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Abstract - The aim of this paper is to establish some 

convergence and (S,T)-stability almost surely results 
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I. INTRODUCTION  
The study of random fixed point theory was initiated 

by Prague school of probabilistic. This field of study 

became popular after the publication of survey paper 

by Bharucha Reid [3]. Random fixed point theorems 

are generalizations of fixed point theorems and 

approximation theorems and have large number of 

applications in probability theory and non-linear 

functional analysis. Moreover this field of study has 

applications in statistics, engineering, economics, 

game theory, integral equations etc.  
In 1953, Mann [9] introduced the one step 

iterative scheme and used it to prove the fixed point 

results defined for the non-expansive mappings 

where Picard iteration scheme is not applicable. In 

1974, Ishikawa [7] defined two step iterative scheme 

as a generalization of Mann iterative scheme and 

established convergence results for Lipschitzian 

pseudo contractive type operators. Jungck [8] in 

1976, introduced the Jungck type iterative scheme 

and used it to find the common solution of two 

sequences satisfying contractive type conditions. 

Singh et al. [15], gave the concept of Jungck- Mann 

iterative scheme and Olatinwo [13], generalized it by 

defining Jungck-Ishikawa and Jungck-Noor iterative 

schemes.In this direction Okeke and Kim [10] gave 

random fixed point results for Jangck-Mann type 

random iteration scheme and jungck-Ishikawa type  

 
iteration scheme. Rashwan et al. [14] established 
some random fixed point results for Jungck-Noor 
type random iterative scheme.  

Spacek [16] and Hans [4,5] proved random fixed 

point results on separable complete metric space and 

Itoh [6] extended their work to multivalued 

contraction mappings. Zhung et al. [17] proved 

almost sure convergence and T-stability results for 

random iterative schemes. Recently many 

mathematicians including [8,9,10,13] has proved 

convergence and almost sure T- stability results for 

different iterative schemes. 
 

II. PRELIMINARIES 

 
Let ( X ,) be a separable banach space where  

denotes the  algebra of Boral subset of X and let 

(,  , ) be a complete probability measure space  
and suppose that Y be a non-empty subset of X. S,T : 

 Y Y be two random operators defined  
on Y, such that S is injective. Let  x0 () Y  be an  
arbitrary mapping for  , and T ( , Y )  S(,Y ) 

, the sequence {S ( , xn ())}


n0 defined by  
S( , xn 1( ))  (1  n )(S( , xn ( ))  nT ( , zn ())  
S( , zn ( ))  (1  n )(S(, xn ( ))   nT (, yn ())  
S( , yn ( ))  (1  n )(S(, xn ( ))  nT (, xn ())  

(2.1) 

where { n }


n 0 , { n }


n 0 , {n }


n0 , are real 

sequences in (0,1). The iterative sequence defined by (2.1) 

is called Jungck-Noor type random iterative scheme.  
If we take n  0 in the iterative scheme (2.1) 

then we have the Jungck-Ishikawa type random 
iterative scheme  
S( , xn 1( ))  (1  n )(S( , xn ( ))  nT ( , zn ())  
S( , zn ( ))  (1  n )(S(, xn ( ))   nT ( , xn ())  

(2.2). 

 

If we take n  0 in (2.2) then we obtain the Jungck-

Mann type random iterative scheme 

S
 

(
 

,
 

x
n1 

())
 (2.3) 

 (1  n )(S ( , xn ( ))  nT ( , xn ()) 

 

Definition  2.1  [17].  Let  (,  , )  be  a  complete 
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probability measure space and suppose that Y be a 

non-empty subset of a separable Banach space X. Let 

S :  Y Y be a random operator. Then S (T )  { : 

 Y such that S( ,  ( ))   () for 
 
each  } is called the random fixed point of the 

random operator S. 

 

Definition  2.2  [10].  Let  (,  , )  be  a  complete 
 
probability measure space and suppose that E be a 
non-empty subset of a separable Banach space X. Let 

S ,T :  E  E be two random operators. A 
 

map x
*
 () is called common random fixed point of 

the pair ( S , T ) if x
*
 ( )  S ( , x

*
 ( ))  T ( , x

*
 

()) for each   and some x
*
  E. If  

 ( )  S ( , x ( ))  T ( , x()) for each   

and some x  E the random variable  () is called a 
 
random point of coincidence of S and T. The pair ( S , 

T ) is said to be weakly compatible if S and T commute 

at their random coincidence points. 

 
Okeke and Kim [11] introduced the following 

concept which is stochastic generalization of the 
definition given by Olatinwo [13]. 

 

Definition  2.3  [11].  Let  (,  , )  be  a  complete 
 
probability measure space and suppose that E, Y be a 

non-empty subset of a separable space Banach space 

X. Let S ,T :  E Y be two random operators  
such that T ( y )  S (Y ) . The random operators S ,T : 

 E Y are said to be generalized  - contractive type 

if there exists a monotone increasing function  : R 


 

 R


 such that (0)  0 for all x, y  E,  () (0,1) 

and  , we have   
T ( , X ) T (, Y )  

  (  S ( , X ) T (, X )  ) (2.4) 
 

  ( )  S ( , X )  S (, Y )  .

 

Singh et al. [15] defined the following concept of 
( S , T ) -stability: 

 

Definition 2.4 [15]. Let S ,T : Y  X be two 

operators such that T (Y )  S (Y ) and  a point of 

coincidence of S and T. Let {Sx }


 X be the 
n  n0   

sequence generated by the iterative scheme  

Sxn 1  f (T , xn ), n  0,1, 2,...,  (2.6)  

where x0  X is  the  initial  approximation  and
 $f$  is 
some function. Suppose that {Sx }


 converges to 

n n 0  

 . Let {Syn }


n0  X be any arbitrary sequence and n 

 d ( Syn , f (T , yn )), n  0,1, 2,.... . Then the iterative  
scheme (2.5) is said to be ( S , T ) stable or stable if 
and only if lim n  0 implies lim Syn  .  

n n

 

Okeke and Kim [10] defined the stochastic verse 
of definition (2.4). 

 

Definition 2.5 [10]. Let (, , ) be a complete 

probability measure space and suppose that E, Y be a 

non-empty subset of a separable Banach space X . 

Let S , T :  E Y be two random operators such 

that T ( y )  S (Y ) and  () a random point of  
coincidence of S and T. For any random variable 

x0 :  E, consider the random iterative scheme 

Sxn 1( )  f (T ; xn ()), n ,1, 2,... (2.6) 
where  f  is some  function measurable in  second 

variable. Suppose that {Sxn ()} converges to 

 (). Let {Syn ()}


n0 be an arbitrary sequence of 

random variable. Denote n () by 

n ( )  Syn ( )  f (T ; yn ())  , (2.7) 

The the iterative scheme (2.6) is ( S , T ) -stable 

almost surely if and only if  , n ()  0 as n 

 implies that yn ( )   () almost surely.  
 

Definition 2.6 [1]. Suppose {an } and {bn } be two 

convergent sequences with limits a and b 

respectively. Then {an } is said to converge faster 

then {bn } if  lim an  a  0 . 

bn  b n   
 

Lemma 2.7 [2]. If  is a real number such that 0   

1 and { n }


n0 is a sequence of positive 
 
numbers such that  lim  n   0 , then for any sequence  

n

of positive numbers { }


satisfying  
 n  n0   

 n 1  n  n ,  n  0,1, 2,..., (2.8) 
then  lim  0.    

n     
 

III. CONVERGENCE RESULTS 

 

Theorem 3.1. Let X be a separable Banach space 

and  S ,T :  Y Y be generalized  contractive 

mapping defined by (2.4) and suppose   that 

T (Y )  S (Y ) where S (Y )  is  a subset  of  X.  Also 

S ( , r ( ))  T ( , r( ))   () . For x0 Y , let 

{Sx ()}


be random Jungck-Noor type iterative 
n n0      
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scheme defined by (2.1). Assume that n . 

Then the Jungck-Noor type random iterative scheme 

{Sxn ()}


n0 converges strongly to  () almost 

surely. Also  () is unique random common fixed  
point of operators S and T provided that Y  X and S 

and T are weakly compatible. 

 

Proof. Using (2.1) and (2.4) we have,  

Sxn1 ( )   () 

 (1  n )S (xn ( ))  n T ( , zn ())

 (1  n  n ) ()

 (1  n )  Sxn ( )   ()

  n   T ( , zn ( ))   ()

 (1   n )  Sxn ( )   ()

  n   T ( , z n ( )) T ( , r())

 (1  n )  Sxn ( )   ()

  n ( ( S ( , r ( )) T ( , 

r())  ( ) S ( , r ( ))  Szn () )


 

(1
 


 n 

)
 
Sx

n 
(

 
)
 

 

 
()

 (3.1) 

  n ( ) Szn ( )   ()  
Also  

Szn ( )   () 

 (1  n )S (xn ( ))   n T ( , yn ())

 (1  n   n ) ()

 (1  n )  Sxn ( )   ()

  n   T ( , yn ( ))   ()

 (1  n )  Sxn ( )   ()

  n   T ( , yn ( )) T ( , r())

 (1  n )  Sxn ( )   () 
  n ( ( S ( , r ( )) T ( , r()) 

 ( ) S ( , r ( ))  Syn () )


 

(1
 


 n 

)
 

Sx
n 

(
 
)
 

 

 
()

 (3.2) 

  n ( ) Syn ( )   ()  
Now  

Syn ( )   () 

 (1  n )S (xn ( ))   n T ( , xn ())

 (1  n   n ) ()

 (1  n )  Sxn ( )   () 

  n T ( , xn ( ))   () 

 (1   n )  Sxn ( )   ()

  n T ( , xn ( )) T ( , r())  

 (1  n )  Sxn ( )   ()
  n ( ( S ( , r ( )) T ( , r()) 

 ( ) S ( , r ( ))  Sxn () )


 

(1
 


 n 

)
 

Sx
n 

(
 
)
 

 

 
()

 (3.3) 

  n ( ) Sxn ( )   ()  

 
From (3.2) and (3.3) and using the fact that 

 n ( )  n we have, 

Szn ( )   ()

 (1   n )  Sxn ( )   () 

  n ( )[(1   n ) Sxn ( )   () 

 n ( ) Sxn ( )   ()  ] 

 

 (1  n )  Sxn ( )   () 

  n ( )[(1  n ) Sxn ( )  z () 

 n Sxn ( )   ()  ] 


 

(1
 


 n 

)
 

Sx
n 

(
 
)
 

 

 
()

 (3.4) 

  n ( )[ Sxn ( )   ()  

From (3.1) and (3.4) and using the fact that  n ( ) 

 n we have,  

Sxn1 ( )   () 

 (1  n )  Sxn ( )   ()

  n ( )[(1  n ) Sxn ( )   ()  

  n ( ) Sxn ( )   ()  ] 

 (1   n )  Sxn ( )   ()

  n ( )[  Sxn ( )   ()

 (1  n   n ( )) Sxn ( )   () 

 (1  n (1  ( )))  Sxn ( )   ()

 e  (1 ( ))
n
   Sx0 ( )   () (3.5) 

 

i 0  i     

Since   
n 
  we have  e


 

(1
 

(
 

))
i
n
0


i  0  as 

i 0   i     
n .  

Hence lim   Sxn1( )   ()  0.   Therefore 
  n  

{Sx ()}


converges  strongly to   ()  almost 
n n0   

surely. Now we prove the uniqueness of the random 

fixed point  () for the random operators S and T. 
 

Let if possible there exists another random fixed 

point 1 () . Then there exists q1 ()  X of S  

and T such that S ( , q1 ( ))  T ( , q1 ( ))  1 

() . Now  
0  ()1() 

 T ( , q( )) T (, q1())

   S ( , q ( ))  S ( , q1())

  ( )  S ( , q ( ))  S ( , q1())

  ( )  S ( , q ( ))  S ( , q1 ())

  ( )   ( )  1 () 

Implies that  ( )  1 () . This proves the 

uniqueness of the random fixed point  () for the 

random operators S and T. Since S and T are weakly  
compatible and   ( )  S ( , q( ))  T ( , q())  we 
 
have T ( ,  ( ))  TS ( ,  ( ))  ST ( ,  ())

 and 
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hence S ( ,  ( ))  T ( ,  ()) . Hence T ( ,  ()) is a random coincidence point of S and T. Since the 

random coincidence point is unique hence   () is 
 
unique common random fixed of random operators S 
and T. 

 
Remark 3.2. Theorem 3.1 generalizes the 

corresponding results of Olatinwo [13], Singh et. al 
[15], Okeke and Abbas [11] and Okeke and Kim 
[10].  
Example 3.3. Let  X  (set of real numbers)  
and Y  [0,1]. Consider the mappings 

S , T :  Y  Y  defined by 

S ( , x)  x, T (, x))  x / 2.  Clearly T (Y )  S (Y ), 
 
also the random operators S and T are continuous in 

their domain. Let {Sxn } be defined by (2.1) with 

 n   n   n 1/ 2 such that  


n0n . Now S 

and T are weakly compatible mappings. So all the 

requirements of the theorem (3.1) are satisfied. Hence 

the sequence {Sxn } converges strongly to the  
random fixed point 0 of the operators S and T almost 
surely. Moreover 0 is the unique common fixed 
point of S and T. 
 
 

IV. STABILITY RESULTS 

 

Theorem 4.1. Let X be a separable Banach space 

and let S ,T :  Y Y be generalized $ \phi$ 

contractive mapping defined by (2.4). Also assume 

that T (Y )  S (Y ) where S (Y ) is a subset of 
 

X and S ( , r ( ))  T ( , r( ))   (). For x0 

Y , let {Sxn ()}


n0 be random Jungck-Noor 

type iterative scheme defined by (2.1) which converges 

to  () . Then the random Jungck-Noor type iterative 

scheme is ( S , T ) stable almost surely. 
 

Proof.  Let  {Sy ()}


Y  be  an  arbitrary 
n n0  

sequence and let   

n ( )   Syn 1 ( )  (1 n )S ( , an ()) 
  (4.1) 

  n T ( , an ())  ,  n  0,1, 2,... 
where   

S ( , an ( ))  (1  n )S ( , zn ( ))   nT ( , zn ()) 

  (4.2) 
and   

S ( , zn ( ))  (1  n )S ( , yn ( ))  nT ( , yn ()) 

  (4.3) 
and suppose that  lim n ()  0. 

n    
 
Now using the random Jungck-Noor type iterative 
scheme we have 
 

Syn1 ( )   ()   

 Sy n 1 ( )  (1 n )S ( , an ())

  n T ( , an ())  

 

 

 (1  n )S ( , an ( ))  nT ( , an ())


 (1  n  n ) ()

 n ( )  (1  n )  S ( , an ( ))   ()


  n   T ( , an ( ))   ()

 n ( )  (1  n )  S ( , an ( ))   () 
 

 n T ( , an ( )) T ( , r())  

 n ( )  (1  n ) S ( , an ( ))   

()  n [ S ( , r ( )) T ( , r())

  ( )  S ( , r ( ))  S ( , an ())  ]

 n ( )  (1  n )  S ( , an ( ))   () 

 n ( ) S ( , r ( ))  S ( , an ())  ] 

 n ( )  (1  n ) S ( , an ( ))   

()  n ( ) S ( , an ( ))   ()

 (1   n   n ( )) S ( , an ( ))   

() 

 n ()

 (1  n (1  ( ))  S ( , an ( ))   ()


 n () 
Now we obtain the following 

estimate S ( , an ( ))   ()  
 (1  n )S ( , z n ( ))   n T ( , zn ())



 (1  n   n ) ()

 (1  n )  S ( , zn ( ))   ()

  n   T ( , zn ( ))   ()

 (1  n )  S ( , zn ( ))   ()

  n [ S ( , r ( )) T ( , r()) 

 ( ) S ( , r ( ))  S ( , zn ())  ]  

 (1  n )  S ( , zn ( ))   ()

  n ( )  S ( , zn ( ))   ()

 (1  n (1  ( ))) S ( , zn ( ))   

() Now estimating the following value  

S ( , zn ( ))   ()  

 (1  n )S ( , yn ( ))   n T ( , 

yn ())  (1  n   n ) ()

 (1   n )  S ( , yn ( ))   ()

  n T ( , yn ( ))   () 

 (1  n )  S ( , yn ( ))   ()

  n T ( , yn ( )) T ( , r())  

 (1  n )  S ( , yn ( ))   ()

  n [ S ( , r ( )) T ( , r()) 

 ( ) S ( , r ( ))  S ( , yn ())  ]  

 (1   n )  S ( , yn ( ))   ()

  n  S ( , yn ( ))   ()



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(4.4) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(4.5) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(4.6) 
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=(1  n (1  ( ))) S ( , yn ( ))   () Using (4.6) 

and (4.5) we have,  

S ( , an ( ))   ()  

 (1   n (1   ( )))(1   n (1   ( ))) S ( , yn ( 

))   () Using the above estimate in (4.4) we have  

Syn1 ( )   () 

 (1  n (1  ( )))(1  n (1 ()))

(1  n (1 ()))  

S ( , yn ( ))   () (4.7) 
Using the fact that 

0   n  1, 0   n  1, 0   n 1  
and  

 () [0,1), 
we have 

(1  n (1   ()))  1, 

(1  n (1  ()))  1, 

(1  n (1  ()))  1  
Using Lemma (2.7) and (4.7) along with the above 

estimates we obtain that Syn1( )   () as 

n  .      

Conversely let  us assume that  Syn ()  0 as 

n . Using the  condition  (2.4)  and  triangle  
inequality we have, 

n ( )  Syn 1 ( )  (1  n ) S ( , an ()) 

  nT ( , an ())

 Syn 1 ( )   ( ) (1nn)() 

 (1  n )S ( , an ( ))  n T ( , an ()) 

 Syn1 ( )   ()

 (1  n )   ( )  S ( , an ())

 n ()T(,an()) 

 Syn1 ( )   ()
 (1   n ) S ( , an ( ))   () 

 n T ( , r ( ) T ( , an ())


 Syn1 ( )   ()

 (1  n ) S ( , an ( ))   () 

 n [ S ( , r ( )) T ( , r())

  ( )  S ( , r ( ))  S ( , an ())  ]

 Syn1 ( )   () 
 (1   n ) S ( , an ( ))   () 

 n ( ) S ( , an ( ))   ()


 Syn1 ( )   ()

 (1  n (1  ( ))  S ( , an ( ))   ()

 Syn1( )   ()

 (1  n (1  ( ))(1  n (1 ()) 

(1  n (1  ( )) S ( , an ( ))   ()  

Hence n  0 as n . Therefore the random 

Jungck-Noor type iterative scheme is (S,T)-stable 

almost surely. This completes the proof.  

 
Remark 4.2. Theorem 4.1 generalizes and extends 

several results in the literature including the work of 
Olatinwo [13], Singh et. al [15] and Okeke and Kim 

[10]. 
 

V. CONVERGENCE COMPARISON 
 
Theorem 5.1. Let X be a separable Banach space 

and S ,T :  Y Y be the non self operators 

satisfying contractive conditions (2.4). Also suppose 

that T (Y )  S (Y ) where S (Y ) is a complete 
 
subspace of X and S ( , r ( ))  T ( , r( ))   

(). For x0 Y , let random Jungck-Noor type 
 
iterative scheme, random Jungck-Ishikawa iterative 

scheme and random Jungck-Mann iterative scheme 

be defined by (2.1), (2.2) and (2.3) respectively. 

Then the random Jungck-Noor type iterative scheme 

converges faster random Jungck-Ishikawa type 

iterative scheme and random Jungck-Mann type 

iterative scheme. 

 
Proof. For random Jungck-Mann type iterative 
scheme (2.3), we have  

Sxn1 ( )   () 

 (1  n )Sxn ( )   n T ( , xn ( ))   ()

 (1   n )  Sxn ( )   ()

  n   T ( , xn ( ))   ()

 (1  n )  Sxn ( )   ()

  n   T ( , xn ( )) T ( , r())

 (1  n )  Sxn ( )   ()

  n [ (  S ( , xn ( )) T ( , xn ())  )

 ( ) S ( , xn ( )) T ( , r())  ]  

 (1   n )  Sxn ( )   ()

  n ( )  S ( , xn ( ))   ())

 (1  n   n ( )) Sxn ( )   () 

 (1  n (1  ( ))  Sxn ( )   ()
 

 
n
 (1   (1   ( )) Sx ( 

)   () (5.1) 
i  1 i 0  

Similarly for random Jungck-Ishikawa (2.2) iterative 
process 

Sxn1 ( )   () 

 (1  n )Sxn ( )   n T ( , yn ( ))   ()

 (1   n )  Sxn ( )   ()

  n   T ( , yn ( ))   ()

 (1  n )  Sxn ( )   ()

  n   T ( , yn ( )) T ( , r())

 (1  n )  Sxn ( )   ()

  n   T ( , r ( )) T ( , yn ())
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 (1  n )  Sxn ( )   ()

  n ( )  S ( , yn ( ))   ()) 

 (1  n )  Sxn ( )   ()

 n ( ) (1  n )Sxn ( )   nT ( , xn ( ))   ()) 

 (1  n )  Sxn ( )   ()

 n ( )[(1  n ) Sxn ( )   () 

  n T ( , xn ( ))   ()) 

 (1  n )  Sxn ( )   ()

 n ( )[(1  n ) Sxn ( )   () 

  n T ( , r ( )) T ( , xn ())  

 (1  n )  Sxn ( )   ()

  n ( )[(1  n )Sxn ( )   ()  

  n [ ( S ( , r ( )) T ( , r()) 

 ( ) S ( , r ( ))  S ( , xn ())  

 (1  n )  Sxn ( )   ()

 n ( )[(1  n ) Sxn ( )   () 

  n ( ) Sxn ( )   ()  

 (1  n )  Sxn ( )   ()

  n ( )[(1  n (1  ( )) Sxn ( ) 

  ()  ]  

 (1  n   n ( )(1  n (1 ()))

Sxn ( )   () 

 (1  n   n ( )   n  n (1 ()) 

  n  n (1  ( ))) Sxn ( )   () 

 (1  n (1  ( ))  Sxn ( )   ()
 


n 
 (1  (1   ( ))  Sx ( )   () (5.2) 

  i 1    i          0       

Using (3.5) and (5.2) we have         
 Sxn1 (RJN )   ()   e  (1 ( ))

n
      

             



     i 0  i  

. 

 
             

 

 Sx (RJI )   () 
n 
  (1  (1 ()) 

  n1             i 1  i      

        e  (1 ( ))
n
           

Let an 

 


        

i 0 i 
  

. 
     

                 

 

                  

 i
n
1 (1  i (1

        

      ())      

Then 
a

n 1       


n1     .       
  

1 
  

(1 ()) 
      

  a    
n 1 

       
  n                     

Using   lim 
n 
 0, we   obtain   lim 

a
n1  0 

     

     n           n  a                  

                      n 

which implies that lim Sxn1 (RJN )   ()   0. 
Sx 

 

(RJI )   ()            n     
               n1         

Hence by definition random Jungck-Noor 
iterative scheme converges faster than random 
jungck Ishikawa iterative scheme. 

By similar arguments we have lim 
an1

   0 
 

n an 

which implies that lim 
Sx

n1 
(RJN

 
)
 

 

 

()
  0. . n Sxn1 (RJM )   

()  

 

 

Hence by definition random Jungck-Noor 
iterative scheme converges faster than random 

jungck-Mann iterative scheme.  
 

Example 5.2. Let  X  (set of real numbers)  
and consider the random operators 

S ,T :  X  X by S (x, )  2(x 1) and 

T ( x, )  ( x  2)
1/ 2

 . Consider the sequences 

 n    n    n  1/ 4 and initial approximation 

( x0 , )  3.   Then the convergence pattern of 
random Jungck-Noor type iteration scheme, random 
Jungck-Ishikawa type iteration scheme and random 
Jungck-Mann type iterative scheme is shown in the 
Table 1. 

 

Number Random Random Random 

of Steps Jungck- Jungck- Jungck- 

 Mann Ishikawa Noor 

0 2.779508 2.773276 2.773097 
1 2.607907 2.598141 2.597860 

2 2.474256 2.462786 2.462569 

3 2.370097 2.358132 2.357785 

4 2.288822 2.277187 2.276848 

- - - - 

25 2.002065 2.001289 2.000128 

26 2.001614 2.000998 2.000123 

27 2.001260 2.000773 2.000095 

28 2.000985 2.000598 2.000074 

29 2.000769 2.000166 2.000057 

30 2.000601 2.000129 2.000044 

- - - - 

35 2.000174 2.000100 2.000001 

36 2.000136 2.000077 2.000001 

37 2.000106 2.000059 2.000000 

38 2.000083 2.000046 2.000000 

- - - - 

45 2.000009 2.000007 2.000000 

46 2.000007 2.000006 2.000000 

- - - - 

52 2.000001 2.000001 2.000000 

- - - - 

55 2.000001 2.000000 2.000000 

56 2.000000 2.000000 2.000000 

Convergence pattern of Iterative Schemes 

 

From Table 1 we observe that random Jungck-Noor 
type iteration scheme converges faster than the 

random Jungck Ishikawa rype iterative scheme and 

random Jungck-Mann type iterative scheme. 
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