Signed Total Roman Dominating Functions of Corona Product of a Path with a Complete Graph

C. Shobha Rani^{#1}, S. Jeelani Begum^{#2}, G.S.S. Raju^{*3}, S. Gouse Mohiddin^{#4}

[#] Department of Mathematics, Madanapalle Institute of Technology & Science, Madanapalle, 517325, India. ^{*}Department of Mathematics, JNTUA Pulivendula, India.

Abstract — Graph theory is a fascinating subject in mathematics. Its Applications in many fields like Physical Sciences, Engineering communications, coding theory, Linguistics, Logical Algebra and *Computer networking. Let G be a simple graph with* vertex set V and edge set E and the function $f: V \rightarrow [0,1]$ is called a dominating function (DF) of G, if for each $v \in V$, the sum of the function values over v and the elements incident to v is greater than or equal to one. It is a minimal dominating function (MDF), if for all g > f, g is not DF. In this paper, we study the minimal total dominating functions, minimal total roman dominating functions, minimal signed total roman dominating functions of corona product graph of a path with a complete graph and obtain total domination number $\gamma_t(G)$, total roman domination number $\gamma_{tR}(G)$ and signed total roman domination number $\gamma_{stR}(G)$ of these graphs.

Keywords — Corona Product graph, Signed total roman dominating functions, Signed total roman domination number.

I. INTRODUCTION

The theory of domination in graphs has a wide range of applications. Among these applications, the most often discussed is a communication network. This network consists of communication links between a fixed set of locations. The problem is to select a smallest set of locations at which the transmitters are placed so that every other location in the network is joined by a direct communication link to the location, which has a transmitter. In other words, the problem is to find a minimum dominating set in the graph corresponding to this network.

Generally Product of graphs occurs in discrete mathematics. Frucht & Harary [7] introduced a new product on two graphs G_1 and G_2 , called corona product denoted by $G_1 \square G_2$. The corona product of a path P_n with a complete graph K_m is a graph obtained by taking one copy of n-vertex path P_n and n copies of K_m and then joining the ith vertex

of P_n to every vertex of ith copy of K_m and it is denoted by $P_n \square K_m$, where n>0 and m>0.

Allan, Laskar & Hedetniemi [6], Cockayne, Dawes & Hedetniemi [1] and Henning & Kazemi [5] have studied about total domination in graphs. Total roman domination which is suggested by the article in "Total Roman domination in graphs" by Ahangar, Henning, Samodivkin & Yero [2]. Volkmann [3,4] introduced the concept of signed total roman domination in graphs.

A function $f: V \rightarrow [0,1]$ is called a total dominating function (TDF) of G, if $f(N(v)) = \sum_{u \in N(v)} f(u) \ge 1$, for each $v \in V$. It is a

minimal total dominating function (MTDF), if for all g > f, g is not TDF. Let $f: V \rightarrow \{0, 1, 2\}$ be a function having the property that for every vertex $v \in V$ with f(v) = 0, there exists a neighbor $u \in N(v)$ with f(u) = 2. Such a function is called a total roman dominating function. The weight of a total roman dominating function is the sum $f(V) = \sum_{u \in V} f(u) \ge 1$. The minimum weight of a

total roman dominating function on G is called the total roman domination number of G and is denoted $\gamma_{tR}(G)$. Let a function $f: V \rightarrow \{-1, 1, 2\}$ is called a signed total roman dominating function (STRDF) of G, if $f(N(v)) = \sum_{u \in N(v)} f(u) \ge 1$, for each

 $v \in V$ and satisfying the condition that every vertex u for which f(u) = -1 is adjacent to at least one vertex v for which f(v) = 2. A signed total roman dominating function f of G is called a minimal STRDF, if for all g < f, g is not a STRDF. The weight of f, denoted f(G), is the sum of the function value of all vertices in G, that is $f(G) = \sum_{x \in V} f(x)$.

The signed total roman domination number of G, $\gamma_{stR}(G)$, is the minimum weight of a signed total roman dominating function on G.

II. RESULTS

Theorem 1: The total domination number of a graph $G = P_n \square K_m$ is n.

Proof: Consider $G = P_n \square K_m$. Let T denote a total dominating set $G = P_n \square K_m$. Suppose T contains the set of vertices of P_n . By the definition of the graph $G = P_n \square K_m$, every vertex in P_n is adjacent to all vertices of each copy of K_m . That is, the vertices in P_n totally dominates the vertices in all copies of K_m respectively. Thus T becomes a total dominating set of $G = P_n \square K_m$. Also T is a minimal total dominating set of $G = P_n \square K_m$. (By the definition of minimal total dominating set). Therefore $\gamma_t(G) = n, if G = P_n \square K_m$.

Theorem 2: Let T be a minimal total dominating set of $G = P_n \square K_m$ whose vertex set is V and the function $f: V \rightarrow [0,1]$ is defined by $f(v) = \begin{cases} 1, & \text{if } v \in T, \\ 0, & \text{otherwise.} \end{cases}$ becomes a minimal total dominating function of G and total domination number is $\gamma_t(G) = n$.

Proof: Consider $G = P_n \square K_m$. Let T be a minimal total dominating set of $G = P_n \square K_m$. Clearly this set contains all vertices of P_n and this set is also minimal. Now we consider the vertices according to its degree. Then the following cases are formed.

Case 1: Let $v \in P_n$ be such that d(v) = m + 2 in *G* then

$$\sum_{u \in N(v)} f(u) = 1 + 1 + \underbrace{0 + \dots + 0}_{(m) - times} = 2.$$

Case 2: Let $v \in P_n$ be such that d(v) = m + 1 in *G* then

$$\sum_{u \in N(v)} f(u) = 1 + \underbrace{0 + \dots + 0}_{(m) - times} = 1.$$

Case 3: Let $v \in K_m$ be such that d(v) = m in G then

$$\sum_{u \in N(v)} f(u) = 1 + \underbrace{0 + \dots + 0}_{(m-1) \text{ times}} = 1.$$

Hence for all the above possibilities, we get $\sum f(u) \ge 1, \forall v \in V$.

$$u \in N(v)$$

This implies that the function f is a total dominating function. Now we check for minimality of f, define $g: V \rightarrow [0,1]$ by

$$g(v) = \begin{cases} s, & \text{if } v = v_k \in T, \\ 1, & \text{if } v \in T - \{v_k\}, \\ 0, & \text{otherwise.} \end{cases}$$

Where 0 < s < 1. Since, strict inequality holds at the vertex $v_k \in T$, it follows that g < f.

Case 1: Let $v \in P_n$ be such that d(v) = m + 2 in G. (i) If

$$v_k \in N(v)$$
, then $\sum_{u \in N(v)} g(u) = s + 1 + \underbrace{0 + \dots + 0}_{(m) - times} = s + 1 > 1$.

(ii) If

$$v_k \notin N(v)$$
, then $\sum_{u \in N(v)} g(u) = 1 + 1 + \underbrace{0 + \dots + 0}_{(m)-times} = 2.$

Case 2: Let $v \in P_n$ be such that d(v) = m + 1 in G.

(i) If
$$v_k \in N(v) \Rightarrow \sum_{u \in N(v)} g(u) = s + \underbrace{0 + \dots + 0}_{(m) - times} = s < 1.$$

(ii) If $v_k \notin N(v) \Rightarrow \sum_{u \in N(v)} g(u) = 1 + \underbrace{0 + \dots + 0}_{(m) - times} = 1.$

Case 3: Let
$$v \in K_m$$
 be such that $d(v) = m \text{ in } G$.
(i) Let $v_k \in N(v) \Rightarrow \sum_{u \in N(v)} g(u) = s + \underbrace{0 + \dots + 0}_{(m-1) - times} = s < 1$
(ii) Let $v_k \notin N(v) \Rightarrow \sum_{u \in N(v)} g(u) = 1 + \underbrace{0 + \dots + 0}_{m-1} = 1$.

(ii) Let
$$v_k \notin N(v) \Rightarrow \sum_{u \in N(v)} g(u) - 1 + \underbrace{0 + - - + 0}_{(m-1) - times} - 1$$
.
This implies that θ is not a total dominating function

This implies that g is not a total dominating function because $\sum_{u \in N(v)} g(u) < 1$, for some $v \in V$.

Hence *f* is a minimal total dominating function on $G = P_n \square K_m$.

Now
$$\sum_{u \in V(G)} f(u) = \underbrace{1 + \dots + 1}_{n-times} + \underbrace{0 + \dots + 0}_{n-times \text{ of } (m)-zeros} = n$$
.

Thus n is the minimum value of $\sum_{u \in V(G)} f(u)$;

Finally $\gamma_t(G) = n$.

Theorem 3: Let the function $f: V \to [0,1]$ is defined by $f(v) = \frac{1}{q}$, $\forall v \in V$ becomes a total dominating function of $G = P_n \Box K_m$, if $q \in (0,m]$ and it is minimal total dominating function if q = m. Then the total domination number is $\gamma(G) = \frac{1}{q}n(m+1)$.

Proof: Let f be a function defined in the theorem hypothesis. Consider $G = P_n \square K_m$. Now we consider the vertices according to its degree. Then the following cases are formed.

Case-I: Suppose 0 < q < m. Here $m \ge 1$ and q < m.

Case 1: Let $v \in P_n$ be such that d(v) = m + 2 in *G* then

$$\sum_{u \in N(v)} f(u) = \frac{1}{q} + \frac{1}{q} + \left[\frac{1}{\frac{q}{m-times}}\right] = (m+2) \cdot \frac{1}{q} > 1.$$

Case 2: Let $v \in P_n$ be such that d(v) = m + 1 in G then

٦

$$\sum_{u \in N(v)} f(u) = \frac{1}{q} + \left\lfloor \frac{1}{q} + \dots + \frac{1}{q} \right\rfloor = (m+1) \cdot \frac{1}{q} > 1.$$

Case 3: Let $v \in K_m$ be such that d(v) = m in *G* then

$$\sum_{u \in N(v)} f(u) = \frac{1}{q} + \left| \frac{1}{\frac{q}{(m-1)-times}} \right| = \frac{m}{q} > 1.$$

(

Hence for all the above possibilities, we get $\sum f(u) > 1, \forall v \in V$.

$$u \in N(v)$$

This implies that the function f is a total dominating function. Now we check for minimality of f, define $g: V \rightarrow [0,1]$ by

$$g(v) = \begin{cases} s, & \text{if } v = v_k \in V, \\ \frac{1}{q}, & \text{otherwise.} \end{cases}$$

Where $0 < s < \frac{1}{a}$. Since, strict inequality holds at the vertex $v_k \in V$, it follows that g < f.

Case 1: Let $v \in P_n$ be such that d(v) = m + 2 in G. (i) If

$$v_k \in N(v)$$
, then $\sum_{u \in N(v)} g(u) = s + \frac{1}{q} + \left[\frac{1}{\frac{q}{m-times}}\right] < \frac{1}{q} + \frac{m+1}{q} = \frac{m+2}{q} > 1.$ (ii)

If

$$v_k \notin N(v)$$
, then $\sum_{u \in N(v)} g(u) = \frac{1}{q} + \frac{1}{q} + \left\lfloor \frac{1}{q} + \dots + \frac{1}{q} \right\rfloor = \frac{m+2}{q} > 1$

Case 2: Let $v \in P_n$ be such that d(v) = m + 1 in G. (i) If

$$v_k \in N(v), \text{ then} \sum_{u \in N(v)} g(u) = s + \left[\frac{1}{q} + \dots + \frac{1}{q}\right] < \frac{1}{q} + \frac{m}{q} = \frac{m+1}{q} > 1$$
(ii) If

$$v_k \notin N(v)$$
, then $\sum_{u \in N(v)} g(u) = \frac{1}{q} + \left[\frac{1}{q} + \dots + \frac{1}{q}\right] = \frac{m+1}{q} > 1$. Ca

se 3: Let $v \in K_m$ be such that d(v) = m in G.

(i) Let

$$v_k \in N(v) \Rightarrow \sum_{u \in N(v)} g(u) = s + \frac{1}{q} + \dots + \frac{1}{q} < \frac{1}{q} + \frac{(m-1)}{q} = \frac{m}{q} > 1.$$

(ii) Let

$$\mathbf{v}_k \notin N(\mathbf{v}) \Rightarrow \sum_{u \in N(\mathbf{v})} g(u) = \frac{1}{q} + \left[\frac{1}{\frac{q}{(m-1)-times}}\right] = \frac{m}{q} = 1.$$

This implies that g is also a total dominating function because $\sum_{u \in N(v)} g(u) \ge 1, \forall v \in V$.

Hence f is not a minimal total dominating function on $\mathbf{G} = P_{\mathbf{n}} \Box K_m$.

Case-II: Suppose q = m. Substitute q = m in case-I, then we get the following results.

Case 1: Let $v \in P_n$ be such that d(v) = m + 2 in G then

$$\sum_{u \in N(v)} f(u) = \frac{1}{q} + \frac{1}{q} + \left[\frac{1}{\frac{q}{m-times}}\right] = (m+2) \cdot \frac{1}{m} > 1$$

٦

Case 2: Let $v \in P_n$ be such that d(v) = m + 1 in G Г

then
$$\sum_{u \in N(v)} f(u) = \frac{1}{q} + \left[\frac{1}{q} + \dots + \frac{1}{q} \right] = (m+1) \cdot \frac{1}{m} > 1$$
.

Case 3: Let $v \in K_m$ be such that d(v) = m in *G* then

$$\sum_{u \in N(v)} f(u) = \frac{1}{q} + \left\lfloor \frac{1}{\frac{q}{(m-1)-times}} \right\rfloor = \frac{m}{q} = \frac{m}{m} = 1.$$

Hence for all the above possibilities, we get $\sum f(u) \ge 1, \forall v \in V$. $u \in N(v)$

This implies that the function f is a total dominating function. Now we check for minimality of f, define $g: V \rightarrow [0,1]$ by

$$g(v) = \begin{cases} s, & \text{if } v = v_k \in V, \\ \frac{1}{q}, & \text{otherwise.} \end{cases}$$

Where $0 < s < \frac{1}{a}$. Since, strict inequality holds at the

vertex $v_k \in V$, it follows that g < f.

Case 1: Let $v \in P_n$ be such that d(v) = m + 2 in G. (i) If г ј

$$v_k \in N(v) \Rightarrow \sum_{u \in N(v)} g(u) = s + \frac{1}{q} + \left\lfloor \frac{1}{q} + \dots + \frac{1}{q} \right\rfloor < \frac{1}{q} + \frac{m+1}{q} = \frac{m+2}{m} > 1.$$
(ii) If

$$v_k \notin N(v) \Rightarrow \sum_{u \in N(v)} g(u) = \frac{1}{q} + \frac{1}{q} + \left[\frac{1}{\frac{q}{m-imes}}\right] = \frac{m+2}{q} = \frac{m+2}{m} > 1.$$

Case 2: Let $v \in P_n$ be such that d(v) = m + 1 in G.

(i) If

$$v_k \in N(v) \Longrightarrow \sum_{u \in N(v)} g(u) = s + \left\lfloor \frac{1}{\frac{q}{m-times}} \right\rfloor < \frac{1}{q} + \frac{m}{q} = \frac{m+1}{m} > 1.$$

(ii) If

$$v_k \notin N(v) \Rightarrow \sum_{u \in N(v)} g(u) = \frac{1}{q} + \left\lfloor \frac{1}{q} + \dots + \frac{1}{q} \right\rfloor = \frac{m+1}{q} = \frac{m+1}{m} > 1$$

٦

Case 3: Let $v \in K_m$ be such that d(v) = m in G. (i) Let

$$\mathbf{v}_k \in N(\mathbf{v}) \Longrightarrow \sum_{u \in N(\mathbf{v})} g(u) = s + \underbrace{\frac{1}{q} + \cdots + \frac{1}{q}}_{(m-1)-times} < \frac{1}{q} + \frac{(m-1)}{q} < \frac{m}{q} < \frac{m}{m} < 1.$$

(ii) Let

$$\mathbf{v}_k \notin N(\mathbf{v}) \Longrightarrow \sum_{u \in N(\mathbf{v})} g(u) = \frac{1}{q} + \left\lfloor \frac{1}{\underbrace{q}_{(m-1)-times}} \right\rfloor = \frac{m}{q} = \frac{m}{m} = 1.$$

This implies that g is not a total dominating function because $\sum_{u \in \mathbb{N}(v)} g(u) < 1$, for some $v \in V$.

Hence f is a minimal total dominating function on G.

Thus
$$\frac{1}{q}n(m+1)$$
 is the minimum value
of $\sum f(u)$; Finally $\gamma(G) = \frac{1}{2}n(m+1)$.

$$u \in \overline{V(G)}$$
 q
Theorem 4: A function $f: V \to \{0,1,2\}$ is defined
 $(2 \text{ if } v \in P \text{ in } G$

 $f(v) = \begin{cases} 2, & \text{if } v \in P_n \text{ in } G, \\ 0, & \text{otherwise.} \end{cases}$

is a minimal total roman dominating function of a graph $G = P_n \square K_m$ and total roman domination number is $\gamma_{lR}(G) = 2n$, if m is either even or odd.

Proof: Consider the graph $G = P_n \square K_m$ with |V| number of vertices and |E| number of edges. Let the function *f* defined in the hypothesis.

Case 1: Let $v \in P_n$ be such that d(v) = m + 2 in G then

$$\sum_{u \in N(v)} f(u) = 2 + 2 + \left\lfloor \underbrace{0 + \dots + 0}_{m-times} \right\rfloor = 4.$$

Case 2: Let $v \in P_n$ be such that d(v) = m + 1 in G then

$$\sum_{u \in N(v)} f(u) = 2 + \left[\underbrace{0 + \dots + 0}_{m-times} \right] = 2.$$

Case 3: Let $v \in K_m$ be such that d(v) = m in G then

$$\sum_{u \in N(v)} f(u) = 2 + \left\lfloor \underbrace{0 + \dots + 0}_{(m-1) - times} \right\rfloor = 2.$$

Hence for all the above possibilities, we get $\sum_{u \in N(v)} f(u) > 1$, $\forall v \in V$.

Let u be any vertex in G such that f(u) = 0. Then $u \in K_m$ such that d(u) = m. Let $v \neq u$ be a vertex in G such that f(v) = 2. Then $v \in P_n$ such that d(v)=(m+1) or (m+2), where v any vertex in P_n . We now show that u is adjacent to v. If $v \in P_n$, then v adjacent to u. Since every vertex in P_n is adjacent to every vertex in the corresponding copy of K_m . This implies that the function f is a total roman dominating function. Now we check for minimality of f, define

g: V
$$\rightarrow$$
 {0,1,2} by $g(v) = \begin{cases} 1, & \text{if } v = v_k \text{ of } P_n \text{ in } G, \\ 2, & \text{if } v \in P_n - \{v_k\} \text{ in } G, \\ 0, & \text{otherwise.} \end{cases}$

Case 1: Let $v \in P_n$ be such that d(v) = m + 2 in G.

If
$$v_k \in N(v) \Rightarrow \sum_{u \in N(v)} g(u) = 2 + 1 + \left(\underbrace{0 + 0 + \dots + 0}_{m-times}\right) = 3.$$

If $v_k \notin N(v) \Rightarrow \sum_{u \in N(v)} g(u) = 2 + 2 + \left(\underbrace{0 + 0 + \dots + 0}_{m-times}\right) = 4.$

Case 2: Let $v \in P_n$ be such that d(v) = m + 1 in G.

If
$$v_k \in N(v) \Rightarrow \sum_{u \in N(v)} g(u) = 1 + \left(\underbrace{0 + 0 + \dots + 0}_{m-times} \right) = 1.$$

If $v_k \notin N(v) \Rightarrow \sum_{u \in N(v)} g(u) = 2 + \left(\underbrace{0 + 0 + \dots + 0}_{m-times} \right) = 2$

If
$$v_k \notin N(v) \Rightarrow \sum_{u \in N(v)} g(u) = 2 + \left\lfloor \frac{0 + 0 + - - - + 0}{m - times} \right\rfloor = 2.$$

Case 3: Let $v \in K$ be such that $d(v) = m$ in G .

Case 3: Let
$$v \in K_m$$
 be such that $d(v) = m$ in G.

$$\begin{split} \text{If } \mathbf{v}_k &\in N(v) \Rightarrow \sum_{u \in N(v)} g(u) = 1 + \left(\underbrace{0 + 0 + \dots + 0}_{m-\text{times}} \right) = 1. \\ \text{If } \mathbf{v}_k &\notin N(v) \Rightarrow \sum_{u \in N(v)} g(u) = 2 + \left(\underbrace{0 + 0 + \dots + 0}_{m-\text{times}} \right) = 2. \end{split}$$

This implies that $\sum_{u\in N(v)} g(u) \ge 1, \forall v \in V$. That

means g is a total dominating function. But g is not a total roman dominating function, since the total roman dominating function definition fails in the v_k of P_n in G. Because the vertex \mathcal{U} in the k^{th} copy of K_m in G for which f(u) = 0 is adjacent to a vertex v_k for which $f(v_k) = 1$. Hence f is a minimal total roman dominating function on G.

Now
$$\sum_{u \in V(G)} f(u) = \underbrace{2 + \dots + 2}_{n-times} + \left(\underbrace{0 + \dots + 0}_{m-times}\right) = 2n$$

by

Finally total roman domination number is $\gamma_{lR}(G) = 2n$, if m is even or odd.

Theorem 5: A function $f: V \rightarrow \{-1, 1, 2\}$ is defined by

$$f(v_i) = \begin{cases} 2, & \text{if } \forall v_i \in P_n, \\ -1, & \text{if } 1 \le i \le \left(\frac{m-1}{2}\right) \text{ of each copy of } K_m \text{ in } G, \\ +1, & \text{otherwise.} \end{cases}$$

is a minimal signed total roman dominating function of a graph $G = P_n \Box K_m$ and signed total roman domination number is $\gamma_{stR}(G) = 3n$, if *m* is odd.

Proof: Consider the graph $G = P_n \square K_m$ with |V| number of vertices and |E| number of edges. Let *f* be a function defined in the hypothesis.

Case 1: Let $v_i \in P_n$ be such that $d(v_i) = m + 2$ in *G* then

$$\sum_{u \in N(v_i)} f(u) = 2 + 2 + \left[\left(\frac{m-1}{2} \right) (-1) + \left(\frac{m+1}{2} \right) (+1) \right] = 5.$$

Case 2: Let $v_i \in P_n$ be such that $d(v_i) = m + 1$ in G then

$$\sum_{u \in N(v_i)} f(u) = 2 + \left[\left(\frac{m-1}{2} \right) (-1) + \left(\frac{m+1}{2} \right) (+1) \right] = 3.$$

Case 3: Let $v_i \in K_m$ be such that $d(v_i) = m \text{ in } G$ and $f(v_i) = -1$ or +1.

If

$$f(v_i) = -1 \Rightarrow \sum_{u \in N(v_i)} f(u) = 2 + \left[\left(\frac{m-3}{2} \right) (-1) + \left(\frac{m+1}{2} \right) (+1) \right] = 4.$$

If

$$f(\mathbf{v}_{i}) = +1 \Longrightarrow \sum_{u \in N(v_{i})} f(u) = 2 + \left[\left(\frac{m-1}{2} \right) (-1) + \left(\frac{m-1}{2} \right) (+1) \right] = 2.$$

Hence for all the above possibilities, we get $\sum_{u \in N(v_i)} f(u) \ge 1, \forall v_i \in V$.

This implies that the function f is a signed total roman dominating function. Now we check for minimality of f, define $g: V \rightarrow \{-1,1,2\}$ by

$$g(v_i) = \begin{cases} 2, & \text{if } \forall v_i \in P_n ,\\ -1, & \text{if } 1 \le i \le \left(\frac{m+1}{2}\right) \text{ of each copy of } K_m \text{ in } G \\ +1, & \text{otherwise.} \end{cases}$$

Case 1: Let $v_i \in P_n$ be such that $d(v_i) = m + 2$ in *G* then

$$\sum_{u \in N(v_i)} g(u) = 2 + 2 + \left\lfloor \left(\frac{m+1}{2} \right) (-1) + \left(\frac{m-1}{2} \right) (+1) \right\rfloor = 3.$$

Case 2: Let $v_i \in P_n$ be such that $d(v_i) = m + 1$ in *G* then

$$\sum_{u \in N(v_i)} g(u) = 2 + \left[\left(\frac{m+1}{2} \right) (-1) + \left(\frac{m-1}{2} \right) (+1) \right] = 1.$$

Case 3: Let $v_i \in K_m$ be such that $d(v_i) = m$ in *G* and $g(v_i) = -1$ or +1.

If

$$g(\mathbf{v}_{i}) = -1 \Rightarrow \sum_{u \in N(v_{i})} g(u) = 2 + \left[\left(\frac{m-1}{2} \right) (-1) + \left(\frac{m-1}{2} \right) (+1) \right] = 2 \cdot$$

If

$$g(\mathbf{v}_{i}) = +1 \Longrightarrow \sum_{u \in N(v_{i})} g(u) = 2 + \left\lfloor \left(\frac{m+1}{2}\right)(-1) + \left(\frac{m-3}{2}\right)(+1) \right\rfloor = 0$$

This implies that *g* is not a signed total roman dominating function

because
$$\sum_{u \in N[v_i]} g(u) < 1$$
, for some $v_i \in V$.

Hence f is a minimal signed total roman dominating function on G. Now

$$\sum_{u \in V(G)} f(u) = \underbrace{2 + \dots + 2}_{n-times} + \underbrace{\left(\frac{m-1}{2}\right)(-1) + \left(\frac{m+1}{2}\right)(+1)}_{n-times} = 3n \cdot$$

Finally signed total roman domination number is $\gamma_{stR}(G) = 3n$, if m is odd.

Theorem 6: A function $f: V \rightarrow \{-1, 1, 2\}$ is defined by

$$f(v_i) = \begin{cases} 2, & \text{if } \forall v_i \in P_n, \\ -1, & \text{if } 1 \le i \le \left(\frac{m}{2}\right) \text{ of each copy of } K_m \text{ in } G, \\ +1, & \text{otherwise.} \end{cases}$$

is a minimal signed total roman dominating function of a graph $G = P_n \square K_m$ and signed total roman domination number is $\gamma_{sR}(G) = 2n$ if m is even.

Proof: Let f be a function defined in the hypothesis.

Case 1: Let $v_i \in P_n$ be such that $d(v_i) = m + 2 \text{ in } G$ then

$$\sum_{u \in N(v_i)} f(u) = 2 + 2 + \left[\left(\frac{m}{2} \right) (-1) + \left(\frac{m}{2} \right) (+1) \right] = 4$$

Case 2: Let $v_i \in P_n$ be such that $d(v_i) = m + 1$ in G then

$$\sum_{u \in N(v_i)} f(u) = 2 + \left[\left(\frac{m}{2} \right) (-1) + \left(\frac{m}{2} \right) (+1) \right] = 2.$$

Case 3: Let $v_i \in K_m$ be such that $d(v_i) = m \text{ in } G$

and
$$f(v_i) = -1$$
 or $+1$
If

$$f(v_i) = -1 \Longrightarrow \sum_{u \in N(v_i)} f(u) = 2 + \left[\left(\frac{m}{2} - 1 \right) (-1) + \left(\frac{m}{2} \right) (+1) \right] = 3 \cdot$$
If

$$f(\mathbf{v}_{i}) = +1 \Rightarrow \sum_{u \in N(\mathbf{v}_{i})} f(u) = 2 + \left[\left(\frac{m}{2} \right) (-1) + \left(\frac{m}{2} - 1 \right) (+1) \right] = 1$$

Hence for all the above possibilities we

Hence for all the above possibilities, we get $\sum_{u \in N(v_i)} f(u) \ge 1, \forall v_i \in V$.

This implies that the function f is a signed total roman dominating function.

Now we check for minimality of f, define $g: V \rightarrow \{-1, 1, 2\}$ by

$$g(v_i) = \begin{cases} 2, & \text{if } \forall v_i \in P_n, \\ -1, & \text{if } 1 \le i \le \left(\frac{m+2}{2}\right) \text{ of each copy of } K_m \text{ in } G \\ +1, & \text{otherwise.} \end{cases}$$

Case 1: Let $v_i \in P_n$ be such that $d(v_i) = m + 2 \text{ in } G$ then

$$\sum_{u \in N(v_i)} g(u) = 2 + 2 + \left[\left(\frac{m+2}{2} \right) (-1) + \left(\frac{m-2}{2} \right) (+1) \right] = 2 \cdot$$

Case 2: Let $v_i \in P_n$ be such that $d(v_i) = m + 1$ in G then

$$\sum_{u \in N(v_i)} g(u) = 2 + \left[\left(\frac{m+2}{2} \right) (-1) + \left(\frac{m-2}{2} \right) (+1) \right] = 0$$

Case 3: Let $V_i \in K_m$ be such that $d(V_i) = m \text{ in } G$

and $g(v_i) = -1$ or +1.

$$g(\mathbf{v}_{i}) = -1 \Longrightarrow \sum_{u \in N(v_{i})} g(u) = 2 + \left[\left(\frac{m}{2} \right) (-1) + \left(\frac{m-2}{2} \right) (+1) \right] = 1.$$

If

$$g(\mathbf{v}_{i}) = +1 \Rightarrow \sum_{u \in N(\mathbf{v}_{i})} g(u) = 2 + \left[\left(\frac{m+2}{2} \right) (-1) + \left(\frac{m}{2} - 2 \right) (+1) \right] = -1$$

This implies that g is not a signed total roman dominating function because

$$\sum_{u \in N(v_i)} g(u) < 1, \text{ for some } v_i \in V.$$

Hence f is a minimal signed total roman dominating function on G.

Now

$$\sum_{u \in V(G)} f(u) = \underbrace{2 + \dots + 2}_{n-times} + \underbrace{\left(\frac{m}{2}\right)(-1) + \left(\frac{m}{2}\right)(+1)}_{n-times} = 2n.$$

Finally signed total roman domination number is $\gamma_{stR}(G) = 2n$ if m is even.

III.CONCLUSIONS

Here we observe that the functions of $G = P_n \square K_m$ defined in certain cases becomes total dominating functions, total roman dominating functions, signed total roman dominating functions. Based on the minimality of these dominating functions we obtained the following results. (*i*) $\gamma_{ep}(G) = 2\gamma_e(G)$

(ii)
$$\gamma_{stR}(G) = \begin{cases} 2\gamma_t(G), & \text{if mis even.} \\ 3\gamma_t(G), & \text{if mis odd.} \end{cases}$$

ACKNOWLEDGMENT

The research was supported by DST, New Delhi. The corresponding author (2#) is thankful to DST [Ref: No.SR/WOS-A/MS-07/2014 (G)] New Delhi and management of Madanapalle Institute of Technology & Science, Madanapalle, Andhra Pradesh, India.

REFERENCES

- E. J. Cockayne, R. M. Dawes & S. T. Hedetniemi, "Total domination in graphs", Networks, vol. 10, pp. 211-219, Sep. 1980.
- [2] H. A. Ahangar, M. A. Henning, V. Samodivkin, & I. G. Yero, "Total Roman domination in graphs", Applicable Analysis and Discrete Mathematics, vol. 10, pp. 501–517, 2016.
- [3] L. Volkmann, "Signed total Roman domination in graphs", Journal of Combinatorial Optimization, vol. 32, pp. 855-871, Oct. 2016.
- [4] L. Volkmann, "On the signed total Roman domination and domatic numbers of graphs", Discrete Applied Mathematics, vol. 214, pp. 179-186, Dec. 2016.
- [5] M. A. Henning & A. P. Kazemi, "k-Tuple total domination in graphs", Discrete Applied Mathematics, vol. 158, pp. 1006-1011, May 2010.
- [6] R. B. Allan, R. Laskar, & S. Hedetniemi, "A note on total domination", Discrete Mathematics, vol. 49, pp. 7-13, Mar. 1984.
- [7] R. Frucht and F. Harary, "On the corona of Two Graphs", Aequationes Mathematicae, vol. 4, pp. 322 – 325, Oct. 1970.