A NOTE ON (α, β) -*-i-n-DERIVATIONS IN RINGS WITH INVOLUTION

Mohammad Aslam Siddeeque

Department of Mathematics Aligarh Muslim University Aligarh -202002(India)

Abstract: Let R be a ring with involution '*'. In this paper we introduce the notion of (α, β) -*-i-n-derivation in R. An additive mapping $x \mapsto x^*$ of R into itself is called an involution on R if it satisfies the conditions; (i) $(x^*)^* = x$, (ii) $(xy)^* = y^*x^*$ for all $x, y \in R$. A ring R equipped with an involution '*' is called a *-ring. In the present paper it is shown that if a *-prime ring R admits a nonzero (α, β) -*-i-n-derivation D, then R is commutative. Further an important property of (α, β) -*-i-n-derivation in semiprime *-ring has also been derived.

1. INTRODUCTION

Throughout the paper, R will represent an associative ring with center Z. Ring R is called prime if $aRb = \{0\}$ implies a = 0 or b = 0. It is called semiprime if $aRa = \{0\}$ implies a = 0. An additive mapping $d: R \longrightarrow R$ is said to be a derivation on R if d(xy) = d(x)y + xd(y) holds for all $x, y \in R$. An additive mapping $d: R \longrightarrow R$ is said to be a (α, β) -derivation on R if there exist endomorphisms α and β of R such that $d(xy) = d(x)\alpha(y) + \beta(x)d(y)$ holds for all $x, y \in R$. An additive mapping $x \mapsto x^*$ of R into itself is called an involution on R if it satisfies the conditions; (i) $(x^*)^* = x$, (ii) $(xy)^* = y^*x^*$ for all $x, y \in R$. A ring R equipped with an involution '*' is called a *-ring. A ring R with involution '*' is said to be *-prime if $aRb = aRb^* = \{0\}$, (equivalently $aRb = a^*Rb = \{0\}$) where $a, b \in R$ implies that either a = 0 or b = 0. It is to be noted that every prime ring having an involution '*' is *-prime but the converse is not true

¹Mathematics Subject Classification (2010): 16W10, 16N60, 16U80.

²Keywords and Phrases: Involution, derivation, *-derivation, *-n-derivation, *-i-n-derivation, (α , β)-*-n-derivation, (α , β)-*-n-derivation, *-prime ring, semiprime *-ring.

in general. Of course, if R^o denotes the opposite ring of a prime ring R, then $R \times R^o$ equipped with the exchange involution $*_{ex}$, defined by $*_{ex}(x,y) = (y,x)$, is $*_{ex}$ -prime but not prime.

Let R be a *-ring. An additive mapping $d:R\longrightarrow R$ is said to be a *-derivation on R if $d(xy)=d(x)y^*+xd(y)$ holds for all $x,y\in R$. If R is a commutative *-ring, then $d:R\longrightarrow R$ defined by $d(x)=a(x-x^*)$, where $a\in R$, is a *-derivation on R (for reference see [10]). An additive map $T:R\longrightarrow R$ is called a left (resp. right) *-multiplier if $T(xy)=T(x)y^*$ (resp. $T(xy)=x^*T(y)$) holds for all $x,y\in R$. An additive mapping $d:R\longrightarrow R$ is said to be a (α,β) -*-derivation on R if $d(xy)=d(x)\alpha(y^*)+\beta(x)d(y)$ holds for all $x,y\in R$. There has been a great deal of work concerning commutativity of prime and semiprime rings admitting different types of derivations (for reference see [3-6],[10],[14] etc., where further references can be found). Very recently Ali and Khan [2] defined symmetric *-biderivation, symmetric left (resp. right) *-bimultiplier and studied some properties of prime *-rings and semiprime *-rings, admitting symmetric *-biderivation and symmetric left (resp. right) *-bimultiplier. Motivated by these concepts the authors [6] introduced the notion of *-n-derivations and *-n-multipliers in *-rings and studied these notions in the setting of prime *-rings and semiprime *-rings.

Let R be a *-ring and n be any fixed positive integer. An n-additive (i.e.; additive in each argument) mapping $D: R^n \longrightarrow R$ is called a *-n-derivation of R if the relations

$$D(x_1, x_2, \dots, x_{i-1}, x_i x_i', x_{i+1}, \dots, x_n) = D(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)(x_i')^* + x_i D(x_1, x_2, \dots, x_{i-1}, x_i', x_{i+1}, \dots, x_n)$$

hold for all $x_1, x_2, \dots, x_{i-1}, x_i, x_i', x_{i+1}, \dots, x_n \in R$, $i = 1, 2, 3, \dots, n$ (See [6] for further reference). We have a weaker family of derivations in *-ring R also. Of course this family generalizes the notions of *-n-derivations discussed above. Let n be a fixed positive integer and i be an integer with $1 \le i \le n$. An n-additive (i.e.; additive in each argument) mapping $D: R^n \longrightarrow R$ is called a *-i-n-derivation of R if the relation

$$D(x_{1}, x_{2}, \dots, x_{i-1}, x_{i}x_{i}', x_{i+1}, \dots, x_{n}) = D(x_{1}, x_{2}, \dots, x_{i-1}, x_{i}, x_{i+1}, \dots, x_{n})(x_{i}')^{*} + x_{i}D(x_{1}, x_{2}, \dots, x_{i-1}, x_{i}', x_{i+1}, \dots, x_{n})$$

holds for all $x_1, x_2, \dots, x_{i-1}, x_i, x_i', x_{i+1}, \dots, x_n \in R$. From the above definition it is obvious that if D is a *-i-n-derivation of R for each i with $1 \leq i \leq n$, then D is a *-n-derivation of R and conversely. It can be also observed that every *-n-derivation is a

*-i-n-derivation but its converse is not true (See [7] for further reference).

Motivated by the notion of (α, β) -*-n-derivation in a *-ring R (See[8] for further reference), in the present paper, we introduce the notion of (α, β) -*-i-n-derivation in a *-ring R, which generalizes the notion of *-i-n-derivation discussed above. Let n be a fixed positive integer and i be an integer with $1 \le i \le n$. An n-additive (i.e.; additive in each argument) mapping $D: R^n \longrightarrow R$ is called a (α, β) -*-i-n-derivation of R if the relation

$$D(x_{1}, x_{2}, \dots, x_{i-1}, x_{i}x_{i}', x_{i+1}, \dots, x_{n}) = D(x_{1}, x_{2}, \dots, x_{i-1}, x_{i}, x_{i+1}, \dots, x_{n})\alpha((x_{i}')^{*}) + \beta(x_{i})D(x_{1}, x_{2}, \dots, x_{i-1}, x_{i}', x_{i+1}, \dots, x_{n})$$

holds for all $x_1, x_2, \dots, x_{i-1}, x_i, x_i', x_{i+1}, \dots, x_n \in R$.

Recently Ashraf et.al. [6, Theorem 3.1] proved that if a prime *-ring R admits a nonzero *-n-derivation D, then R is commutative. We have proved its analogue for (α, β) -*-i-n-derivation in the setting of *-prime rings which is a larger class of *-rings than the class of prime rings with involution. Another property of (α, β) -*-i-n-derivation for semiprime *-rings has also been derived. We have also proved a result related with the equality of two (α, β) -*-n-derivations D_1 and D_2 in prime *-rings. In fact, our results generalize, extend, improve and compliment some results obtained earlier on *-derivation, *-n-derivation, (α, β) -*-n-derivation for prime *-rings and semiprime *-rings in [6, 8].

2. MAIN RESULTS

Throughout the paper unless otherwise stated α and β will represent endomorphisms of R.

Theorem 2.1. Let R be a *-prime ring. If it admits a nonzero (α, β) -*-i-n-derivation D and α is onto, then R is commutative.

Proof. By hypothesis, for all $x_1, y, z, x_2, \dots, x_n \in R$, we have

$$D(x_1, x_2, \dots, x_{i-1}, (x_i y)z, x_{i+1}, \dots, x_n)$$

$$= D(x_1, x_2, \dots, x_{i-1}, (x_i y), x_{i+1}, \dots, x_n)\alpha(z^*)$$

$$+\beta(x_i y)D(x_1, x_2, \dots, x_{i-1}, z, x_{i+1}, \dots, x_n)$$

$$= \{D(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)\alpha(y^*) + \beta(x_i)D(x_1, x_2, \dots, x_{i-1}, y, x_{i+1}, \dots, x_n)\}\alpha(z^*) + \beta(x_i)\beta(y)D(x_1, x_2, \dots, x_{i-1}, z, x_{i+1}, \dots, x_n)$$

$$= D(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)\alpha(y^*)\alpha(z^*) + \beta(x_i)D(x_1, x_2, \dots, x_{i-1}, y, x_{i+1}, \dots, x_n)\alpha(z^*) + \beta(x_i)\beta(y)D(x_1, x_2, \dots, x_{i-1}, z, x_{i+1}, \dots, x_n)$$

Also

ISSN: 2231-5373

$$D(x_{1}, x_{2}, \dots, x_{i-1}, x_{i}(yz), x_{i+1}, \dots, x_{n})$$

$$= D(x_{1}, x_{2}, \dots, x_{i-1}, x_{i}, x_{i+1}, \dots, x_{n})\alpha(yz)^{*}$$

$$+\beta(x_{i})D(x_{1}, x_{2}, \dots, x_{i-1}, yz, x_{i+1}, \dots, x_{n})$$

$$= D(x_{1}, x_{2}, \dots, x_{i-1}, x_{i}, x_{i+1}, \dots, x_{n})\alpha(z^{*}y^{*})$$

$$+\beta(x_{i})\{D(x_{1}, x_{2}, \dots, x_{i-1}, y, x_{i+1}, \dots, x_{n})\alpha(z^{*})$$

$$+\beta(y)D(x_{1}, x_{2}, \dots, x_{i-1}, z, x_{i+1}, \dots, x_{n})\}$$

$$= D(x_{1}, x_{2}, \dots, x_{i-1}, x_{i}, x_{i+1}, \dots, x_{n})\alpha(z^{*})$$

$$+\beta(x_{i})D(x_{1}, x_{2}, \dots, x_{i-1}, y, x_{i+1}, \dots, x_{n})\alpha(z^{*})$$

$$+\beta(x_{i})\beta(y)D(x_{1}, x_{2}, \dots, x_{i-1}, z, x_{i+1}, \dots, x_{n})$$

Combining the above two relations, we get

$$D(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)\alpha(y^*)\alpha(z^*) = D(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)$$

 $\alpha(z^*)\alpha(y^*)$ for all $x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n, y, z \in R$.
Putting y^* and z^* in the places of y and z respectively, we find that $D(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)\alpha(y)\alpha(z) = D(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)$
 $\alpha(z)\alpha(y)$. Since α is onto, we conclude that

$$D(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)yz = D(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)zy.$$
(3.1)

Now replacing y by yr where $r \in R$, in the relation (3.1) and using it again we arrive at $D(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)R([r, z]) = \{0\}$. This also gives us $D(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)R[r, z]^* = \{0\}$. Since $D \neq 0$, *-primeness of R implies that rz = zr for all $z, r \in R$ and hence R is commutative.

Corollary 2.1([6], Theorem 3.1). Let R be a prime *-ring. If R admits a nonzero *-n-derivation D, then R is commutative.

Corollary 2.2([8],Theorem 2.1). Let R be a *-prime ring. If it admits a nonzero $(\alpha, \beta)^*$ -n-derivation D such that α is onto then R is commutative.

Theorem 2.2. Let R be a semiprime *-ring admitting a (α, β) -*-i-n-derivation D and α is onto. Then $D(R, R, \dots, R) \subseteq Z$.

Proof. Since R is a *-ring having a (α, β) -*-i-n-derivation D and α is onto, we have relation (3.1). Putting $yD(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)$ in place of y in the relation (3.1) and using it again we get $D(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)y[D(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n), z] = 0$. This in turn gives the following

$$zD(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)y[D(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n), z] = 0.$$
 (3.2)

Replacing y by zy in the relation

 $D(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)y[D(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n), z] = 0$, we obtain that

$$D(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n) zy[D(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n), z] = 0.$$
 (3.3)

Now comparing the identities (3.2) and (3.3) we arrive at $[D(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n), z]y[D(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n), z] = 0$ i.e.; $[D(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n), z]R[D(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n), z] = \{0\}$. Now semiprimeness of R yields that $[D(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n), z] = 0$ i.e; $D(R, R, \dots, R) \subseteq Z$.

Corollary 2.3([6], Theorem 3.15). Let R be a semiprime *-ring, admitting a *-n-derivation D. Then $D(R, R, \dots, R) \subseteq Z$.

Corollary 2.4([8], Theorem 2.13). Let R be a semiprime *-ring. If R admits a $(\alpha, \beta)^*$ -n-derivation D and α is onto, then $D(R, R, \dots, R) \subseteq Z$.

Theorem 2.3. Let R be a prime ring with involution having, (α, β) -*-n-derivations D_1 and D_2 . Next assume that I_1, I_2, \dots, I_n are nonzero ideals of R such that $D_1(i_1, i_2, \dots, i_n) = D_2(i_1, i_2, \dots, i_n)$ for all $i_p \in I_p, 1 \le p \le n$ and β is an automorphism. Then $D_1 = D_2$.

Proof. Since

$$D_1(i_1, i_2, \dots, i_n) = D_2(i_1, i_2, \dots, i_n)$$
(3.4)

5

for all $i_p \in I_p, 1 \leq p \leq n$. Now putting i_1r_1 , where $r_1 \in R$, for i_1 in the relation (3.4) we have $D_1(i_1r_1, i_2, \cdots, i_n) = D_2(i_1r_1, i_2, \cdots, i_n)$ i.e.; $D_1(i_1, i_2, \cdots, i_n)\alpha(r_1^*) + \beta(i_1)D_1(r_1, i_2, \cdots, i_n) = D_2(i_1, i_2, \cdots, i_n)\alpha(r_1^*) + \beta(i_1)D_2(r_1, i_2, \cdots, i_n)$. Using the relation (3.4) we get $\beta(i_1)D_1(r_1, i_2, \cdots, i_n) = \beta(i_1)D_2(r_1, i_2, \cdots, i_n)$ i.e.; $\beta(i_1)\{D_1(r_1, i_2, \cdots, i_n) - D_2(r_1, i_2, \cdots, i_n)\} = 0$. This shows that $\beta(i_1)R\{D_1(r_1, i_2, \cdots, i_n) - D_2(r_1, i_2, \cdots, i_n)\} = \{0\}$. As β is one-one, we have $\beta(I_1) \neq \{0\}$, primeness of R implies that

$$D_1(r_1, i_2, \cdots, i_n) = D_2(r_1, i_2, \cdots, i_n)$$
(3.5)

for all $r_1 \in R, i_p \in I_p, 2 \leq p \leq n$. Now putting i_2r_2 , where $r_2 \in R$, for i_2 in the relation (3.5) we get $D_1(r_1, i_2r_2, \cdots, i_n) = D_2(r_1, i_2r_2, \cdots, i_n)$ i.e.; $D_1(r_1, i_2, \cdots, i_n)\alpha(r_2^*) + \beta(i_2)D_1(r_1, r_2, \cdots, i_n) = D_2(r_1, i_2, \cdots, i_n)\alpha(r_2^*) + \beta(i_2)D_2(r_1, r_2, \cdots, i_n)$. By using relation (3.5) we get $\beta(i_2)D_1(r_1, r_2, i_3, \cdots, i_n) = \beta(i_2)D_2(r_1, r_2, i_3, \cdots, i_n)$ i.e.; $\beta(i_2)\{D_1(r_1, r_2, i_3, \cdots, i_n) - D_2(r_1, r_2, i_3, \cdots, i_n)\} = \{0\}$. As β is one-one, we have $\beta(I_2) \neq \{0\}$, primeness of R implies that $D_1(r_1, r_2, i_3, \cdots, i_n) = D_2(r_1, r_2, i_3, \cdots, i_n)$. Now proceeding inductively in the same way as above we conclude that $D_1 = D_2$.

REFERENCES

- [1] Ali, Shakir., On generalized *-derivations in *-rings, Palestine Journal of Mathematics, Vol.1, (2012), 32 37.
- [2] Ali, Shakir. and Khan, M. S., On *-bimultipliers, generalized *-biderivation and related mappings, Kyungpook Math. J., 51, (2011), 301 309.
- [3] Ashraf, M. and Rehman, N., On derivations and commutativity in prime rings, East-West J. Math., 3(1), (2001), 87 – 91.
- [4] Ashraf, M. and Rehman, N., On commutativity of rings with derivations, Results Math., 42, (2002), 3 8.
- [5] Ashraf, M., Rehman, N. and Mozumder, M.R., On generalized derivations and commutativity of rings, International Journal of Mathematics, Game Theory and Algebra, Vol.18, No.1, (2008), 19 – 24.

- [6] Ashraf, M. and Siddeeque, M.A., On *-n-derivations in rings with involution, Georgian Math. J., 22(1), (2015), 9-18.
- [7] Ashraf, M. and Siddeeque, M.A., On generalized *-i-n-derivations in rings with involution, 7(4), (2015), 65 74.
- [8] Ashraf, M., Siddeeque, M.A. and Mozumder, M.R. On $(\alpha, \beta)^*$ -n-derivations and certain n-additive mappings in rings with involution, Gulf Journal of Mathematics, 3(4), (2015), 13-25.
- [9] Bell, H.E. and Daif, M.N., On derivations and commutativity in prime rings, Acta Math. Hunger., 66(4), (1995), 337 343.
- [10] Brešar, M. and Vukman, J., On some additive mappings in rings with involution, Aequationes Mathematicae, 38, (1989), 178 – 185.
- [11] Brešar, M. and Zalar, B., On the structure of jordan *-derivations, Colloq. Math., 63, (1992), 163 171.
- [12] Herstein, I.N., Rings with involution, The University of Chicago Press, Chicago, (1976).
- [13] Park, K.H., On prime and semiprime rings with symmetric n-derivations, J. Chungcheong Math. Soc., Vol.22, No.3, (2009), 451 458.
- [14] Rehman, N., On commutativity of rings with generalized derivations, Math. J. Okayama Univ., 44, (2002), 43 49.
- [15] Semrl, P., On jordan *-derivations and application, Colloq. Math., 59, (1990), 241-251.
- [16] Šemrl, P., Quadratic functionals and jordan *-derivations, Studia Math., 97, (1991), 157 165.
- [17] Vukman, J., A note on jordan *-derivations in semiprime rings with involution, Int. Math. Forum., 13, (2006), 617 622.