$. The map f will be called a left generalized multiplicative derivation of \mathcal{N} with associated multiplicative derivation d of \mathcal{N} . Similarly a map $f: \mathcal{N} \longrightarrow \mathcal{N}$ is called a right generalized multiplicative derivation of \mathcal{N} if there exists a multiplicative derivation d of \mathcal{N} such that f(xy) = xd(y) + f(x)y for all $x, y \in \mathcal{N}$. The map f will be called a right generalized multiplicative derivation of \mathcal{N} with associated multiplicative derivation d of \mathcal{N} . Finally, a map $f: \mathcal{N} \longrightarrow \mathcal{N}$ will be called a

¹Mathematics Subject Classification (2010) : 16W25, 16Y30.

 $^{^2{\}rm Keywords}$ and Phrases: 3-Prime near-ring, multiplicative derivation, left generalized multiplicative derivation and commutativity.

generalized multiplicative derivation of \mathcal{N} if it is both a right as well as a left generalized multiplicative derivation of \mathcal{N} with associated multiplicative derivation d of \mathcal{N} . Note that if in the above definition both d and f are assumed to be additive mappings, then f is said to be a generalized derivation with associated derivation d of \mathcal{N} . The following example shows that there exists a left generalized multiplicative derivation which is not a right generalized multiplicative derivation. For more properties of generalized multiplicative derivations one can refer to [1].

Example 1.1. Let S be a zero-symmetric left near-ring. Suppose that

$$\mathcal{N} = \left\{ \left(\begin{array}{ccc} 0 & 0 & 0 \\ x & 0 & 0 \\ y & z & 0 \end{array} \right) \mid x, y, z, 0 \in S \right\}.$$

It can be easily shown that \mathcal{N} is a zero symmetric left near-ring with regard to matrix addition and matrix multiplication. Define $d, f : \mathcal{N} \longrightarrow \mathcal{N}$ such that

$$d\begin{pmatrix} 0 & 0 & 0\\ x & 0 & 0\\ y & z & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ x^2 & 0 & 0 \end{pmatrix},$$
$$f\begin{pmatrix} 0 & 0 & 0\\ x & 0 & 0\\ y & z & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & z^2 & 0 \end{pmatrix}.$$

It can be easily proved that d is a multiplicative derivation of \mathcal{N} and f is a left generalized multiplicative derivation of \mathcal{N} with an associated multiplicative derivation d of \mathcal{N} . But f is not a right generalized multiplicative derivation of \mathcal{N} associated with multiplicative derivation d. It can be also verified that the maps d, f defined here are non-additive.

The study of commutativity of 3-prime near-rings was initiated by using derivations by H.E. Bell and G. Mason [6] in 1987. Subsequently a number of authors have investigated the commutativity of 3-prime near-rings admitting different types of derivations, generalized derivations, generalized multiplicative derivations (for reference see [1, 3, 4, 5, 6, 7, 8, 9], where further references can be found). In the present paper, we have obtained the commutativity of 3-prime near-rings, equipped with left generalized multiplicative derivations and satisfying some differential identities or conditions.

2. Preliminary Results

In this section we give some well-known results and we add some new lemmas which will be used throughout the next section of the paper. The proofs of the Lemmas 2.1 - 2.4 can be found in [6, 4], while those of Lemmas 2.5 - 2.7, can be found in [6, Lemma 1],[11,

ISSN: 2231-5373

Lemma 2.1] and [14, Lemma 2] respectively.

Lemma 2.1. Let \mathcal{N} be a 3-prime near-ring. If $Z \setminus \{0\}$ contains an element z for which $z + z \in Z$, then (N, +) is abelian.

Lemma 2.2. Let \mathcal{N} be a 3-prime near-ring. If $z \in Z \setminus \{0\}$ and x is an element of \mathcal{N} such that $xz \in Z$ or $zx \in Z$ then $x \in Z$.

Lemma 2.3. Let \mathcal{N} be a 3-prime near-ring and \mathfrak{A} be nonzero semigroup ideal of \mathcal{N} . Let d be a nonzero derivation on \mathcal{N} . If $x \in \mathcal{N}$ and $xd(\mathfrak{A}) = \{0\}$, then x = 0.

Lemma 2.4. Let \mathcal{N} be a 3-prime near-ring. If \mathcal{N} admits a nonzero derivation d for which $d(\mathfrak{A}) \subseteq Z$, then \mathcal{N} is a commutative ring.

Lemma 2.5. Let \mathcal{N} be a near-ring and d be a derivation on \mathcal{N} . Then (xd(y) + d(x)y)z = xd(y)z + d(x)yz for all $x, y, z \in \mathcal{N}$.

Lemma 2.6. A near-ring \mathcal{N} admits a multiplicative derivation if and only if it is zero-symmetric.

Lemma 2.7 Let \mathcal{N} be a near-ring with center Z and let d be derivation on \mathcal{N} . Then $d(Z) \subseteq Z$.

Lemma 2.8. Let \mathcal{N} be 3-prime near-ring. If \mathcal{N} admits a left generalized multiplicative derivation f with associated multiplicative derivation d such that f(u)v = uf(v) for all $u, v \in \mathcal{N}$, then d = 0.

Proof. We are given that f(u)v = uf(v) for all $u, v \in \mathcal{N}$. Now replacing v by vw, where $w \in \mathcal{N}$, in the previous relation, we obtain that f(u)vw = uf(vw) i.e.; f(u)vw = u(vf(w) + d(v)w). By using hypothesis we arrive at ud(v)w = 0 i.e.; $u\mathcal{N}d(v)w = \{0\}$. Now using the facts that $\mathcal{N} \neq \{0\}$ and \mathcal{N} is a 3-prime near-ring, we obtain that d(v)w = 0, for all $v, w \in \mathcal{N}$. This shows that d(v)w = 0 i.e.; $d(\mathcal{N})\mathcal{N}w = \{0\}$. Again 3-primeness of \mathcal{N} and $\mathcal{N} \neq \{0\}$ force us to conclude that $d(\mathcal{N}) = \{0\}$. We get d = 0.

3. Main Results

We facilitate our discussion with the following theorem.

ISSN: 2231-5373 <u>http://www.ijmttjournal.org</u>

Theorem 3.1. Let f be a nonzero left generalized multiplicative derivation with associated nonzero multiplicative derivation d of a 3-prime near-ring \mathcal{N} such that f([x, y]) = 0 for all $x, y \in \mathcal{N}$. Then \mathcal{N} is a commutative ring.

Proof. Assume that f([x, y]) = 0 for all $x, y \in \mathcal{N}$. Putting xy in place of y, we obtain that f([x, xy]) = f(x[x, y]) = xf([x, y]) + d(x)[x, y] = 0. Using hypothesis, it is clear that

$$d(x)xy = d(x)yx \text{ for all } x, y \in \mathcal{N}.$$
(3.1)

Replacing y by yr where $r \in \mathcal{N}$ in (3.1) and using this relation again, we get $d(x)\mathcal{N}[x,r] = \{0\}$ for all $x, r \in \mathcal{N}$. Hence by 3-primeness of N, for each $x \in \mathcal{N}$ either d(x) = 0 or $x \in Z$. Let $u \in \mathcal{N}$. It is clear that either d(u) = 0 or $u \in Z$. We claim that if d(u) = 0, then also $u \in Z$. Suppose on contrary i.e.; $u \notin Z$. Now in the present situation, we prove that $d(uv) \neq 0$, for all $v \in \mathcal{N}$. For otherwise, we have d(uv) = 0 for all $v \in \mathcal{N}$, which gives us ud(v) + d(u)v = 0. This implies that ud(v) = 0 for all $v \in \mathcal{N}$. Replacing v by vr, where $r \in \mathcal{N}$, in the previous relation and using the same again, we arrive at $u\mathcal{N}d(r) = \{0\}$. Using the facts that \mathcal{N} is 3-prime and $d \neq 0$, we obtain that $u = 0 \in \mathbb{Z}$, which leads to a contradiction. Thus, we have seen that if d(u) = 0 and $u \notin Z$, then there exists $v \in \mathcal{N}$, such that $d(uv) \neq 0$ and obviously $v \neq 0$. Since $u, v \in \mathcal{N}$, we have $uv \in \mathcal{N}$. We obtain that either d(uv) = 0 or $uv \in Z$. But as $d(uv) \neq 0$, we infer that $uv \in Z$. Next we claim that $v \notin Z$, for otherwise we have uvr = ruv i.e.; v[u, r] = 0 for all $r \in \mathcal{N}$. This shows that $v\mathcal{N}[u,r] = \{0\}$. Now by 3-primeness of \mathcal{N} , we conclude that $u \in \mathbb{Z}$, as $v \neq 0$, leading to a contradiction. Including all the above arguments, we conclude that if d(u) = 0 and $u \notin Z$, then there exists $v \in \mathcal{N}$, such that $d(uv) \neq 0$ and $v \notin Z$. As $v \notin Z$, shows that d(v) = 0. Finally, we get d(uv) = ud(v) + d(u)v = u0 + 0v = 0, leading to a contradiction again. We have proved that if d(u) = 0, then also $u \in Z$ i.e.; $\mathcal{N} \subseteq Z$. Thus we obtain that N = Z i.e.; N is a commutative near-ring. If $N = \{0\}$ then N is trivially a commutative ring. If $N \neq \{0\}$ then there exists $0 \neq x \in N$ and hence $x + x \in N = Z$. Now by Lemma 2.1; we conclude that N is a commutative ring.

Theorem 3.2. Let f be a nonzero left generalized multiplicative derivation with associated nonzero multiplicative derivation d of \mathcal{N} such that $f[x, y] = x^k[x, y]x^l$, k, l; being some given fixed positive integers, for all $x, y \in \mathcal{N}$. Then \mathcal{N} is a commutative ring.

Proof. It is given that $f[x, y] = x^k[x, y]x^l$, for all $x, y \in \mathcal{N}$. Replacing y by xy in the previous relation, we obtain that $f[x, xy] = x^k[x, xy]x^l$, i.e.; $f(x[x, y]) = x^k(x[x, y])x^l$. This implies that $xf[x, y] + d(x)[x, y] = x^kx[x, y]x^l = xx^k[x, y]x^l = xf[x, y]$. Now we obtain that d(x)[x, y] = 0 for all $x, y \in \mathcal{N}$, which is same as the relation (3.1) of Theorem

3.1. Now arguing in the same way as in the Theorem 3.1., we conclude that \mathcal{N} is a commutative ring.

The following example shows that the restriction of 3-primeness imposed on the hypotheses of Theorems 3.1 and 3.2 is not superfluous.

Example 3.2. Consider the near-ring \mathcal{N} , taken as in Example 1.1. \mathcal{N} is not 3-prime and

- (*i*) f([x, y]) = 0,
- (ii) $f[x, y] = x^k[x, y]x^l$, k, l; being some given fixed positive integers, for all $x, y \in \mathcal{N}$. However \mathcal{N} is not a commutative ring.

Theorem 3.3. Let \mathcal{N} be a 3-prime near-ring. If \mathcal{N} admits a nonzero left generalized multiplicative derivation f with associated nonzero multiplicative derivation d such that either (i) f([x, y]) = [f(x), y] for all $x, y \in \mathcal{N}$, or (ii) f([x, y]) = [x, f(y)], for all $x, y \in \mathcal{N}$, then \mathcal{N} is a commutative ring.

Proof. (i) Given that f([x,y]) = [f(x),y], for all $x, y \in \mathcal{N}$. Replacing y by xy in the previous relation, we get f([x,xy]) = [f(x),xy] i.e.; f(x[x,y]) = [f(x),xy]. This shows that xf([x,y]) + d(x)[x,y] = f(x)xy - xyf(x). Using the given condition and the fact that [f(x),x] = 0, the previous relation reduces to x(f(x)y - yf(x)) + d(x)[x,y] = xf(x)y - xyf(x). This gives us d(x)[x,y] = 0, for all $x, y \in \mathcal{N}$, which is the same as the relation (3.1) of Theorem 3.1. Now arguing in the similar way as in the Theorem 3.1., we conclude that \mathcal{N} is a commutative ring.

(*ii*) We have f([x,y]) = [x, f(y)], for all $x, y \in \mathcal{N}$. Replacing x by yx in the given condition, we obtain that f([yx,y]) = [yx, f(y)] i.e.; f(y[x,y]) = yxf(y) - f(y)yx. This gives us yf([x,y]) + d(y)[x,y] = yxf(y) - f(y)yx. With the help of the given condition and using the fact that [f(y), y] = 0, previous relation reduces to yxf(y) - yf(y)x + d(y)[x,y] = yxf(y) - yf(y)x. As a result, we obtain that d(y)[x,y] = 0 i.e.; d(y)[y,x] = 0. This implies that d(x)[x,y] = 0, which is identical with the relation (3.1) of Theorem 3.1. Now arguing in the similar way as in the Theorem 3.1., we conclude that \mathcal{N} is a commutative ring.

Theorem 3.4. Let \mathcal{N} be a 3-prime near-ring. If \mathcal{N} admits a nonzero left generalized multiplicative derivation f with associated nonzero multiplicative derivation d such that either (i) f([x, y]) = [d(x), y] for all $x, y \in \mathcal{N}$, or (ii) d([x, y]) = [f(x), y], for all $x, y \in \mathcal{N}$, then \mathcal{N} is a commutative ring.

Proof. (i) We are given that f([x, y]) = [d(x), y]. Replacing y by xy in the previous relation we get f([x, xy]) = [d(x), xy]. This relation gives f(x[x, y]) = [d(x), xy] i.e.; xf([x, y]) + d(x)[x, y] = d(x)xy - xyd(x). Using the given condition and the fact that [d(x), x] = 0, we obtain that xd(x)y - xyd(x) + d(x)[x, y] = xd(x)y - xyd(x). Finally we get d(x)[x, y] = 0, for all $x, y \in \mathcal{N}$, which is the same as the relation (3.1) of Theorem 3.1. Now arguing in the similar way as in the Theorem 3.1., we conclude that \mathcal{N} is a commutative ring.

(ii) We have d([x, y]) = [f(x), y]. Putting xy in the place of y in the previous relation we get d([x, xy]) = [f(x), xy]. This implies that d(x[x, y]) = f(x)xy - xyf(x) i.e.; xd[x, y] + d(x)[x, y] = f(x)xy - xyf(x). Using the fact that [f(x), x] = 0, we obtain that xd[x, y] + d(x)[x, y] = xf(x)y - xyf(x) i.e.; xd[x, y] + d(x)[x, y] = x[f(x), y]. Now using the hypothesis, we get xd[x, y] + d(x)[x, y] = xd([x, y]). Finally we have d(x)[x, y] = 0, for all $x, y \in \mathcal{N}$, which is identical with the relation (3.1) of Theorem 3.1. Now arguing in the similar way as in the Theorem 3.1., we conclude that \mathcal{N} is a commutative ring.

Theorem 3.5. Let \mathcal{N} be a 3-prime near-ring. If \mathcal{N} admits a nonzero left generalized multiplicative derivation f with associated nonzero multiplicative derivation d such that either $(i) f([x, y]) = \pm [x, y]$ for all $x, y \in \mathcal{N}$, or $(ii) f([x, y]) = \pm (xoy)$ for all $x, y \in \mathcal{N}$, then under the condition $(i) \mathcal{N}$ is a commutative ring and under the condition $(ii) \mathcal{N}$ is a commutative ring of characteristic 2.

Proof. Assume that condition (i) holds i.e.; $f([x, y]) = \pm [x, y]$ for all $x, y \in \mathcal{N}$. Putting xy in place of y, we obtain, $f([x, xy]) = f(x[x, y]) = xf([x, y]) + d(x)[x, y] = \pm x[x, y]$. Using our hypothesis we get d(x)xy = d(x)yx for all $x, y \in \mathcal{N}$, which is identical with the relation (3.1) of Theorem 3.1. Now arguing in the similar way as in the Theorem 3.1., we conclude that \mathcal{N} is a commutative ring. Under the condition (*ii*), using similar arguments, it is easy to show that N a commutative ring. But now under this situation, condition (*ii*) reduces to xoy = 0 for all $x, y \in \mathcal{N}$ i.e.; 2xy = 0. Suppose on contrary i.e.; characteristic $\mathcal{N} \neq 2$. As \mathcal{N} is a prime ring, \mathcal{N} will be a 2-torsion free ring. Now we get xy = 0, for all $x, y \in \mathcal{N}$ i.e.; $x\mathcal{N}y = \{0\}$. Finally, we have $\mathcal{N} = \{0\}$, leading to a contradiction.

Theorem 3.6. Let \mathcal{N} be a 3-prime near-ring. If \mathcal{N} admits a nonzero left generalized multiplicative derivation f with associated multiplicative derivation d such that $f(xy) = \pm (xy)$ for all $x, y \in \mathcal{N}$, then d = 0.

Proof. Let f(xy) = xy for all $x, y \in \mathcal{N}$. Putting yz, where $z \in \mathcal{N}$ for y in the previous

relation, we obtain that f(x(yz)) = x(yz) i.e.; xf(yz) + d(x)yz = xyz. Using the hypothesis we get d(x)yz = 0 i.e.; $d(x)Nz = \{0\}$. Since $N \neq \{0\}$, by 3-primeness of N, we get d = 0. Similar arguments hold if f(xy) = -(xy) for all $x, y \in \mathcal{N}$.

Very recently, Boua and Kamal [7, Theorem 1] proved that if \mathcal{N} is a 3-prime near-ring, which admits nonzero derivations d_1 and d_2 such that $d_1(x)d_2(y) \in \mathbb{Z}$, for all $x, y \in \mathfrak{A}$, where \mathfrak{A} is a nonzero semigroup ideal of \mathcal{N} , then \mathcal{N} is a commutative ring. Motivated by this result, we have obtained the following:

Theorem 3.7. Let \mathcal{N} be a 3-prime near-ring and f be a nonzero left generalized multiplicative derivation with associated nonzero multiplicative derivation d' of \mathcal{N} such that either (i) $f(x)d(y) \in Z$, for all $x, y \in \mathcal{N}$, or (ii) $d(x)f(y) \in Z$, for all $x, y \in \mathcal{N}$ and d is a nonzero derivation of \mathcal{N} . Then \mathcal{N} is a commutative ring.

(i) We are given that $f(x)d(y) \in Z$, for all $x, y \in \mathcal{N}$. Replacing y by Proof. yz, where $z \in \mathcal{N}$ in the previous relation, we get $f(x)d(yz) \in Z$. This implies that $f(x)(yd(z) + d(y)z) \in Z$ i.e.; $f(x)yd(z) + f(x)d(y)z \in Z$. This gives us (f(x)yd(z) + f(x)d(y)z)z = z(f(x)yd(z) + f(x)d(y)z). Now using Lemma 2.5, we obtain that f(x)yd(z)z + f(x)d(y)zz = zf(x)yd(z) + zf(x)d(y)z for all $x, y, z \in \mathcal{N}$. Using the hypothesis we infer that $f(x)yd(z)z + f(x)d(y)z^2 = zf(x)yd(z) + f(x)d(y)z^2$ i.e.; f(x)yd(z)z = zf(x)yd(z). Putting d(t)y for y, where $t \in \mathcal{N}$ in the relation f(x)yd(z)z = zf(x)yd(z), we get f(x)d(t)yd(z)z = zf(x)d(t)yd(z) and now using the hypothesis again, we arrive at f(x)d(t)(yd(z)z - zyd(z)). This shows that $f(x)d(t)\mathcal{N}(yd(z)z - zyd(z)) = \{0\}$. Hence 3-primeness of \mathcal{N} shows that either f(x)d(t) = 0 or yd(z)z - zyd(z) = 0. We claim that $f(x)d(t) \neq 0$ for all $x, t \in \mathcal{N}$. For otherwise if f(x)d(t) = 0 for all $x, t \in \mathcal{N}$, we have $f(x)d(\mathcal{N}) = \{0\}$. Using Lemma 2.3, we find that f(x) = 0 for all $x \in \mathcal{N}$, leading to a contradiction. Thus there exist $x_0, t_0 \in \mathcal{N}$ such that $f(x_0)d(t_0) \neq 0$. Hence, we arrive at yd(z)z - zyd(z) = 0 for all $y, z \in \mathcal{N}$. Now replacing y by yf(x), where $x \in \mathcal{N}$ in the previous relation and using the hypothesis again, we get f(x)d(z)(yz - zy) = 0 i.e.; $f(x)d(z)\mathcal{N}(yz - zy) = \{0\}$. By hypothesis we have $f(\mathcal{N}) \neq \{0\}$, hence there exists $u_0 \in \mathcal{N}$ such that $f(u_0) \neq 0$. By Lemma 2.3, there exists $z_0 \in \mathcal{N}$ such that $f(u_0)d(z_0) \neq 0$ and hence obviously $d(z_0) \neq 0$. Again 3-primeness of \mathcal{N} and the relation $f(x)d(z)\mathcal{N}(yz-zy) = \{0\}$, ultimately give us $yz_0 = z_0y$ for all $y \in \mathcal{N}$. Now Lemma 2.5 insures that $z_0 \in Z$ and using Lemma 2.7, we obtain that $d(z_0) \in Z$. Since $f(u_0)d(z_0) \in Z$ and $0 \neq d(z_0) \in Z$, Lemma 2.2, implies that $f(u_0) \in Z$. Using the given hypothesis again we have $f(u_0)d(y) \in Z$. But $0 \neq f(u_0) \in Z$, thus Lemma 2.2, shows that $d(\mathcal{N}) \subseteq Z$. Finally the Lemma 2.4, gives the required result.

(*ii*) Using the similar arguments as used in (*i*) with necessary variations, it can be easily shown that under the condition $d(x)f(y) \in Z$, for all $x, y \in \mathcal{N}, \mathcal{N}$ is a commutative ring.

Theorem 3.8. Let \mathcal{N} be a 3-prime near-ring and f be a left generalized multiplicative derivation of \mathcal{N} such that either (i) d(y)f(x) = [x, y], for all $x, y \in \mathcal{N}$, or (ii) d(y)f(x) = -[x, y], for all $x, y \in \mathcal{N}$ and d is a nonzero derivation of \mathcal{N} . Then \mathcal{N} is a commutative ring.

Proof. (i) We are given that

$$d(y)f(x) = [x, y], \text{ for all } x, y \in \mathcal{N}.$$
(3.2)

Case I: Let f = 0. Under this condition the equation (3.2) reduces to [x, y] = 0 for all $x, y \in \mathcal{N}$. This implies that xy = yx, for all $x, y \in \mathcal{N}$. Replacing x by xr, where $r \in \mathcal{N}$ in the previous relation and using the same relation again we arrive at $\mathcal{N}[r, y] = \{0\}$ i.e.; $[r, y]\mathcal{N}[r, y] = \{0\}$. Now using 3-primeness of N, we conclude that $r \in Z$. This implies that $\mathcal{N} \subseteq Z$. If $N = \{0\}$, then N is trivially a commutative ring. If $N \neq \{0\}$ then there exists $0 \neq x \in N$ and hence $x + x \in N = Z$. Now by Lemma 2.1; we conclude that N is a commutative ring.

Case II: Let $f \neq 0$. Replacing y by xy in the relation (3.2), we obtain that d(xy)f(x) = x[x,y] i.e.; (xd(y) + d(x)y)f(x) = x[x,y]. Using Lemma 2.5 and the relation (3.2), we arrive at xd(y)f(x) + d(x)yf(x) = xd(y)f(x). This shows that d(x)yf(x) = 0 i.e.; $d(x)\mathcal{N}f(x) = \{0\}$. Using 3-primeness of N, we conclude that for any given $x \in \mathcal{N}$, either d(x) = 0 or f(x) = 0. If for any given $x \in \mathcal{N}$, f(x) = 0, then relation (3.2) reduces to [x,y] = 0 for all $y \in \mathcal{N}$ i.e.; $x \in Z$. By Lemma 2.7, this shows that $d(x) \in Z$. Finally using both possibilities, we deduce that $d(\mathfrak{A}) \subseteq Z$. By Lemma 2.4, we get our required result.

(*ii*) Using the similar arguments as used in (*i*), it can be easily proved that under the condition d(y)f(x) = -[x, y], for all $x, y \in \mathcal{N}$, \mathcal{N} is a commutative ring.

References

 Ashraf, M., Boua, A., Siddeeque, M.A., Generalized multiplicative derivations in 3-prime near-rings, Mathematica Slovaca, (2017), (To appear).

- [2] Ashraf, M., Rehman, N., On commutativity of rings with derivations, Results Math, (2002), Vol. 42(1-2), 3-8.
- [3] Bell, H.E., On prime near-rings with generalized derivations, International Journal of Mathematics and Mathematical Sciences, (2008), Article ID 490316, 5 pages.
- Bell, H.E., On derivations in near-rings II, Kluwer Academic Publishers Dordrecht, Vol. 426, (1997), 191 – 197.
- Bell, H.E., Boua, A., Oukhtite, L., Semigroup ideals and commutativity in 3-prime near-rings, Comm. Algebra, 43, (2015), 1757 - 1770.
- [6] Bell, H.E. and Mason, G., On derivations in near-rings, Near-rings and Near-fields (G. Betsch editor), North-Holland / American Elsevier, Amsterdam, 137, (1987), 31-35.
- Boua, A., Kamal A.A.M., Some results on 3-prime near-rings with derivations, Indian J. Pure Appl. Math., 47(4), (2016), 705 - 716.
- [8] Boua, A., Oukhtite, L., On commutativity of prime near-rings with derivations, South East Asian Bull. Math., 37, (2013), 325 - 331.
- [9] Golbasi., O., On generalized derivations of prime near-rings, Hacet. J. Math. & Stat., 35(2), (2006), 173 - 180.
- [10] Havala, B., Generalized derivations in rings, Comm. Algebra, 26, 1147 1166, (1998).
- [11] Kamal, A.A.M. and Al-Shaalan, K. H., Existence of derivations on near-rings, Math. Slovaca, 63(3), (2013), 431 – 448.
- [12] Meldrum, J.D.P., Near-rings and their links with groups, Res. Notes Math. 134, Pitman (Advanced Publishing Program), Bostan, M.A., (1985).
- [13] Pilz, G., Near-rings, 2nd ed., 23, North Holland /American Elsevier, Amsterdam, (1983).
- [14] Wang, X.K., Derivations in prime near-rings, Proc. Amer. Math. Soc., 121, No.(2), (1994), 361 – 366.