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Abstract - The aim of this paper is to establish some
convergence and (S, T)-stability almost surely results
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results in the literature. Using the MATLAB
programming we shall also compare the
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l. INTRODUCTION

The study of random fixed point theory was initiated
by Prague school of probabilistic. This field of study
became popular after the publication of survey paper
by Bharucha Reid [3]. Random fixed point theorems
are generalizations of fixed point theorems and
approximation theorems and have large number of
applications in probability theory and non-linear
functional analysis. Moreover this field of study has
applications in statistics, engineering, economics,
game theory, integral equations etc.

In 1953, Mann [9] introduced the one step
iterative scheme and used it to prove the fixed point
results defined for the non-expansive mappings
where Picard iteration scheme is not applicable. In
1974, Ishikawa [7] defined two step iterative scheme
as a generalization of Mann iterative scheme and
established convergence results for Lipschitzian
pseudo contractive type operators. Jungck [8] in
1976, introduced the Jungck type iterative scheme
and used it to find the common solution of two
sequences satisfying contractive type conditions.
Singh et al. [15], gave the concept of Jungck- Mann
iterative scheme and Olatinwo [13], generalized it by
defining Jungck-Ishikawa and Jungck-Noor iterative
schemes.In this direction Okeke and Kim [10] gave
random fixed point results for Jangck-Mann type
random iteration scheme and jungck-Ishikawa type

If we take g, = 0 in (2.2) then we obtain the Jungck-
Mann type random iterative scheme

S(o.x () .

iteration scheme. Rashwan et al. [14] established
some random fixed point results for Jungck-Noor
type random iterative scheme.

Spacek [16] and Hans [4,5] proved random fixed
point results on separable complete metric space and
Iltoh [6] extended their work to multivalued
contraction mappings. Zhung et al. [17] proved
almost sure convergence and T-stability results for
random iterative schemes. Recently many
mathematicians including [8,9,10,13] has proved
convergence and almost sure T- stability results for
different iterative schemes.

Il. PRELIMINARIES

Let ( X ,& be a separable banach space where &
denotes the o algebra of Boral subset of X and let
(Q, &, p) be a complete probability measure space

and suppose that Y be a non-empty subset of X. S,T :
Qx 'Y —Y be two random operators defined

on Y, such that S is injective. Let xg (@) €Y be an
arbitrary mapping for o €eQ, and T (@, Y ) < S(w,Y )
, the sequence {S (w, Xp (a)))}oonzo defined by
S(@, xn +1(@)) = (1= an )(S(@, Xn (@) +anT (@, zn ()
S(@, 2n (@) = (1= Bn )S(@, Xn (@)) + BnT (@, Yn ()
S(@, yn (@)) = (1= 7n )(S(@ Xn (@) +7nT (@, Xn (@)
(21)
where {@ n }n= 0. {8 n } =0 £ } n=o , are real
sequences in (0,1). The iterative sequence defined by (2.1)
is called Jungck-Noor type random iterative scheme.

If we take », = 0 in the iterative scheme (2.1)
then we have the Jungck-Ishikawa type random
iterative scheme

S(@, Xn +1(@)) = (1= @ )(S(@, ¥n ()) +anT (@, 20 (a)
S(@,zn (@) = (1= Bn )S(@ Xn (@) + BnT (@, Xn (@)
2.2).

= (1= an)S (@, %y (@) +anT (@, Xn (@)

Definition 2.1 [17]. Let (Q, &, 1) be a complete
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probability measure space and suppose that Y be a
non-empty subset of a separable Banach space X. Let
S:Qx Y —Y be a random operator. Then S (T ) ={&:
Q — Y such that S(w, £ (w)) = & (w) for

each w €Q} is called the random fixed point of the
random operator S.

Definition 2.2 [10]. Let (Q, &, 1) be a complete
probability measure space and suppose that E be a
non-empty subset of a separable Banach space X. Let
S, T:Qx E — E be two random operators. A

map x* (o) is called common random fixed point of
the pair (5, T)ifX (@)=S (@,% (@)=T (&, X
(w)) for each w € and some x* eE.If
plw)=S(w,x (@) =T (o, x(w) for each ® €Q
and some x e E the random variable p (@) is called a

random point of coincidence of S and T. The pair (S,
T) is said to be weakly compatible if S and T commute
at their random coincidence points.

Okeke and Kim [11] introduced the following
concept which is stochastic generalization of the
definition given by Olatinwo [13].

Definition 2.3 [11]. Let (Q, &, 1) be a complete

probability measure space and suppose that E, Y be a
non-empty subset of a separable space Banach space
X. LetS,T:Qx E —Y be two random operators

suchthatT (y) < S (Y ). The random operators S ,T :
Qx E —Y are said to be generalized ¢ - contractive type

if there exists a monotone increasing function ¢ : R "
> R such that (0) = 0 for all x, y < E, 0 (@) <(0,1)
and w €Q, we have
T(w, X)-T (w Y|
<o(S(0,X)-T (X)) ) (2.4)
+0(®) S(w,X)-S(mw Y) .

Singh et al. [15] defined the following concept of
(S, T)-stability:

Definition 2.4 [15]. Let S,T: Y — X be two
operators such that T (Y ) = S (Y ) and p a point of

coincidence of Sand T. Let {Sx }Oo c X bethe
n n=0
sequence generated by the iterative scheme
SXn+1=F(T,xn),n=012,.., (2.6)

where  xg € X is the initial approximation and
$f$ is

some function. Suppose that {sx Y- converges to
nno

o0 R
p . Let {Syn } n=0 < X be any arbitrary sequence and p,
=d (Syn,f(T,yn)), n=0,1,2,.... Then the iterative

scheme (2.5) is said to be (S, T) stable or stable if
and only if lim n.= 0 implies lim Syn = p.

nN—o0 n—oo

Okeke and Kim [10] defined the stochastic verse
of definition (2.4).

Definition 2.5 [10]. Let (Q,&, ) be a complete
probability measure space and suppose that E, Y be a
non-empty subset of a separable Banach space X .
Let S, T: Qx E —Y be two random operators such
that T (y) =S (Y) and p (w) a random point of

coincidence of S and T. For any random variable

x0:Q— E, consider the random iterative scheme

S +1(@) =F(T: Xy (@), n=1, 2,... (2.6)
where f is some function measurable in second

variable. Suppose that {Sx, (®)} converges to
p (). Let {Syn (a))}oonzo be an arbitrary sequence of
random variable. Denote p, (@) by

n (@) =Syn (@) 1 (T;yn(®) , 2.7)
The the iterative scheme (2.6) is ( S, T ) -stable
almost surely if and only if @ €Q,  (w) > 0 asn
— oo implies that y (@) — p (@) almost surely.

Definition 2.6 [1]. Suppose {an } and {b, } be two
convergent sequences with limits a and b

respectively. Then {an } is said to converge faster
then {bp } if lim @ —2a I=0.

n—o0 bn -b
Lemma 2.7 [2]. If §is a real number such that 0 < §

<land {p }Oon:o is a sequence of positive
numbers such that lim » =0, then for any sequence

n—o0
of positive numbers {3 }O0 satisfying
n n=0
Bn+1SPn+n, n=012.., (2.8)
then lim=0.
n—oo

I11. CONVERGENCE RESULTS

Theorem 3.1. Let X be a separable Banach space

and S, T:QxY —Y be generalized ¢ contractive
mapping defined by (2.4) and suppose that
T(Y)cS(Y) where S(Y) is a subset of X. Also
S(w,r()=T(w,r(®))=p(w).For Xg €QxY, let

{Sx (a))}OO be random Jungck-Noor type iterative
n n=0
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scheme defined by (2.1). Assume that Zan = o0,
Then the Jungck-Noor type random iterative scheme

{Sxn (a))}wnzo converges strongly to p (@) almost
surely. Also p (@) is unique random common fixed

point of operators S and T provided that Y = X and S
and T are weakly compatible.

Proof. Using (2.1) and (2.4) we have,
Sxn+1 (@) — p (@)
=1(1-an)S (xn (@) +an T (@, zn (v))
—(1-an+an)p (o)
<= an) Sxn (@) - p (&)
+an T(o, 2y (0))-p ()
=(1-an) Sxn(@)-p(®)
+an T(w,2n (@) -T (@, r(w)
<(l-an) Sxn(@)-p (@)
+an(#(S(o,r(@)-T(o, |

r(@) +0() S (@, 1 (@) - Sz (@) )

~(-a )5 (@) - p () -

+anf(o) SZn(w)—p(ile))
Also
Szp (@) - p ()
=1(1-Bn)SXn (@) + Bn T (@, yn (o))
-(1=-Bn+Bnlp(0)
<(1-Bn) Sxn (@) - p (@)
+Bn! T(@,Yn (@) - p ()
=(1-Bn) SXn (@) - p(d)
+hn! T(@,yn (@) -T (@, r(®))
<(1-Bn) Sxn (@) - p(d)
+Bn(¢(S (o, r(0))-T(o,r(e)
+0 (@) S (@, r (®))—Syn(w)) |l
~(1-5 )X (@) - p ()

I
+Bnb(@)Syn (@) - p ()

Now

Syn (@) = p ()

= (1-7n)S(Xn (@) + yn T (@, Xn (@)
—(I-7n+7nlp (@

<(1-7n) S (@) - p (D)
+7nT(@, % (@)-p(a) |l

=(1-7n) Sn(@)-p ()
+ 70T (@, xn (@) T (@, () |

<(@1-7n) Sxn (@) - p(d)
+7n(#(S (@, 1 (@) -T (o, (o) |
+0 (@) S (@, r (®)) —Sxn (@) |

=(1—yn) an (@) - p (o)

3.2)

(3.3)
+7n0(@)Sxn (@) - p ()

From (3.2) and (3.3) and using the fact that
Yné (@) < 3 we have,
Sz (@) - p (@)l
<(1-Bnl) Sxn (@) - p (@)
+Bnb (@)1 -rn)
+7n8(@) Sxn (@) - p()

Sxn () - p (@)

<(1-pn) Sxn (@) -p(d)
+Bnb(@)[(1- yn)Sxn (@) - 2p ()|
+7n! Sxn (@) - p(@) ]

=18 )15 (@) ~p (@)
+fnf(0)] Sxn (@) - p (@)

From (3.1) and (3.4) and using the fact that 5,6 (@)
< fn we have,
Sxn+1 (@) = p (@)
<(I-an) Sxn(@)-p(d)
+anf(o)l(1-Fn)
+fnb (@) S (@) - p ()]
<(I-an) Sxn (@) -p(0)
+anf (o)l Sxn (@) - p (o)
<(1-an+anb(a)) Sxn (@) p (@)
(- an(1- (@) S¥n(@)-p (o)

(3.4

Skn (@) — p ()

ge—(l—e(w»_z_”oq Sx0 (@) = p (@) (3.5)
. n -(1-0(w))Z
Since ¥ g =oowe have e (-6() in:()ai -0 as
i=0 i
n — oo,
Hence lim Sxny1(@)-p(w) || =0. Therefore
n—o0

{Sx (w)}ooo converges strongly to p (@) almost
surenly. N(r;vv we prove the uniqueness of the random
fixed point p (@) for the random operators S and T.

Let if possible there exists another random fixed
point o1 (@) . Then there exists 1 (@) eQx X of S
and TsuchthatS (v, q1 (@) =T (w0, q1 (@)) = p1
() . Now

0<lip(@)-p1(a) ll

=T (o, q(@)) -T (@ q1(d)
<¢IS(@,q(»))-S (o, 91(&)
+0(@) S(w,q(w))-S (o, 41(w)
=0(®)'S(»,q(®)) - S (@, q1(e)
=0(w) p(@)-p1(d)

Implies that p (@ ) = p1 (@) . This proves the
uniqueness of the random fixed point p (@) for the
random operators S and T. Since S and T are weakly
compatible and p (@) =S (v, q(@)) =T (@, q(w)) we
have T (o, p(@)) =TS (@, p(@))=ST (@, p(@))

and
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hence S (o, p(w))=T (w, p(w) . Hence T (o, p (w))

random coincidence point is unique hence p (@) is

unique common random fixed of random operators S
and T.

Remark 3.2. Theorem 3.1 generalizes the
corresponding results of Olatinwo [13], Singh et. al
[15], Okeke and Abbas [11] and Okeke and Kim
[10].

Example 3.3. Let X =Q =R (set of real numbers)
and Y =[0,1].  Consider the mappings
S, T:OxY>Y—> defined by
S(w,X)=XT(w,X))=x/2. Clearly T(Y)cS(Y),
also the random operators S and T are continuous in
their domain. Let {Sxp } be defined by (2.1) with
an=pPn=yn=l2suchthat X Oonzoan =0, Now S
and T are weakly compatible mappings. So all the
requirements of the theorem (3.1) are satisfied. Hence
the sequence {Sxp } converges strongly to the

random fixed point 0 of the operators S and T almost
surely. Moreover 0 is the unique common fixed
pointof Sand T.

IV. STABILITY RESULTS

Theorem 4.1. Let X be a separable Banach space
and let S T : Qx Y —Y be generalized $ \phi$
contractive mapping defined by (2.4). Also assume
that T (Y ) = S (Y ) where S (Y ) is a subset of

Xand S (o, r (@) =T (o, r(w)) = p (w). For xg
eQxY , let {Sxp (co)}oon:o be random Jungck-Noor
type iterative scheme defined by (2.1) which converges

to p (w) . Then the random Jungck-Noor type iterative
scheme is (S, T ) stable almost surely.

Proof. Let {Sy (a))}oo < QxY be an arbitrary

sequence and let
n (@)=l Syn +1 (@) — (1-an)S (@, an (@)
—anT(w,apn (@) , n=0,1,2,...

n=0

where

S(o,an(@))=(1-pn)S(@,2n (@) + fnT (@, 7n (@)
4.2)

and

S(@,7n(@))=(1=7n)S (@, yn (@) +7nT (@, Yn (Zo);

and suppose that lim “3

n—oo

n (a))=0.

Now using the random Jungck-Noor type iterative
scheme we have
Syn+1 (@) - (@)
<ISyn41(0)-(1-an)s (@, an (v)
—anT (o, an (a)

is a random coincidence point of S and T. Since the

+|(1-an)S(®,an (@) +anT (@, a, (o))
-(-an+an)p (o)
n(@)+(1-an) S(w,an(®))-p(o)

tan T(o,ay (o)) -p(0)
n(@)+(1-an) S(w,an(®))-p(a)

IN

IN

+an/T (o, an(@))-T (o, (o) ||
<h(@)+(1-ap)S(@,an (@) -p |l
() +ah [4S (@, 1 (@) -T (@, r(b)
+0(@) S(w,r(®))-S(o,an(d) ]
<Si(@)+(1-an) S(@,an (@) - p(d)
+anf(@)S (o, r(®))-S (o, an ()]
<h(@)+(1-ap)S(@,an (@) -p Il
(o) +and(®) S (o, an (@) - p (@)
(=§1—an+ané’(a)))S(a),an(a)))—p |

+ n (o) Il
= (1= an (1- 0(@)) S (@, an (@) - p(a) 44

+ n (o)

Now we obtain the following
estimate S (w, apn (@)) - p (@)
=1(1=-Bn)S(@,zn(@))+pnT (@, 2n(®))
(- Bn+pBn)p ()
<(1-Bn) S(@,zn (@) - p(®)
+fn T(®, 27 (@) - p(w)
<(1-Bn) S(@,zn (@) - p ()
+Bn#s (0,1 (@)-T (@, () |
+0 (@) S(w,r(w)-S(@,2n (o)) 1
<(1-fn) S(@,2n (@) - p ()
+fBnd(0) S(o, 2 (@) - plo)
=(1-fn(1-0()) S (@, 7y (@) - p!!
(@) Now estimating the following value

S(@,n (@) - p (%)
=l(1-yn)S(@,yn (@) + yn T (@,
Yn (@) = (1=yn+yn)p (o)
<(1-7n) S(@,yn (@) - p(w)

+7n T(@,yn (@) -p(o) |
<(1-7n) S(@,yn (@) - p(®)

+ 70 T(@,yn (@) T (0, 1(@)) |
<(1-7n) S(@,yn (@) - p (&)

+7nl8s (@, r(@)-T(o,(a) !

+0(0)Is (0,1 (0))-S (@, yn (@) ]
<(1-7n) S(@,yn (@) -p(v)

+7n8'S (@, yn (@)~ p (&)
I
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=(1-7n (1- 6(@))) S (@, yn (@)) — p () Using (4.6)

and (4.5) we have,
S(w,an (@) - p (&)

<A-Anl-0())A-yn(1-0())S (@, Yyn (o |

)) — p (@) Using the above estimate in (4.4) we have
Syn+1 (@) = p (@)
<(1-an (- 6(@)))(1- Bn (1-6(x)))
(1= 7n (1-0()))

S (@, Yn (@) - p (1) (4.7)
Using the fact that

O<apn<l,0<pfp<l,0<yp<t
and

6 (o) €[0,1),
we have

1-apn(1-0(w)) <1,

(I-fn (1= 6()) <1,

(I-7n(1-6(w) <1
Using Lemma (2.7) and (4.7) along with the above

estimates we obtain that Sypni1(@) > p (@) as
n—oo.

Conversely let us assume ‘that Syn (w) -0 as
n—o. lUsing  the condition (2.4) and triangle
inequality we have,

n(@)=Syn1(@)-@-an)S (o, an(e)
sanT(@,an (@)
< SYn+1(w)-p(e) |
—(=an)S(w,d (@) -anT(w,an(w)
< Synt1 (@) — p (@) I
+(1-jan) p(w)-S(o, an (@)
tan p(@)-T(o,@n(w)
< Syns1 (@) - p (@) I
+(l-an)S(o, an (@) -p(a)
+anT (o, r(@)-T (o, an () |
< Syt (@) - p (1)
+(-an)S (o, an (@) - p (o))
+an[¢S (@, r (o)) —T(a),r(a))p
+0(@) S(w,r(w)) -S(w,an () ]
< Syn+1 (@) - p (@) I
+(1-an)S (e ay(o)) - p(w)
+anf(w)S(w,an(@)) - p()
< Syne1 (@) - p(@) I
+(1-an(1-0()) S(w,an (@) -p(a)
< Syn+1(@) - p ()
+(1-an (1~ 6(w))(1- fn (1-6(w)
(I-7n(1-0(®)) S (@, an (@) - p(@)
Hence , —» 0 as n — oo, Therefore the random

Jungck-Noor type iterative scheme is (S,T)-stable
almost surely. This completes the proof.

+ (I-an+an)p (o)

Remark 4.2. Theorem 4.1 generalizes and extends
several results in the literature including the work of
Olatinwo [13], Singh et. al [15] and Okeke and Kim
[10].

V. CONVERGENCE COMPARISON

Theorem 5.1. Let X be a separable Banach space
and S T : Qx Y —Y be the non self operators
satisfying contractive conditions (2.4). Also suppose
that T (Y ) = S (Y ) where S (Y ) is a complete

subspace of Xand S (o, r (@ )) =T (o, r(w)) = p
(w). For xg eQxY , let random Jungck-Noor type

iterative scheme, random Jungck-Ishikawa iterative
scheme and random Jungck-Mann iterative scheme
be defined by (2.1), (2.2) and (2.3) respectively.
Then the random Jungck-Noor type iterative scheme
converges faster random Jungck-Ishikawa type
iterative scheme and random Jungck-Mann type
iterative scheme.

Proof. For random Jungck-Mann type iterative
scheme (2.3), we have

Sxns1 (@) — p (6)
=l (1~ an)Sn (@) + an T (@, % (@) *p (@)
>(1-ap) Sxp(@)-p(®)
—an! T (@, X (@) - p (©)
>(1-ap) Sxp (@) - p(d)
—ap T (@, X (@) T (o, r(&))
>(1-anp) Sxn (@) - p(d)
—an[4( S (@, % (@) -T (@, (@) )
+0(@)'S (@, %n (@) -T (@, r(w)) ]
>(1-ap) Sxn (@) - p (W)
—anf(®) S (o, %n (@) - p (b))
> (1- an— anf(@)) Sxn (@) -p(d)
> (1- ap (1+ 0(@)) Sxp (@) - p ()

>TT'_(1-a(+0(w))
)—/i?ﬁw) | (5-01)
Similarly for random Jungck-Ishikawa (2.2) iterative
process |
Sxn+1 (@) - p (@) I
= (1= an)Sxn (@) + an[[ (@, yn (@)) - p (@)
2(1-an) S (@) -p(a)
—an T(@,yn (@) -A(x)
2(1-apn) Sxn (@) - p(0) Il
—an T(@,yn (@) T, r(w)
2(1-an) Sxn (@) - p (@) I
—an T(o,r(®))-T(o,yn(v)

I Sx (@
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>(1-ap) Sxp (@) - p(o)

—apb (o) S(o,yn (@) - p ()

>(1-ap) Sxp (@) - p(®)

—and(@)(1-fn)Sn (@) + BT (@, %0 (@)) - p (@)

>(1-ap) Sxp (@) - p(o)
—anf(o)[(1-Bn) Sxn(@)-p(a)
~BnT(@ % (@) - p (@)

>(1-an) Sxn (60)—;0(60)|
—anf()[(1-Bn) Sxn (@)~ p (@)
~BnT (0,1 (@)-T(@, % (@)

>(1-an) Sxp (@) - p(o)
—and(@)[(1- Bn)Sxn (@) - p(@)
~Bnlo( S<w,r<w))—+(w,r<w))|
+0(®) S(w,r(@))-S (o, %y (@)

>(1-ap) Sxp (@) - p(o) |
—anf(@)[(1-Bn) Sxn (@) - p(@)
~ Bn0(®) S (@) - p (@)

> (1-anp) Sxp (w)—p(aq

- an0(@)(1- B 1+ f (@)
-p(w) ]

> (- an-anf(@)1- fn@+0(a)
SXn (@) - p (@)

> (1= an—and(®) + an fn (1+0(w)
+anpfnl+0(w)) Sxn (@) — p ()

> (1- ap (1+ (@) Sxq (a))—p(“AJ)

i

SXn (@)

2" (1-a(+0(0) X(0)-p@)  (5.2)
i=1 i 0 H

Using (3.5) and (5.2) we have
SXns1 (RIN) = p () e- (1’9(“’))?30 a
Sx (RI)-p(w) <" (1- a (1+6(w)) .
n+1 i=1 i

g- (1-0())z"
i=0 i

M (- ai (140 (o)

Then n+l n+1 .
a l-a (1+6(w)
n n+l

Let an =

a
Using lima =0, we obtain lim _"1=0
now now a
n

which implies that lim SXn+1 (RIN) - p (@) — .
now SX . (RI) — p(w)

Hence by definition random Jungck-Noor
iterative scheme converges faster than random
jungck Ishikawa iterative scheme.

i . @nyg
By similar arguments we have lim =0
N—o0 an
Sx (RIN)-p

lim n+l

=0, . ™= X1 (RIM) - p
(@)

which implies tf(‘lg)g

Hence by definition random Jungck-Noor
iterative scheme converges faster than random
jungck-Mann iterative scheme.

Example 5.2. Let Q = X = R (set of real numbers)

and consider the random operators

ST:OxX—>X by S @)=2(x-1) and
1/2

T(x,@)=(x+2)" . Consider the

ap=Fn=yn=U4 and initial

sequences
approximation

(Xg, @=3. Then the convergence pattern of
random Jungck-Noor type iteration scheme, random
Jungck-Ishikawa type iteration scheme and random
Jungck-Mann type iterative scheme is shown in the
Table 1.

Number Random Random Random
of Steps Jungck- Jungck- Jungck-
Mann Ishikawa Noor
0 2.779508 | 2.773276 | 2.773097
1 2.607907 | 2.598141 | 2.597860
2 2474256 | 2.462786 | 2.462569
3 2.370097 | 2.358132 | 2.357785
4 2.288822 | 2.277187 | 2.276848
25 2.002065 | 2.001289 | 2.000128
26 2.001614 | 2.000998 | 2.000123
27 2.001260 | 2.000773 | 2.000095
28 2.000985 | 2.000598 | 2.000074
29 2.000769 | 2.000166 | 2.000057
30 2.000601 | 2.000129 | 2.000044
35 2.000174 | 2.000100 | 2.000001
36 2.000136 | 2.000077 | 2.000001
37 2.000106 | 2.000059 | 2.000000
38 2.000083 | 2.000046 | 2.000000
45 2.000009 | 2.000007 | 2.000000
46 2.000007 | 2.000006 | 2.000000
52 2.000001 | 2.000001 | 2.000000
55 2.000001 | 2.000000 | 2.000000
56 2.000000 | 2.000000 | 2.000000
Convergence pattern of Iterative Schemes

From Table 1 we observe that random Jungck-Noor
type iteration scheme converges faster than the
random Jungck Ishikawa rype iterative scheme and
random Jungck-Mann type iterative scheme.
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