Generalized Multiplicative Derivations in Near-Rings

Mohammad Aslam Siddeeque
Department of Mathematics
Aligarh Muslim University
Aligarh -202002(India)

Abstract

In the present paper, we investigate the commutativity of 3 -prime near-rings satisfying certain conditions and identities involving left generalized multiplicative derivations. Moreover, examples have been provided to justify the necessity of 3 -primeness condition in the hypotheses of various results.

1. Introduction

Throughout the paper, \mathcal{N} will denote a left near-ring. \mathcal{N} is called a 3-prime near-ring if $x \mathcal{N} y=\{0\}$ implies $x=0$ or $y=0 . \mathcal{N}$ is called a semiprime near-ring if $x \mathcal{N} x=\{0\}$ implies $x=0$. A nonempty subset \mathfrak{A} of \mathcal{N} is called a semigroup left ideal (resp. semigroup right ideal) if $\mathcal{N A} \subseteq \mathfrak{A}$ (resp. $\mathfrak{A N} \subseteq \mathfrak{A}$) and if \mathfrak{A} is both a semigroup left ideal as well as a semigroup right ideal, it will be called a semigroup ideal of \mathcal{N}. The symbol Z will denote the multiplicative center of \mathcal{N}, that is, $Z=\{x \in \mathcal{N} \mid x y=y x$ for all $y \in \mathcal{N}\}$. For any $x, y \in \mathcal{N}$ the symbol $[x, y]=x y-y x$ stands for the multiplicative commutator of x and y, while the symbol xoy stands for $x y+y x$. An additive mapping $d: \mathcal{N} \rightarrow \mathcal{N}$ is called a derivation of \mathcal{N} if $d(x y)=x d(y)+d(x) y$ holds for all $x, y \in \mathcal{N}$. The concept of derivation has been generalized in different directions by various authors (for reference see $[1,3,9]$). A map $d: \mathcal{N} \rightarrow \mathcal{N}$ is called a multiplicative derivation of \mathcal{N} if $d(x y)=x d(y)+d(x) y$ holds for all $x, y \in \mathcal{N}$. We, together with M. Ashraf and A. Boua have generalized the notion of multiplicative derivation by introducing the notion of generalized multiplicative derivations in [1] as follows: A map $f: \mathcal{N} \longrightarrow \mathcal{N}$ is called a left generalized multiplicative derivation of \mathcal{N} if there exists a multiplicative derivation d of \mathcal{N} such that $f(x y)=x f(y)+d(x) y$ for all $x, y \in \mathcal{N}$. The map f will be called a left generalized multiplicative derivation of \mathcal{N} with associated multiplicative derivation d of \mathcal{N}. Similarly a map $f: \mathcal{N} \longrightarrow \mathcal{N}$ is called a right generalized multiplicative derivation of \mathcal{N} if there exists a multiplicative derivation d of \mathcal{N} such that $f(x y)=x d(y)+f(x) y$ for all $x, y \in \mathcal{N}$. The map f will be called a right generalized multiplicative derivation of \mathcal{N} with associated multiplicative derivation d of \mathcal{N}. Finally, a map $f: \mathcal{N} \longrightarrow \mathcal{N}$ will be called a

[^0]generalized multiplicative derivation of \mathcal{N} if it is both a right as well as a left generalized multiplicative derivation of \mathcal{N} with associated multiplicative derivation d of \mathcal{N}. Note that if in the above definition both d and f are assumed to be additive mappings, then f is said to be a generalized derivation with associated derivation d of \mathcal{N}. The following example shows that there exists a left generalized multiplicative derivation which is not a right generalized multiplicative derivation. For more properties of generalized multiplicative derivations one can refer to [1].

Example 1.1. Let S be a zero-symmetric left near-ring. Suppose that

$$
\mathcal{N}=\left\{\left.\left(\begin{array}{ccc}
0 & 0 & 0 \\
x & 0 & 0 \\
y & z & 0
\end{array}\right) \right\rvert\, x, y, z, 0 \in S\right\} .
$$

It can be easily shown that \mathcal{N} is a zero symmetric left near-ring with regard to matrix addition and matrix multiplication. Define $d, f: \mathcal{N} \longrightarrow \mathcal{N}$ such that

$$
\begin{aligned}
d\left(\begin{array}{lll}
0 & 0 & 0 \\
x & 0 & 0 \\
y & z & 0
\end{array}\right) & =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
x^{2} & 0 & 0
\end{array}\right), \\
f\left(\begin{array}{lll}
0 & 0 & 0 \\
x & 0 & 0 \\
y & z & 0
\end{array}\right) & =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & z^{2} & 0
\end{array}\right) .
\end{aligned}
$$

It can be easily proved that d is a multiplicative derivation of \mathcal{N} and f is a left generalized multiplicative derivation of \mathcal{N} with an associated multiplicative derivation d of \mathcal{N}. But f is not a right generalized multiplicative derivation of \mathcal{N} associated with multiplicative derivation d. It can be also verified that the maps d, f defined here are non-additive.

The study of commutativity of 3-prime near-rings was initiated by using derivations by H.E. Bell and G. Mason [6] in 1987. Subsequently a number of authors have investigated the commutativity of 3-prime near-rings admitting different types of derivations, generalized derivations, generalized multiplicative derivations(for reference see $[1,3,4,5,6,7,8,9]$, where further references can be found). In the present paper, we have obtained the commutativity of 3-prime near-rings, equipped with left generalized multiplicative derivations and satisfying some differential identities or conditions.

2. Preliminary Results

In this section we give some well-known results and we add some new lemmas which will be used throughout the next section of the paper. The proofs of the Lemmas $2.1-2.4$ can be found in $[6,4]$, while those of Lemmas 2.5-2.7, can be found in [6, Lemma 1],[11,

Lemma 2.1] and [14, Lemma 2] respectively.

Lemma 2.1. Let \mathcal{N} be a 3 -prime near-ring. If $Z \backslash\{0\}$ contains an element z for which $z+z \in Z$, then $(N,+)$ is abelian.

Lemma 2.2. Let \mathcal{N} be a 3 -prime near-ring. If $z \in Z \backslash\{0\}$ and x is an element of \mathcal{N} such that $x z \in Z$ or $z x \in Z$ then $x \in Z$.

Lemma 2.3. Let \mathcal{N} be a 3 -prime near-ring and \mathfrak{A} be nonzero semigroup ideal of \mathcal{N}. Let d be a nonzero derivation on \mathcal{N}. If $x \in \mathcal{N}$ and $x d(\mathfrak{A})=\{0\}$, then $x=0$.

Lemma 2.4. Let \mathcal{N} be a 3 -prime near-ring. If \mathcal{N} admits a nonzero derivation d for which $d(\mathfrak{A}) \subseteq Z$, then \mathcal{N} is a commutative ring.

Lemma 2.5. Let \mathcal{N} be a near-ring and d be a derivation on \mathcal{N}. Then $(x d(y)+d(x) y) z=x d(y) z+d(x) y z$ for all $x, y, z \in \mathcal{N}$.

Lemma 2.6. A near-ring \mathcal{N} admits a multiplicative derivation if and only if it is zero-symmetric.

Lemma 2.7 Let \mathcal{N} be a near-ring with center Z and let d be derivation on \mathcal{N}. Then $d(Z) \subseteq Z$.

Lemma 2.8. Let \mathcal{N} be 3 -prime near-ring. If \mathcal{N} admits a left generalized multiplicative derivation f with associated multiplicative derivation d such that $f(u) v=u f(v)$ for all $u, v \in \mathcal{N}$, then $d=0$.

Proof. We are given that $f(u) v=u f(v)$ for all $u, v \in \mathcal{N}$. Now replacing v by $v w$, where $w \in \mathcal{N}$, in the previous relation, we obtain that $f(u) v w=u f(v w)$ i.e.; $f(u) v w=u(v f(w)+d(v) w)$. By using hypothesis we arrive at $u d(v) w=0$ i.e.; $u \mathcal{N} d(v) w=\{0\}$. Now using the facts that $\mathcal{N} \neq\{0\}$ and \mathcal{N} is a 3 -prime near-ring, we obtain that $d(v) w=0$, for all $v, w \in \mathcal{N}$. This shows that $d(v) w=0$ i.e.; $d(\mathcal{N}) \mathcal{N} w=\{0\}$. Again 3-primeness of \mathcal{N} and $\mathcal{N} \neq\{0\}$ force us to conclude that $d(\mathcal{N})=\{0\}$. We get $d=0$.

3. Main Results

We facilitate our discussion with the following theorem.

Theorem 3.1. Let f be a nonzero left generalized multiplicative derivation with associated nonzero multiplicative derivation d of a 3-prime near-ring \mathcal{N} such that $f([x, y])=0$ for all $x, y \in \mathcal{N}$. Then \mathcal{N} is a commutative ring.

Proof. Assume that $f([x, y])=0$ for all $x, y \in \mathcal{N}$. Putting $x y$ in place of y, we obtain that $f([x, x y])=f(x[x, y])=x f([x, y])+d(x)[x, y]=0$. Using hypothesis, it is clear that

$$
\begin{equation*}
d(x) x y=d(x) y x \text { for all } x, y \in \mathcal{N} . \tag{3.1}
\end{equation*}
$$

Replacing y by $y r$ where $r \in \mathcal{N}$ in (3.1) and using this relation again, we get $d(x) \mathcal{N}[x, r]=\{0\}$ for all $x, r \in \mathcal{N}$. Hence by 3 -primeness of N, for each $x \in \mathcal{N}$ either $d(x)=0$ or $x \in Z$. Let $u \in \mathcal{N}$. It is clear that either $d(u)=0$ or $u \in Z$. We claim that if $d(u)=0$, then also $u \in Z$. Suppose on contrary i.e.; $u \notin Z$. Now in the present situation, we prove that $d(u v) \neq 0$, for all $v \in \mathcal{N}$. For otherwise, we have $d(u v)=0$ for all $v \in \mathcal{N}$, which gives us $u d(v)+d(u) v=0$. This implies that $u d(v)=0$ for all $v \in \mathcal{N}$. Replacing v by $v r$, where $r \in \mathcal{N}$, in the previous relation and using the same again, we arrive at $u \mathcal{N} d(r)=\{0\}$. Using the facts that \mathcal{N} is 3 -prime and $d \neq 0$, we obtain that $u=0 \in Z$, which leads to a contradiction. Thus, we have seen that if $d(u)=0$ and $u \notin Z$, then there exists $v \in \mathcal{N}$, such that $d(u v) \neq 0$ and obviously $v \neq 0$. Since $u, v \in \mathcal{N}$, we have $u v \in \mathcal{N}$. We obtain that either $d(u v)=0$ or $u v \in Z$. But as $d(u v) \neq 0$, we infer that $u v \in Z$. Next we claim that $v \notin Z$, for otherwise we have $u v r=r u v$ i.e.; $v[u, r]=0$ for all $r \in \mathcal{N}$. This shows that $v \mathcal{N}[u, r]=\{0\}$. Now by 3 -primeness of \mathcal{N}, we conclude that $u \in Z$, as $v \neq 0$, leading to a contradiction. Including all the above arguments, we conclude that if $d(u)=0$ and $u \notin Z$, then there exists $v \in \mathcal{N}$, such that $d(u v) \neq 0$ and $v \notin Z$. As $v \notin Z$, shows that $d(v)=0$. Finally, we get $d(u v)=u d(v)+d(u) v=u 0+0 v=0$, leading to a contradiction again. We have proved that if $d(u)=0$, then also $u \in Z$ i.e.; $\mathcal{N} \subseteq Z$. Thus we obtain that $N=Z$ i.e; N is a commutative near-ring. If $N=\{0\}$ then N is trivially a commutative ring. If $N \neq\{0\}$ then there exists $0 \neq x \in N$ and hence $x+x \in N=Z$. Now by Lemma 2.1; we conclude that N is a commutative ring.

Theorem 3.2. Let f be a nonzero left generalized multiplicative derivation with associated nonzero multiplicative derivation d of \mathcal{N} such that $f[x, y]=x^{k}[x, y] x^{l}, k, l$; being some given fixed positive integers, for all $x, y \in \mathcal{N}$. Then \mathcal{N} is a commutative ring.

Proof. It is given that $f[x, y]=x^{k}[x, y] x^{l}$, for all $x, y \in \mathcal{N}$. Replacing y by $x y$ in the previous relation, we obtain that $f[x, x y]=x^{k}[x, x y] x^{l}$, i.e.; $f(x[x, y])=x^{k}(x[x, y]) x^{l}$. This implies that $x f[x, y]+d(x)[x, y]=x^{k} x[x, y] x^{l}=x x^{k}[x, y] x^{l}=x f[x, y]$. Now we obtain that $d(x)[x, y]=0$ for all $x, y \in \mathcal{N}$, which is same as the relation (3.1) of Theorem
3.1. Now arguing in the same way as in the Theorem 3.1., we conclude that \mathcal{N} is a commutative ring.

The following example shows that the restriction of 3-primeness imposed on the hypotheses of Theorems 3.1 and 3.2 is not superfluous.

Example 3.2. Consider the near-ring \mathcal{N}, taken as in Example 1.1. \mathcal{N} is not 3-prime and
(i) $f([x, y])=0$,
(ii) $f[x, y]=x^{k}[x, y] x^{l}, k, l$; being some given fixed positive integers, for all $x, y \in \mathcal{N}$. However \mathcal{N} is not a commutative ring.

Theorem 3.3. Let \mathcal{N} be a 3 -prime near-ring. If \mathcal{N} admits a nonzero left generalized multiplicative derivation f with associated nonzero multiplicative derivation d such that either $(i) f([x, y])=[f(x), y]$ for all $x, y \in \mathcal{N}$, or $(i i) f([x, y])=[x, f(y)]$, for all $x, y \in \mathcal{N}$, then \mathcal{N} is a commutative ring.

Proof. (i) Given that $f([x, y])=[f(x), y]$, for all $x, y \in \mathcal{N}$. Replacing y by $x y$ in the previous relation, we get $f([x, x y])=[f(x), x y]$ i.e.; $f(x[x, y])=[f(x), x y]$. This shows that $x f([x, y])+d(x)[x, y]=f(x) x y-x y f(x)$. Using the given condition and the fact that $[f(x), x]=0$, the previous relation reduces to $x(f(x) y-y f(x))+d(x)[x, y]=x f(x) y-x y f(x)$. This gives us $d(x)[x, y]=0$, for all $x, y \in \mathcal{N}$, which is the same as the relation (3.1) of Theorem 3.1. Now arguing in the similar way as in the Theorem 3.1., we conclude that \mathcal{N} is a commutative ring.
(ii) We have $f([x, y])=[x, f(y)]$, for all $x, y \in \mathcal{N}$. Replacing x by $y x$ in the given condition, we obtain that $f([y x, y])=[y x, f(y)]$ i.e.; $f(y[x, y])=y x f(y)-f(y) y x$. This gives us $y f([x, y])+d(y)[x, y]=y x f(y)-f(y) y x$. With the help of the given condition and using the fact that $[f(y), y]=0$, previous relation reduces to $y x f(y)-y f(y) x+d(y)[x, y]=y x f(y)-y f(y) x$. As a result, we obtain that $d(y)[x, y]=0$ i.e.; $d(y)[y, x]=0$. This implies that $d(x)[x, y]=0$, which is identical with the relation (3.1) of Theorem 3.1. Now arguing in the similar way as in the Theorem 3.1., we conclude that \mathcal{N} is a commutative ring.

Theorem 3.4. Let \mathcal{N} be a 3 -prime near-ring. If \mathcal{N} admits a nonzero left generalized multiplicative derivation f with associated nonzero multiplicative derivation d such that either $(i) f([x, y])=[d(x), y]$ for all $x, y \in \mathcal{N}$, or $(i i) d([x, y])=[f(x), y]$, for all $x, y \in \mathcal{N}$, then \mathcal{N} is a commutative ring.

Proof. (i) We are given that $f([x, y])=[d(x), y]$. Replacing y by $x y$ in the previous relation we get $f([x, x y])=[d(x), x y]$. This relation gives $f(x[x, y])=[d(x), x y]$ i.e.; $x f([x, y])+d(x)[x, y]=d(x) x y-x y d(x)$. Using the given condition and the fact that $[d(x), x]=0$, we obtain that $x d(x) y-x y d(x)+d(x)[x, y]=x d(x) y-x y d(x)$. Finally we get $d(x)[x, y]=0$, for all $x, y \in \mathcal{N}$, which is the same as the relation (3.1) of Theorem 3.1. Now arguing in the similar way as in the Theorem 3.1., we conclude that \mathcal{N} is a commutative ring.
(ii) We have $d([x, y])=[f(x), y]$. Putting $x y$ in the place of y in the previous relation we get $d([x, x y])=[f(x), x y]$. This implies that $d(x[x, y])=f(x) x y-x y f(x)$ i.e.; $x d[x, y]+d(x)[x, y]=f(x) x y-x y f(x)$. Using the fact that $[f(x), x]=0$, we obtain that $x d[x, y]+d(x)[x, y]=x f(x) y-x y f(x)$ i.e.; $x d[x, y]+d(x)[x, y]=x[f(x), y]$. Now using the hypothesis, we get $x d[x, y]+d(x)[x, y]=x d([x, y])$. Finally we have $d(x)[x, y]=0$, for all $x, y \in \mathcal{N}$, which is identical with the relation (3.1) of Theorem 3.1. Now arguing in the similar way as in the Theorem 3.1., we conclude that \mathcal{N} is a commutative ring.

Theorem 3.5. Let \mathcal{N} be a 3 -prime near-ring. If \mathcal{N} admits a nonzero left generalized multiplicative derivation f with associated nonzero multiplicative derivation d such that either $(i) f([x, y])= \pm[x, y]$ for all $x, y \in \mathcal{N}$, or $(i i) f([x, y])= \pm(x o y)$ for all $x, y \in \mathcal{N}$, then under the condition $(i) \mathcal{N}$ is a commutative ring and under the condition (ii) \mathcal{N} is a commutative ring of characteristic 2 .

Proof. Assume that condition (i) holds i.e.; $f([x, y])= \pm[x, y]$ for all $x, y \in \mathcal{N}$. Putting $x y$ in place of y, we obtain, $f([x, x y])=f(x[x, y])=x f([x, y])+d(x)[x, y]= \pm x[x, y]$. Using our hypothesis we get $d(x) x y=d(x) y x$ for all $x, y \in \mathcal{N}$, which is identical with the relation (3.1) of Theorem 3.1. Now arguing in the similar way as in the Theorem 3.1., we conclude that \mathcal{N} is a commutative ring. Under the condition (ii), using similar arguments, it is easy to show that N a commutative ring. But now under this situation, condition (ii) reduces to $x o y=0$ for all $x, y \in \mathcal{N}$ i.e.; $2 x y=0$. Suppose on contrary i.e.; characteristic $\mathcal{N} \neq 2$. As \mathcal{N} is a prime ring, \mathcal{N} will be a 2 -torsion free ring. Now we get $x y=0$, for all $x, y \in \mathcal{N}$ i.e.; $x \mathcal{N} y=\{0\}$. Finally, we have $\mathcal{N}=\{0\}$, leading to a contradiction.

Theorem 3.6. Let \mathcal{N} be a 3 -prime near-ring. If \mathcal{N} admits a nonzero left generalized multiplicative derivation f with associated multiplicative derivation d such that $f(x y)= \pm(x y)$ for all $x, y \in \mathcal{N}$, then $d=0$.

Proof. Let $f(x y)=x y$ for all $x, y \in \mathcal{N}$. Putting $y z$, where $z \in \mathcal{N}$ for y in the previous
relation, we obtain that $f(x(y z))=x(y z)$ i.e.; $x f(y z)+d(x) y z=x y z$. Using the hypothesis we get $d(x) y z=0$ i.e.; $d(x) \mathcal{N} z=\{0\}$. Since $\mathcal{N} \neq\{0\}$, by 3 -primeness of N, we get $d=0$. Similar arguments hold if $f(x y)=-(x y)$ for all $x, y \in \mathcal{N}$.

Very recently, Boua and Kamal [7, Theorem 1] proved that if \mathcal{N} is a 3 -prime near-ring, which admits nonzero derivations d_{1} and d_{2} such that $d_{1}(x) d_{2}(y) \in Z$, for all $x, y \in \mathfrak{A}$, where \mathfrak{A} is a nonzero semigroup ideal of \mathcal{N}, then \mathcal{N} is a commutative ring. Motivated by this result, we have obtained the following:

Theorem 3.7. Let \mathcal{N} be a 3-prime near-ring and f be a nonzero left generalized multiplicative derivation with associated nonzero multiplicative derivation d^{\prime} of \mathcal{N} such that either $(i) f(x) d(y) \in Z$, for all $x, y \in \mathcal{N}$, or (ii) $d(x) f(y) \in Z$, for all $x, y \in \mathcal{N}$ and d is a nonzero derivation of \mathcal{N}. Then \mathcal{N} is a commutative ring.

Proof. (i) We are given that $f(x) d(y) \in Z$, for all $x, y \in \mathcal{N}$. Replacing y by $y z$, where $z \in \mathcal{N}$ in the previous relation, we get $f(x) d(y z) \in Z$. This implies that $f(x)(y d(z)+d(y) z) \in Z$ i.e.; $f(x) y d(z)+f(x) d(y) z \in Z$. This gives us $(f(x) y d(z)+f(x) d(y) z) z=z(f(x) y d(z)+f(x) d(y) z)$. Now using Lemma 2.5, we obtain that $f(x) y d(z) z+f(x) d(y) z z=z f(x) y d(z)+z f(x) d(y) z$ for all $x, y, z \in \mathcal{N}$. Using the hypothesis we infer that $f(x) y d(z) z+f(x) d(y) z^{2}=z f(x) y d(z)+f(x) d(y) z^{2}$ i.e.; $f(x) y d(z) z=z f(x) y d(z)$. Putting $d(t) y$ for y, where $t \in \mathcal{N}$ in the relation $f(x) y d(z) z=z f(x) y d(z)$, we get $f(x) d(t) y d(z) z=z f(x) d(t) y d(z)$ and now using the hypothesis again, we arrive at $f(x) d(t)(y d(z) z-z y d(z))$. This shows that $f(x) d(t) \mathcal{N}(y d(z) z-z y d(z))=\{0\}$. Hence 3 -primeness of \mathcal{N} shows that either $f(x) d(t)=0$ or $y d(z) z-z y d(z)=0$. We claim that $f(x) d(t) \neq 0$ for all $x, t \in \mathcal{N}$. For otherwise if $f(x) d(t)=0$ for all $x, t \in \mathcal{N}$, we have $f(x) d(\mathcal{N})=\{0\}$. Using Lemma 2.3, we find that $f(x)=0$ for all $x \in \mathcal{N}$, leading to a contradiction. Thus there exist $x_{0}, t_{0} \in \mathcal{N}$ such that $f\left(x_{0}\right) d\left(t_{0}\right) \neq 0$. Hence, we arrive at $y d(z) z-z y d(z)=0$ for all $y, z \in \mathcal{N}$. Now replacing y by $y f(x)$, where $x \in \mathcal{N}$ in the previous relation and using the hypothesis again, we get $f(x) d(z)(y z-z y)=0$ i.e.; $f(x) d(z) \mathcal{N}(y z-z y)=\{0\}$. By hypothesis we have $f(\mathcal{N}) \neq\{0\}$, hence there exists $u_{0} \in \mathcal{N}$ such that $f\left(u_{0}\right) \neq 0$. By Lemma 2.3, there exists $z_{0} \in \mathcal{N}$ such that $f\left(u_{0}\right) d\left(z_{0}\right) \neq 0$ and hence obviously $d\left(z_{0}\right) \neq 0$. Again 3-primeness of \mathcal{N} and the relation $f(x) d(z) \mathcal{N}(y z-z y)=\{0\}$, ultimately give us $y z_{0}=z_{0} y$ for all $y \in \mathcal{N}$. Now Lemma 2.5 insures that $z_{0} \in Z$ and using Lemma 2.7, we obtain that $d\left(z_{0}\right) \in Z$. Since $f\left(u_{0}\right) d\left(z_{0}\right) \in Z$ and $0 \neq d\left(z_{0}\right) \in Z$, Lemma 2.2, implies that $f\left(u_{0}\right) \in Z$. Using the given hypothesis again we have $f\left(u_{0}\right) d(y) \in Z$. But $0 \neq f\left(u_{0}\right) \in Z$, thus Lemma 2.2, shows that $d(\mathcal{N}) \subseteq Z$. Finally the Lemma 2.4, gives the required result.
(ii) Using the similar arguments as used in (i) with necessary variations, it can be easily shown that under the condition $d(x) f(y) \in Z$, for all $x, y \in \mathcal{N}, \mathcal{N}$ is a commutative ring.

Theorem 3.8. Let \mathcal{N} be a 3 -prime near-ring and f be a left generalized multiplicative derivation of \mathcal{N} such that either (i) $d(y) f(x)=[x, y]$, for all $x, y \in \mathcal{N}$, or (ii) $d(y) f(x)=-[x, y]$, for all $x, y \in \mathcal{N}$ and d is a nonzero derivation of \mathcal{N}. Then \mathcal{N} is a commutative ring.

Proof. (i) We are given that

$$
\begin{equation*}
d(y) f(x)=[x, y], \text { for all } x, y \in \mathcal{N} . \tag{3.2}
\end{equation*}
$$

Case I: Let $f=0$. Under this condition the equation (3.2) reduces to $[x, y]=0$ for all $x, y \in \mathcal{N}$. This implies that $x y=y x$, for all $x, y \in \mathcal{N}$. Replacing x by $x r$, where $r \in \mathcal{N}$ in the previous relation and using the same relation again we arrive at $\mathcal{N}[r, y]=\{0\}$ i.e.; $[r, y] \mathcal{N}[r, y]=\{0\}$. Now using 3-primeness of N, we conclude that $r \in Z$. This implies that $\mathcal{N} \subseteq Z$. If $N=\{0\}$, then N is trivially a commutative ring. If $N \neq\{0\}$ then there exists $0 \neq x \in N$ and hence $x+x \in N=Z$. Now by Lemma 2.1; we conclude that N is a commutative ring.
Case II: Let $f \neq 0$. Replacing y by $x y$ in the relation (3.2), we obtain that $d(x y) f(x)=x[x, y]$ i.e.; $(x d(y)+d(x) y) f(x)=x[x, y]$. Using Lemma 2.5 and the relation (3.2), we arrive at $x d(y) f(x)+d(x) y f(x)=x d(y) f(x)$. This shows that $d(x) y f(x)=0$ i.e.; $d(x) \mathcal{N} f(x)=\{0\}$. Using 3-primeness of N, we conclude that for any given $x \in \mathcal{N}$, either $d(x)=0$ or $f(x)=0$. If for any given $x \in \mathcal{N}, f(x)=0$, then relation (3.2) reduces to $[x, y]=0$ for all $y \in \mathcal{N}$ i.e.; $x \in Z$. By Lemma 2.7, this shows that $d(x) \in Z$. Finally using both possibilities, we deduce that $d(\mathfrak{A}) \subseteq Z$. By Lemma 2.4, we get our required result.
(ii) Using the similar arguments as used in (i), it can be easily proved that under the condition $d(y) f(x)=-[x, y]$, for all $x, y \in \mathcal{N}, \mathcal{N}$ is a commutative ring.

References

[1] Ashraf, M., Boua, A., Siddeeque, M.A., Generalized multiplicative derivations in 3-prime near-rings, Mathematica Slovaca, (2017), (To appear).
[2] Ashraf, M., Rehman, N., On commutativity of rings with derivations, Results Math, (2002), Vol. $42(1-2), 3-8$.
[3] Bell, H.E., On prime near-rings with generalized derivations, International Journal of Mathematics and Mathematical Sciences, (2008), Article ID 490316, 5 pages.
[4] Bell, H.E., On derivations in near-rings II, Kluwer Academic Publishers Dordrecht, Vol. 426, (1997), 191 - 197.
[5] Bell, H.E., Boua, A., Oukhtite, L., Semigroup ideals and commutativity in 3-prime near-rings, Comm. Algebra, 43, (2015), 1757-1770.
[6] Bell, H.E. and Mason, G., On derivations in near-rings, Near-rings and Near-fields (G. Betsch editor), North-Holland / American Elsevier, Amsterdam, 137, (1987) , $31-35$.
[7] Boua, A., Kamal A.A.M., Some results on 3-prime near-rings with derivations, Indian J. Pure Appl. Math., 47(4), (2016), 705 - 716.
[8] Boua, A., Oukhtite, L., On commutativity of prime near-rings with derivations, South East Asian Bull. Math., 37, (2013), 325 - 331.
[9] G̈olbasi., Ö., On generalized derivations of prime near-rings, Hacet. J. Math. \& Stat., 35(2), (2006), 173 - 180.
[10] Havala, B., Generalized derivations in rings, Comm. Algebra, 26, $1147-1166$, (1998).
[11] Kamal, A.A.M. and Al-Shaalan, K. H., Existence of derivations on near-rings, Math. Slovaca, 63(3), (2013), 431 - 448.
[12] Meldrum, J.D.P., Near-rings and their links with groups, Res. Notes Math. 134, Pitman (Advanced Publishing Program), Bostan, M.A., (1985).
[13] Pilz, G., Near-rings, 2nd ed., 23, North Holland /American Elsevier, Amsterdam, (1983).
[14] Wang, X.K., Derivations in prime near-rings, Proc. Amer. Math. Soc., 121, No.(2), (1994), $361-366$.

[^0]: ${ }^{1}$ Mathematics Subject Classification (2010) : 16W25, $16 Y 30$.
 ${ }^{2}$ Keywords and Phrases: 3-Prime near-ring, multiplicative derivation, left generalized multiplicative derivation and commutativity.

