Homomorphism on T – Fuzzy Ideal of ℓ - Near-Rings

¹G. Chandrasekaran, ²B.Chellappa and ³M. Jeyakumar

¹Assistant Professor, Dept. of Mathematics, Sethupathi Govt Arts College, Ramanathapuram – 623 502, Tamilnadu, India ²Principal, Nachiappa Suvamical Arts and Science College, Karaikudi - 630 003, Tamilnadu, India ³Assistant Professor, Dept. of Mathematics, Alagappa University Evening College, Rameswaram – 623 526, Tamilnadu, India

Abstract: In this paper, we made an attempt to study the properties of T-fuzzy ideal of a ℓ -near-ring and we introduce some theorems an onto homomorphic image, an epimorphic pre-image of a T-fuzzy ideal of a ℓ -near-ring.

Keywords: Fuzzy subset, T-fuzzy ideal, homomorphism of T - fuzzy ideal, homomorphic image of T - fuzzy ideal, homomorphic pre-image T-fuzzy ideal and product of T-fuzzy ideal.

I. INTRODUCTION

The concept of fuzzy sets was initiated by Zadeh. L.A, [18] in 1965. After the introduction of fuzzy several researchers explored on generalization of the concept of fuzzy sets. In Ayyappan, M., and Natarajan, R., [3] have introduced Lattice ordered near rings. In Dudek. W.A., and Jun. Y.B., [9] introduced Fuzzy subquasigroups over a t-norm. In 1971, Liu. W., [10] studied fuzzy ideals in rings. In Satyanarayana, Bh., and Syam Prasad, K. [12] introduced Gamma near-rings. In Srinivas, T., Nagaiah, T., and Narasimha Swamy, P., [14] studied anti fuzzy ideals of Γ -near-rings. Dheena. P., and Mohanraaj. G., [8] have studied several properties of T-fuzzy ideals of rings and Akram, M., [2] have studied some results of T – fuzzy ideals of nearrings. We extended the results of T – fuzzy ideals of a ℓ – near-rings.

In this paper we define, homomorphism and study the ℓ -near-ring homomorphism. Wang, Z.D., [15] introduced the basic concepts of TL-ideals and Fuzzy invariant subgroups and fuzzy ideals. We introduced homomorphism in T-fuzzy ideals of ℓ -near-ring. We discuss some of its properties. We have shown that homomorphism, homomorphic image of T-fuzzy ideal, homomorphic pre-image T-fuzzy ideal and product of T-fuzzy ideal of ℓ -near-ring

II. DEFINITIONS AND EXAMPLES

Definition: 1

A mapping $T:[0, 1] \times [0, 1] \rightarrow [0, 1]$ is called a

triangular norm [t-norm] if and only if it satisfies the following conditions:

(i).
$$T(x, 1) = T(1, x) = x$$
, for all $x \in [0, 1]$

(ii). if
$$x \ge x^*$$
, $y \ge y^*$ then $T(x, y) \ge T(x^*, y^*)$

(iii).
$$T(x, y) = T(y, x)$$
, for all $x, y \in [0, 1]$.

(iv).
$$T(x, T(y, z)) = T(T(x, y), z)$$
.

Definition: 2

A fuzzy subset μ of a ring R is called T – fuzzy right (resp. left) ideal if

(i)
$$\mu(x-y) \ge T(\mu(x), \mu(y)) = \min \{\mu(x), \mu(y)\}$$

(ii)
$$\mu(xy) \ge \{\mu(x)\}$$
 (resp. left $\mu(xy) \ge \{\mu(y)\}$), for all x, y in R

Definition: 3

A fuzzy subset μ of a ℓ -near-ring R is called a T-fuzzy ideal, if the following conditions are satisfied.

(i)
$$\mu(x-y) \ge T(\mu(x), \mu(y))$$
, for all $x, y \in R$

(ii)
$$\mu(y+x-y) \ge (\mu(x))$$
, for all x, y in R

(iii)
$$\mu(xy) \ge \mu(y)$$
; $\mu(xy) \ge \mu(x)$, for all $x, y \in R$

(iv)
$$\mu((x+z)y-xy) \ge (\mu(z))$$
, for all $x, y, z \in R$

(v)
$$\mu(x \vee y) \ge T(\mu(x), \mu(y))$$
, for all $x, y \in R$

(vi)
$$\mu(x \wedge y) \ge T(\mu(x), \mu(y))$$
, for all $x, y \in R$

Example: 1

Now $(R = \{a, b, c\}, +, \cdot, \vee, \wedge)$ is a ℓ - near-ring. Consider the fuzzy subset μ of the ℓ -near-ring R

$$\mu(x) = \begin{cases} 0.6 & \text{if } x = a \\ 0.5 & \text{if } x = b \\ 0.7 & \text{if } x = c \end{cases}$$

Then μ is a T – fuzzy ideal of ℓ – near-ring R

Definition: 4

Let R_1 and R_2 be two ℓ -near rings. Then the function $f:R_1\to R_2$ is called a ℓ -near ring homomorphism if satisfies the following conditions

- (i) f(x+y) = f(x) + f(y)
- (ii) f(xy) = f(x)f(y)
- (iii) $f(x \lor y) = f(x) \lor f(y)$
- (iv) $f(x \wedge y) = f(x) \wedge f(y)$, for all x, y in R

Example: 2

Let $R = \{m + n\sqrt{2}, for all \ m, n \in Z\}$, R is a ℓ -ring under usual addition and multiplication. Define $f: R \to R$ by $f(m+n\sqrt{2}) = m-n\sqrt{2}$ is ℓ -near ring homomorphism, where Z is set of all integer

Definition: 5

A fuzzy set μ of a ℓ -near ring R has the **supremum** property if for any subset N of R, there exists a $a_0 \in N$ such that $\mu(a_0) = \sup \mu(a)$

Definition: 6

Let μ , λ be two fuzzy ideals of a ℓ -near ring R, then the sum $\mu + \lambda$ is a fuzzy set of R defined by $(\mu + \lambda)(x) = \left\{ \sup \left(\min \left(\mu(y), \lambda(z) \right) \right), \text{ if } x = y + z, \right.$ 0, otherwise, for all $x, y, z \in R$.

Definition: 7

Let R_1 and R_2 be two ℓ -near rings. A mapping $f: R_1 \to R_2$ is called a ℓ -near ring isomorphism if

- (i) f is one-to-one
- (ii) f is onto, for all x, y in R

Definition: 8

Let M and N be any two sets and let $f: M \to N$ be any function. A fuzzy subset μ of a M is called f-invariant if $f(x)=f(y) \Rightarrow \mu(x)=\mu(y)$, for all $x, y \in M$

Definition: 9

Let R be a ℓ -near ring. Let μ be a fuzzy set of a T-fuzzy ideals of a ℓ -near ring R and f be a function defined on R, then the fuzzy set μ^f in f(R) is defined by $\mu^f(y) = \sup_{n \in f^{-1}(y)} \mu(x)$, for all $y \in f(R)$ and is called the image of μ under f

Definition: 10

Let R be a ℓ -near ring. Let μ be a fuzzy set of a T-fuzzy ideals of a ℓ -near ring R and f be a function defined on R, if v is a fuzzy set in f(R), then $\mu = v \circ f$ in R is defined by $\mu(x) = v(f(x))$, for all $x \in R$ and is called the pre-image of v under f.

III. THEOREMS

Theorem: 1

Every fuzzy ideal of a ℓ -near ring R is a T-fuzzy ideal of a ℓ -near ring R.

Theorem: 2

An onto homomorphism image of a T – fuzzy ideal of a ℓ – near ring R with \sup property is a T – fuzzy ideal of a ℓ – near ring R .

Proof:

Let R and S be a ℓ – near rings

Let $f: R \to S$ be an epimorphism and A be a S – fuzzy ideal of a ℓ – near ring R with **sup** property. Let $x, y \in S$

Let
$$x_0 \in f^{-1}(x)$$
, $y_0 \in f^{-1}(y)$ and $z_0 \in f^{-1}(z)$ be such that

$$\mu\big(x_{_{0}}\big) = \sup_{n \in f^{-1}(x)} \mu\big(n\big) \;,\; \mu\big(y_{_{0}}\big) = \sup_{n \in f^{-1}(y)} \mu\big(n\big) \; \text{and} \;$$

$$\mu(z_0) = \sup_{n \in f^{-1}(z)} \in \mu(n)$$
 respectively, then

(i)
$$\mu^{f}(x-y) = \sup_{z \in f^{-1}(x-y)} \mu(z)$$

$$\geq \mu(x_{0} - y_{0})$$

$$\geq \min(\mu(x_{0}), \mu(y_{0}))$$

$$= T(\mu(x_{0}), \mu(y_{0}))$$

$$\geq T\left(\sup_{n \in f^{-1}(x)} \mu(n), \sup_{n \in f^{-1}(y)} \mu(n)\right)$$

$$= T(\mu^{f}(x), \mu^{f}(y))$$

Therefore $\mu^{f}(x-y) \ge T(\mu^{f}(x), \mu^{f}(y))$, for all $x, y \in S$

(ii) Since
$$\mu(y+x-y) \ge \mu(x)$$

$$\mu^f(y+x-y) = \sup_{z \in f^{-1}(y+x-y)} \mu(z)$$

$$\ge \mu((y_0+x_0-y_0))$$

$$\ge \mu(x_0) = \sup_{n \in f^{-1}(x)} \mu(n)$$

$$=\mu^f(x)$$

Therefore $\mu^f(y+x-y) \ge \mu^f(x)$, for all $x, y \in S$

(iii) Let μ be a T – fuzzy ideals of R and let $x, y \in R$

Since
$$\mu(xy) \ge \mu(x)$$
 and $\lambda(xy) \ge \lambda(y)$
we have $\mu^f(xy) = \sup_{z \in f^{-1}(xy)} \mu(z)$

$$\geq \mu(x_0 y_0)$$

$$\geq \mu(x_0) \geq \sup_{n \in f^{-1}(x)} \mu(n)$$

$$= \mu^f(x)$$

Therefore $\mu^f(xy) \ge \mu^f(x)$, for all $x, y \in S$

(iv) Since
$$\mu((x+z)y-xy) \ge \mu(z)$$

$$\mu^f((x+z)y-xy) = \sup_{z \in f^{-1}((x+z)y-xy)} \mu(z)$$

$$\ge \mu((x_0+z_0)y_0-x_0y_0)$$

$$\ge \mu(z_0)$$

$$= \sup_{n \in f^{-1}(z)} \mu(n)$$

$$= \mu^f(z)$$

Therefore $\mu^f((x+z)y-xy) \ge \mu^f(z)$, for all $x, y \in S$

$$(v) \quad \mu^{f}(x \vee y) = \sup_{z \in f^{-1}(x \vee y)} \mu(z)$$

$$\geq \mu(x_{0} \vee y_{0})$$

$$\geq \min(\mu(x_{0}), \ \mu(y_{0}))$$

$$= T(\mu(x_{0}), \ \mu(y_{0}))$$

$$\geq T\left(\sup_{n \in f^{-1}(x)} \mu(n), \sup_{n \in f^{-1}(y)} \mu(n)\right)$$

$$= T(\mu^{f}(x), \ \mu^{f}(y))$$

Therefore $\mu^{f}(x \lor y) \ge T(\mu^{f}(x), \mu^{f}(y))$, for all $x, y \in S$

(vi)
$$\mu^{f}(x \wedge y) = \sup_{z \in f^{-1}(x \wedge y)} \mu(z)$$

$$\geq \mu(x_{0} \wedge y_{0}) \geq \min(\mu(x_{0}), \mu(y_{0}))$$

$$= T(\mu(x_{0}), \mu(y_{0}))$$

$$\geq T\left(\sup_{n \in f^{-1}(x)} \mu(n), \sup_{n \in f^{-1}(y)} \mu(n)\right)$$

$$=T(\mu^f(x),\mu^f(y))$$

Therefore $\mu^f(x \wedge y) \ge T(\mu^f(x), \mu^f(y))$, for all $x, y \in S$

Thus an onto homomorphic image of a T – fuzzy ideal of a ℓ – near ring R with \sup property is a T – fuzzy ideal of a ℓ – near-ring R .

Theorem: 3

An epimorphic pre-image of a T – fuzzy ideal of a ℓ – near ring is a T – fuzzy ideal of a ℓ – near ring R .

Proof:

Let R and S be a ℓ -near rings. Let $f: R \to S$ be an epimorphism. Let ν be a T-fuzzy ideal of a ℓ -near ring S and μ be the pre-image of ν under f for any $x, y, z \in R$.

(i) we have
$$\mu(x-y) = (v \circ f)(x-y)$$

$$= v (f(x-y))$$

$$= v (f(x)-f(y))$$

$$\geq T(v (f(x)), v (f(y)))$$

$$\geq T((v \circ f)(x), (v \circ f)(y))$$

$$= T(\mu(x), \mu(y))$$

Therefore $\mu(x-y) \ge T(\mu(x), \mu(y))$, for all $x, y \in R$

(ii) Since
$$\mu(y+x-y) \ge \mu(x)$$

 $\mu(y+x-y)=(v \circ f)(y+x-y)$
 $= v(f(y+x-y))$
 $= v(f(x))$
 $\ge T(v(f(x)))$
 $\ge T((v \circ f)(x))$
 $= (v \circ f)(x)$
 $= \mu(x)$

Therefore $\mu(y+x-y) \ge \mu(x)$, for all $x, y \in S$

(iii) Since
$$\mu(xy) \ge \mu(x)$$

$$\mu(xy) = (v \circ f)(xy)$$

$$= v(f(xy))$$

$$= v(f(x)f(y))$$

$$\ge T(v(f(x)))$$

$$\geq T((v \circ f)(x))$$

$$= (v \circ f)(x)$$

$$= \mu(x)$$

Therefore $\mu(xy) \ge \mu(x)$, for all $x, y \in R$

(iv) Since
$$\mu((x+z)y-xy) \ge \mu(z)$$

$$\mu((x+z)y-xy) = (v \circ f)((x+z)y-xy)$$

$$= v (f((x+z)y-xy)) = v (f(yz))$$

$$\ge T(v (f(y), f(z))) \ge v (f(z))$$

$$\ge T((v \circ f)(z))$$

$$= (v \circ f)(z)$$

$$= \mu(z)$$

Therefore $\mu((x+z)y-xy) \ge \mu(z)$, for all $x, y \in S$

(v) we have
$$\mu(x \lor y) = (v \circ f)(x \lor y)$$

 $= v (f(x \lor y))$
 $= v (f(x) \lor f(y))$
 $\geq T(v (f(x)), v (f(y)))$
 $\geq T((v \circ f)(x), (v \circ f)(y))$
 $= T(\mu(x), \mu(y))$

Therefore $\mu(x \lor y) \ge T(\mu(x), \mu(y))$, for all $x, y \in R$

(vi) we have
$$\mu(x \wedge y) = (v \circ f)(x \wedge y)$$

$$= v (f(x \wedge y))$$

$$= v (f(x) \wedge f(y))$$

$$\geq T(v (f(x)), v (f(y)))$$

$$\geq T((v \circ f)(x), (v \circ f)(y))$$

$$= T(\mu(x), \mu(y))$$

Therefore $\mu(x \wedge y) \ge T(\mu(x), \mu(y))$, for all $x, y \in R$

Thus an epimorphic pre-image of a T – fuzzy ideal of a ℓ – near ring is a T – fuzzy ideal of a ℓ – nearring R .

Proposition: 1

Let R and S be ℓ -near rings R and let $f:R\to S$ be a homomorphism. Let μ be f-invariant fuzzy ideal of a ℓ -near-ring R. If x=f(a), then $f(a)(x)=\mu(a)$, for all $a\in R$.

Theorem: 4

Let $f: R \to S$ be an epimorphism of ℓ -near rings R and S. If μ is f-invariant fuzzy ideal of a ℓ -near-ring R, then $f(\mu)$ is a T-fuzzy ideal of S.

Proof:

Let $a,b,c \in S$ then there exists $x,y,z \in R$ such that f(x) = a, f(y) = b and f(z) = c

Suppose μ is f – invariant fuzzy ideal of a ℓ – near-ring R , then by Proposition 1

(i) we have
$$f(\mu)(a-b) = f(\mu)(f(x)-f(y))$$

 $= f(\mu)(f(x-y))$
 $= \mu(x-y)$
 $\geq T(\mu(x), \mu(y))$
 $= T(f(\mu)(a), f(\mu)(b))$

Therefore $f(\mu)(a-b) \ge T(f(\mu)(a), f(\mu)(b))$,

for all $a, b \in S$ and $x, y \in R$

(ii) Since $\mu(y+x-y) \ge \mu(x)$

We have

$$f(\mu)(b+a-b) = f(\mu)(f(y)+f(x)+f(y))$$

$$= f(\mu)(f(y+x-y))$$

$$= \mu(y+x-y)$$

$$\geq \mu(x)$$

$$= f(\mu)(a)$$

Therefore $f(\mu)(b+a-b) \ge f(\mu)(a)$, for all $a,b \in S$ and $x,y \in R$

(iii) Since
$$\mu(xy) \ge \mu(x)$$
 and $\lambda(xy) \ge \lambda(y)$
We have $f(\mu)(ab) = f(\mu)(f(x)f(y))$
 $= f(\mu)(f(xy))$

$$= \mu(xy)$$

$$\geq \mu(x)$$

$$= f(\mu)(a)$$

Therefore $f(\mu)(ab) \ge f(\mu)(a)$, for all $a,b \in S$ and $x, y \in R$

(iv) Since
$$\mu((x+z)y-xy) \ge \mu(z)$$

 $f(\mu)((a+c)b-ab)$
 $= f(\mu)((f(x)+f(z))f(y)-f(x)f(y))$
 $= f(\mu)(f((x+z)y-xy))$

$$= \mu((x+z)y - xy)$$

$$\ge \mu(z) = f(\mu)(c)$$

Therefore $f(\mu)((a+c)b-ab) \ge f(\mu)(c)$, for all $a,b \in S$ and $x,y \in R$

(v) we have
$$f(\mu)(a \lor b) = f(\mu)(f(x) \lor f(y))$$

 $= f(\mu)(f(x \lor y))$
 $= \mu(x \lor y)$
 $\geq T(\mu(x), \mu(y))$
 $= T(f(\mu)(a), f(\mu)(b))$

Therefore $f(\mu)(a \lor b) \ge T(f(\mu)(a), f(\mu)(b))$, for all $a, b \in S$ and $x, y \in R$

(vi) we have
$$f(\mu)(a \wedge b) = f(\mu)(f(x) \wedge f(y))$$

 $= f(\mu)(f(x \wedge y))$
 $= \mu(x \wedge y)$
 $\geq T(\mu(x), \mu(y))$
 $= T(f(\mu)(a), f(\mu)(b))$

Therefore $f(\mu)(a \wedge b) \ge T(f(\mu)(a), f(\mu)(b))$, for all $a, b \in S$ and $x, y \in R$

Hence, $f(\mu)$ is a T -fuzzy ideal of a ℓ -near ring S .

Theorem: 5

Let $f: R_1 \to R_2$ be an onto homomorphism of a ℓ -near rings. If μ is T-fuzzy ideal of R_1 , then $f(\mu)$ is a T-fuzzy ideal of R_2 .

Proof:

Let μ be a T – fuzzy ideal of a ℓ – near ring R_1 Let $\mu_1 = f^{-1}(y_1)$ and $\mu_2 = f^{-1}(y_2)$, where $y_1, y_2 \in R_2$ are non-empty subsets of R_2

Similarly,
$$\mu_3 = f^{-1}(y_1 - y_2)$$

Consider the set $\mu_1 - \mu_2 = \{a_1 - a_2 / a_1 \in \mu_1, a_2 \in \mu \}$ If $x \in \mu_1 - \mu_2$, then $x = x_1 - x_2$, for some $x_1 \in \mu_1$, $x_2 \in \mu_2$ and so,

$$f(x) = f(x_1 - x_2) = f(x_1) - f(x_2) = y_1 - y_2$$

$$\Rightarrow x \in f^{-1}(y_1 - y_2) = \mu_3$$

Thus
$$\mu_1 - \mu_2 \subseteq \mu_3$$
 that is $\left\{ x/x \in f^{-1}(y_1 - y_2) \right\}$

$$\supseteq \left\{ x_1 - x_2/x_1 \in f^{-1}(y_1), x_2 \in f^{-1}(y_2) \right\}$$

Let $y_3 \in R_2$, then

(i) we have

$$f(\mu)(y_{1}-y_{2})=\sup\{\mu(x)/x \in f^{-1}(y_{1}-y_{2})\}$$

$$\geq \sup\{\mu(x_{1}-x_{2})/x_{1} \in f^{-1}(y_{1}), x_{2} \in f^{-1}(y_{2})\}$$

$$\geq \sup\{\min\{\mu(x_{1}), \mu(x_{2})\}/x_{1} \in f^{-1}(y_{1}), x_{2} \in f^{-1}(y_{2})\}$$

$$\geq \sup\{T(\mu(x_{1}), \mu(x_{2}))/x_{1} \in f^{-1}(y_{1}), x_{2} \in f^{-1}(y_{2})\}$$

$$= T(\sup\{\mu(x_{1})\}/x_{1} \in f^{-1}(y_{1}), \sup\{\mu(x_{2})\}/x_{2} \in f^{-1}(y_{2})\}$$

$$= T(f(\mu)(y_{1}), f(\mu)(y_{2}))$$

Therefore $f(\mu)(y_1 - y_2) \ge T(f(\mu)(y_1), f(\mu)(y_2))$,

for all $y_1, y_2 \in R_2$

(ii) Since $\mu(y+x-y) \ge \mu(x)$

We have

$$f(\mu)(y_{2} + y_{1} - y_{2}) = \sup \{\mu(x) / x \in f^{-1}(y_{2} + y_{1} - y_{2})\}$$

$$\geq \sup \{\mu(x_{2} + x_{1} - x_{2}) / x_{1} \in f^{-1}(y_{1}), x_{2} \in f^{-1}(y_{2})\}$$

$$\geq \sup \{\mu(x_{1}) / x_{1} \in f^{-1}(y_{1})\}$$

$$= f(\mu)(y_{1})$$

Therefore $f(\mu)(y_2 + y_1 - y_2) \ge f(\mu)(y_1)$, for all $y_1, y_2 \in R_2$

(iii) We have $\mu(xy) \ge \mu(x)$ and $\lambda(xy) \ge \lambda(y)$ We have

$$f(\mu)(x_1 x_2) = \sup \{\mu(y) / y \in f^{-1}(x_1 x_2)\}$$

$$\geq \sup \{\mu(x_1 x_2) / y_1 \in f^{-1}(x_1), y_2 \in f^{-1}(x_2)\}$$

$$\geq \sup \{\mu(x_2) / y_2 \in f^{-1}(x_2)\}$$

$$= f(\mu)(x_2)$$

Therefore $f(\mu)(x_1 x_2) \ge f(\mu)(x_2)$, for all $y_1, y_2 \in R_2$

(iv) Since
$$\mu((x+z)y-xy) \ge \mu(z)$$

We have
$$f(\mu)((a+c)b-ab)$$

= $f(\mu)((f(x)+f(z))f(y)-f(x)f(y))$

We have
$$f(\mu)((y_1 + y_3)y_2 - y_1y_2)$$

$$= \sup\{\mu(x)/x \in f^{-1}((y_1 + y_3)y_2 - y_1y_2)\}$$

$$\geq \sup\{\mu((y_1 + y_3)y_2 - y_1y_2)/(x_1 \in f^{-1}(y_1), x_2 \in f^{-1}(y_2), x_3 \in f^{-1}(y_3)\}$$

$$\geq \sup\{\mu(x_3)/x_3 \in f^{-1}(y_3)\}$$

$$= f(\mu)(y_3)$$
Therefore $f(\mu)((y_1 + y_3)y_2 - y_1y_2) \ge f(\mu)(y_3)$, for all $y_1, y_2, y_3 \in R_2$

(v) $f(\mu)(y_1 \lor y_2) = \sup\{\mu(x)/x \in f^{-1}(y_1 \lor y_2)\}$

$$\ge \sup\{\mu(x_1 \lor x_2)/x_1 \in f^{-1}(y_1), x_2 \in f^{-1}(y_2)\}$$

$$\ge \sup\{\min\{\mu(x_1), \mu(x_2)\}/(x_1 \in f^{-1}(y_1), x_2 \in f^{-1}(y_2)\}$$

$$\ge \sup\{T(\mu(x_1), \mu(x_2))/(x_1 \in f^{-1}(y_1), x_2 \in f^{-1}(y_2)\}$$

$$= T(\sup\{\mu(x_1)\}/x_1 \in f^{-1}(y_1), x_2 \in f^{-1}(y_2)\}$$

$$= T(\sup\{\mu(x_2)\}/x_2 \in f^{-1}(y_2))$$

$$= T(f(\mu)(y_1), f(\mu)(y_2))$$
Therefore
$$f(\mu)(y_1 \lor y_2) \ge T(f(\mu)(y_1), f(\mu)(y_2)), \text{ for all } y_1, y_2 \in R_2$$
(vi) $f(\mu)(y_1 \land y_2) = \sup\{\mu(x)/x \in f^{-1}(y_1 \land y_2)\}$

(vi)
$$f(\mu)(y_1 \wedge y_2) = \sup \{\mu(x) / x \in f^{-1}(y_1 \wedge y_2)\}$$

 $\geq \sup \{\mu(x_1 \wedge x_2) / x_1 \in f^{-1}(y_1), x_2 \in f^{-1}(y_2)\}$

$$\geq \sup \{ \mu(x_1 \wedge x_2) / x_1 \in f^{-1}(y_1), x_2 \in f^{-1}(y_2) \}$$

$$\geq \sup \{\min \{\mu(x_1), \mu(x_2)\} / x_1 \in f^{-1}(y_1), x_2 \in f^{-1}(y_2)\}$$

$$\geq \sup \left\{ T\left(\mu(x_1), \mu(x_2)\right) / x_1 \in f^{-1}(y_1), x_2 \in f^{-1}(y_2) \right\}$$

$$= T\left(\sup\{\mu(x_1)\}/x_1 \in f^{-1}(y_1), \sup\{\mu(x_2)\}/x_2 \in f^{-1}(y_2)\right)$$

$$= T(f(\mu)(y_1), f(\mu)(y_2))$$

Therefore

$$f(\mu)(y_1 \wedge y_2) \ge T(f(\mu)(y_1), f(\mu)(y_2)),$$
 for all $y_1, y_2 \in R_2$

Hence $f(\mu)$ is a T - fuzzy ideal of a ℓ - near ring R_2 .

Theorem: 6

Let μ and μ be T-fuzzy ideal of a ℓ -near ring R. Then $\mu + \lambda$ is the smallest T-fuzzy ideal of R containing both μ and λ .

Proof:

Let μ and μ be T-fuzzy ideal of a ℓ -near ring R and Let $x, y, z \in R$

Then
$$(x-y) = (a+b)-(c-d)$$

= $(a+b)-c-d$

$$= (b+a-b) \cdot c + (c+b-c) \cdot d$$

$$= e+f,$$
where $e = (b+a-b) \cdot c \cdot f = (c+b-c) \cdot d$
(i) $(\mu+\lambda)(x-y) = \bigvee_{x-y=e+f} \left[\mu(e) \lor \lambda(f)\right]$

$$\geq \bigvee_{x=a+b, y=c+d} \left[T(\mu(b+a-b), \mu(c)) \lor T(\lambda(c+b-c), \lambda(d))\right]$$

$$= \bigvee_{x=a+b, y=c+d} \left[T(\mu(a), \lambda(b)) \lor T(\mu(c), \lambda(d))\right]$$

$$= \bigvee_{x=a+b, y=c+d} \left[T(\mu(a), \lambda(b)) \lor T(\mu(c), \lambda(d))\right]$$

$$= T\left(\bigvee_{x=a+b} (\mu(a), \lambda(b)) \lor \bigvee_{y=c+d} (\mu(c), \lambda(d))\right)$$

$$= T((\mu+\lambda)(x), (\mu+\lambda)(y))$$
Therefore
$$(\mu+\lambda)(x-y) \geq T((\mu+\lambda)(x), (\mu+\lambda)(y)), \text{ for all } x, y \in R$$
For any $x = a+b$,
We have $y + x - y = y + a + b - y$

$$= (y+a-y) + (y+b-y), \text{ for each } y + a - y = c + d$$
We have $x = -y + c + d + y$

$$= (-y+c+y) + (-y+d+y)$$

$$= (b+a-b) \cdot c + (c+b-c) - d$$
(ii) Since
$$\mu(y+x-y) \geq \mu(x) \text{ and } \lambda(y+x-y) \geq \lambda(x)$$
We have $(\mu+\lambda)(y+x-y) = \bigvee_{y+z-y=c+d} [\mu(c), \lambda(d)]$

$$= \bigvee_{x=a+b} [\mu(y+a-y), \lambda(y+b-y)]$$

$$\geq \bigvee_{x=a+b} [\mu(a) \lor \lambda(b)] = (\mu+\lambda)(x)$$
Therefore $(\mu+\lambda)(y+x-y) \geq (\mu+\lambda)(x)$, for all $x, y \in R$
(iii) Since $\mu(xy) \geq \mu(x)$ and $\lambda(xy) \geq \lambda(y)$

$$(\mu+\lambda)(xy) = (\mu+\lambda)(xy_1 + xy_2)$$

$$= \bigvee_{y=y_1+y_2} [\mu(y_1) \lor \lambda(y_2)]$$

$$\geq \bigvee_{y=y_1+y_2} [\mu(y_1) \lor \lambda(y_2)]$$

 $=(\mu+\lambda)(y)$

Therefore $(\mu + \lambda)(xy) \ge (\mu + \lambda)(y)$, for all

 $x, y \in R$

If η is a fuzzy ideal of R such that $\eta(x) \ge \mu(x)$ and $\eta(x) \ge \lambda(x)$, for all $x \in R$

(iv) Since

$$\mu((x+z)y-xy) \ge \mu(z)$$
 and $\lambda((x+z)y-xy) \ge \lambda(z)$

We have
$$(\mu + \lambda)(x) = \bigvee_{x=a+b} [\mu(a) \lor \lambda(b)]$$

$$\geq \bigvee_{x=a+b} \left[\eta(a) \vee \eta(b) \right]$$

$$=\bigvee_{r=a+b} \left[\eta(a+b)\right]$$

$$=\eta(z)$$

Therefore $(\mu + \lambda)(x) \ge \eta(z)$, for all $x, y, z \in R$

(v) We have

$$(\mu + \lambda)(x \vee y) = \bigvee_{x-y=e+f} [\mu(e) \vee \lambda(f)]$$

$$\geq \bigvee_{\substack{x=a+b \ v=c+d}} \left[T\left(\mu(b+a-b),\mu(c)\right) \vee T\left(\lambda(c+b-c),\lambda(d)\right) \right]$$

$$= \bigvee_{x=a+b, \ y=c+d} \left[T(\mu(a), \mu(c)) \vee T(\lambda(b), \lambda(d)) \right]$$

$$= \bigvee_{x=a+b, \ v=c+d} \left[T(\mu(a), \lambda(b)) \vee T(\mu(c), \lambda(d)) \right]$$

$$=T\left(\bigvee_{x=a+b}\left(\mu(a),\lambda(b)\right)\vee\bigvee_{y=c+d}\left(\mu(c),\lambda(d)\right)\right)$$

$$=T((\mu+\lambda)(x),(\mu+\lambda)(y))$$

Therefore

$$(\mu + \lambda)(x \vee y) \ge T((\mu + \lambda)(x), (\mu + \lambda)(y))$$
, for

all $x, y \in R$

(vi) We have

$$(\mu + \lambda)(x \wedge y) = \bigvee_{x-y=e+f} [\mu(e) \vee \lambda(f)]$$

$$\geq \bigvee_{x=a+b,\,y=c+d} \Big[T\Big(\mu\big(b+a-b\big),\mu\big(c\big)\Big) \vee T\Big(\lambda\big(c+b-c\big),\lambda\big(d\big)\Big) \Big]$$

$$= \bigvee_{x=a+b, y=c+d} \left[T(\mu(a), \mu(c)) \vee T(\lambda(b), \lambda(d)) \right]$$

$$= \bigvee_{x=a+b, y=c+d} \left[T(\mu(a), \lambda(b)) \vee T(\mu(c), \lambda(d)) \right]$$

$$=T\left(\bigvee_{x=a+b} (\mu(a),\lambda(b)) \vee \bigvee_{v=c+d} (\mu(c),\lambda(d))\right)$$

$$=T((\mu+\lambda)(x),(\mu+\lambda)(y))$$

Therefore

$$(\mu+\lambda)(x \wedge y) \ge T((\mu+\lambda)(x), (\mu+\lambda)(y))$$
, for all

 $x, y \in R$

Thus $\mu + \lambda$ is a T – fuzzy ideal of a ℓ – near-ring R.

REFERENCES

- [1] Abu Osman, M.T., On some product of fuzzy subgroups, Fuzzy Sets and Systems 24 (1987), 79-86.
- [2] Akram, M., On T-fuzzy ideals in near-rings, Int. J. Math. Math. Sci. Volume 2007 (2007), Article ID 73514,14 pages
- [3] Ayyappan, M., and Natarajan, R., Lattice ordered near rings, Acta Ciencia Indica, 1038(4), (2012) 727-738.
- [4] Barnes, W.E., On the Γ-rings of Nobusawa, Pacific J. Math. 18 (1966), 411-422.
- [5] Booth, G.L., A note on Γ near-rings, Studia. Sci. Math. Hungar. 23 (1988) 471-475.
- [6] Coppage, W.E., and Luh, J., Radicals of gamma-rings, J. Math. Soc. Japan 23 (1971), 40-52.
- [7] Chandrasekaran, G., Chellappa, B., and Jeyakumar, M., Some theorems on T anti-fuzzy ideals of a ℓ near-ring, International Journal of Mathematics Trends and Technology. Volume 49, Number 5, 2017, pp 316-320.
- [8] Dheena, P., and Mohanraaj, G., T-fuzzy ideals in rings, International Journal of Computational Cognition 2 (2011) 98-101.
- [9] Dudek. W.A., and Jun. Y.B., Fuzzy subquasigroups over a t-norm, Quasigroups and Related Systems 6 (1999), pp.87-98
- [10] Liu, W., Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 8 (1982) 133-139.
- [11] Nobusawa, N., On a generalization of the ring theory, Osaka J. Math. 1 (1964), 81-89.
- [12] Satyanarayana, Bh., and Syam Prasad, K., On Fuzzy cosets of Gamma near-rings, Turkish J. Math. 29 (2005) 11-22.
- [13] Schweizer, B., and Sklar, A., Statistical metric spaces, Pacific Journal of Mathematics. 10 (No. 1) (1963), 313-334.
- [14] Srinivas, T., Nagaiah, T., and Narasimha Swamy, P., Anti fuzzy ideals of Γ near-rings, Ann. Fuzzy Math. Inform. 3(2) (2012) 255-266.
- [15] Wang-jin Liu., Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8(2) (1982) 133- 139.
- [16] Yu, J., Mordeson, N., and Cheng, S.C., Elements of L-algebra, Lecture Notes in Fuzzy Math. and Computer Sciences, Creighton Univ., Omaha, Nebraska 68178, USA (1994)
- [17] Yu, Y.-D., and Wang, Z.-D., TL-subrings and TL-ideals part1: basic concepts. Fuzzy Sets and Systems, 68 (1994), 93–103
- [18] Zadeh, L.A., Fuzzy sets, Inform. and Control, 8 (1965), 338-353.