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ABSTRACT 
Elliptic-type integrals have their importance and potential in certain problems in radiation physics and nuclear technology [4,5,7,10,15,17,22,23]. A
number of earlier works on the subject contains several interesting unifications and generalizations of some significant families of elliptic-type
integrals. The present paper is intended to obtain certain new theorems on generating functions. The results obtained in this paper are of manifold
generality and basic in nature. Beside deriving various known and new elliptic-type integrals and their generalizations these theorems can be used to
evaluate various Euler-type integrals involving a number of generating functions.
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1. Introduction.

                                                                                          (1.1)

where  and   was studied by Epstein-Hubbell [12], for the first time. Due to its occurrence in a
number of physical problems [4,5,13, 15, 22, 23, 28], in the form of single and multiple integrals, several authors  
notably Kalla [16, 17] and Kalla et al. [18], Kalla and Al-Saqabi [19], Kalla et al. [20], Salman [25], Saxena et al. [28]
and  Srivastava  and  Bromberg  [36],  have  investigated  various  interesting  unifications  (and  generalizations)  of  the
elliptic-type  integrals  (1.1).  Some  of  the  important  generalizations  of  elliptic-type  integral  (1.1)  are  as
follows: 
Kalla [16, 17] introduced the generalization of the form: 

                                                                                (1.2)

where  

Results for this generalization are also derived by Glasser and Kalla [14].

Al-Saqabi [1] defined and studied the generalization given by the integral 

                                                                                                                     (1.3)

where   

Asymptotic expansion of (1.3) has recently been discussed by Matera et al. [24]. The integral 

                                                                                                                          (1.4)

 where  ,  ; presents another generalization of (1), given by Siddiqi [33].
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Srivastava and Siddiqi [35] have given an interesting unification and extension of the families of elliptic- type integrals 
in the following form: 

                                                                  (1.5)

 where  

Kalla and Tuan [21] generalized Eq. (1.5) by means of the following integral and also obtained its asymptotic expansion

                               (1.6)

where    and  either   or   (or    whenever   or
  respectively. 

Al-Zamel et al. [2] discussed a generalized family of elliptic-type integrals in the form: 

                          

                                                         (1.7)

where   is  the  Lauricella  hypergeometric  function  of  
variables [34].

Saxena and Kalla [29] have studied a family of elliptic- type integrals of the form :

         

                                                                                                                 (1.8)

where  .

In the recent paper, Saxena and Pathan [26] investigated an extension of Eq.(1.8) in the form : 

 

                                                                                                               (1.9)
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where     with 

In a recent paper [9], we have proposed and investigated a new family of unified and generalized elliptic-type integrals: 

                       (1.10)

where     with 

which includes most of the known generalized and unified families of elliptic type integrals (including those discussed
in (1.1) through (1.9)). For more details also see [17 ,27, 26, 1, 2, 24]. Upon a closer examination of the above equation.
(1.10), it can be seen that the family of elliptic-type integral  can be put in to the following form
involving Euler-type integral:
 

   

                                                         (1.11)

A two-variables generating function   possess a formal power series representation in  , can be written in the
following form 

                                                                                                                                            (1.12)

where each member of generalized set  is independant of .

Special functions have been around for centuries. No one can imagine mathematics without Gaussian and confluent
hypergeometric function, associated Legendre and Laguerre polynomials, Bessel functions and many more. The most
well  known application  areas  are  in  physics,  engineering,  chemistry,  computer  science  and  statistics.  On  several
occasions,  the  solution of  enumeration problems involving combinatorial  objects  requires  knowledge from special
function theory. Earlier the emphasis was on special functions satisfying linear differential equations, but this has now
been extended to difference equations, partial  differential  equations, non linear differential equations and fractional
differential equations[7,10].

 
The multivariable Aleph-function is an extension of the multivariable I-function recently defined by C.K. Sharma and
Ahmad [31] , itself is a generalization of  the multivariable H-function defined by Srivastava and Panda [37,38]. The
multivariable Aleph-function is defined by means of the multiple contour integral :

lalitha
Text Box
ISSN: 2231-5373                        http://www.ijmttjournal.org                          Page 151




We have :      

                                                               

      

=                                                                       (1.13)

with  

       (1.14)

       

and        (1.15)

For more details, see Ayant [3]. The condition for absolute convergence of multiple Mellin-Barnes type contour  can be
obtained by extension of the corresponding conditions for multivariable H-function given by as :
 

    ,   where

 

           

    ,  with  ,   ,          (1.16)

The complex numbers  are not zero.Throughout this document , we assume the existence and absolute convergence
conditions of the multivariable Aleph-function.
We may establish the the asymptotic expansion in the following convenient form :

     ,     

    ,      

where   :  and 

                                                                                          (1.17)

For convenience, we will use the following notations in this paper.
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                                                                                                                                      (1.18)

 W                                                                                  (1.19)

                                    

                                       (1.20)

                     

                                                                                             (1.21)

2. Main formulae

In this section we derive two new theorems and their corollaries on generating functions associated with multivariable 
-function and the families of elliptic-type integrals. These theorem and corollaries can be used to establish various
known and new elliptic-type integrals. Some of the significant applications of the results derived in this section are
discussed in the section 3. We have the general formula 

Theorem 1

 

                                                                                    (2.1)

Provided that

  for 

 and    ,    where  is given in (1.16).

Proof

Using the definition of two-variables generating function   in the series form with the help of (1.12),  and the
multivariable Aleph-function in Mellin-Barnes contour integral with the help of (1.13) and then interchanging the order
of integration and summation suitably, which is permissible under the conditions stated above. . Collect the powers of 
and  and use the formula of Beta-integral. Interpreting the resulting Mellin-Barnes contour integral as an Aleph-
function of r-variables, we arrive at the desired result.

Corollary 1
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                                          (2.2)

Provided that

  for 

 and    ,    where  is given in (1.16).

Corollary 2

  (2.3)

  for 

 and    ,  

  where  is given in (1.16).

The proofs of Corollary1 and 2 are similar to that of theorem 1.

Theorem 2
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                                     (2.4)

where  

provided that 

 for 

   for 

 

 and    ,    where  is given in (1.16).

Proof

To establish the integral  formula (2.4),  we first  use the  series  representations for  the  generating function of  two-
variables   with the help of (1.12). Further, using contour integral representation for the multivariable Aleph-
function with the help of (1.13) and then interchanging the order of  integration and summation suitably,  which is
permissible under the conditions stated above. Then use the binomial expansion times (is valid)
 

                                                                                                      (2.5)

and the following binomial expansion times (is valid)

                 

                                                                            (2.6)

Now, collect the powers of  and  and use the formula of Beta-integral and interpreting the resulting Mellin-
Barnes contour integral as an Aleph-function of r-variables, we arrive at the desired result (2.4).

3. Applications

In view of the importance and usefulness of the theorems and corollaries discussed in the last section, we mention some 
interesting applications, which indicates manifold generality of the results obtained in this article.

(i) Consider the generating function [34]
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                                                                                                                          (3.1)

and use the theorem 1, under the state conditions, we obtain the following formulae.

 

                                            (3.2)

when we put  and  the above equation (3.2) gives the following generalization 

of the elliptic-type integral

               

 

                                            (3.3)

If we setting   and using  and  in (3.2), we have the following formula : 

 

                                                                                                       (3.4)

It can be seen that the above elliptic-type integral (3.2) also provides generalization to a number of new families of
elliptic-type  integrals,  which  also  generalizes  known  families  of  elliptic  integrals.  Also  by  using  the  generating
function (3.1) and by the application of the theorem 2, under the stated conditions, we have obtained the following new
family of elliptic-type integrals, which also generalizes known families of elliptic-type integrals. 
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                                   (3.5)

If we setting   and  , we obtain 

 

        

   

        

                                                        (3.6)

(ii) Consider the following generating function [34]

                                                                                      (3.7)

where
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                                                                                                                      (3.8)

and by the application of the theorem 1  under the state conditions, we obtain 

 

                                  (3.9)

and by the application of the theorem 2 under the state conditions, we obtain 

  

   

                           

                                 (3.10)

(iii) Consider the following generating function

           

                                                                                                                                 (3.11)

and by the application of the theorem 1  under the state conditions, we obtain 
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                                         (3.12)

and by the application of the theorem 2 under the state conditions, we obtain 

  

   

                           

                                 (3.13)

Remarks

We obtain the similar formulae concerning the multivariable I-function [31], the multivariable H-function [37,38], the
Aleph-function of two variables [30] and the I-function of two variables [32].

If the multivariable Aleph-function reduces to Aleph-function of one variable [39,40], we obtain the recently results of
Chaurasia and Gill [6], this work is a generalization of the results given by Chaurasia and Singh [11] and Chaurasia and
Meghwal [9].

4. Conclusion

In this paper, we have presented a solution of generalized elliptic type integral with multivariable Aleph-function. The
solution has been developed in a compact and elegant form with the help of generating functions, multivariable Aleph
-function is general in nature and includes a number of known and new results as particular cases. This extended elliptic
type integral used to compute the certain problems of radiation physics, nuclear technology and may be utilized in other
branch of mathematics.
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