gc - domination and GC-domination numbers of a graph

A.Muthukamatchi
Department of Mathematics, Government Arts College for women, Nilakkottai-624 208
Tamil Nadu, India

Abstract

Throughout this paper, we assume that $G=(V, E)$ is a finite, simple connected graph with at least two vertices. Acharya and Sampathkumar [2] introduced the concept of graphoidal covers and graphoidal covering number of a graph. Arumugam and Suresh Suseela [4] introduced the concept of acyclic graphoidal cover and acyclic graphoidal covering number of a graph. An elaborate review of results in graphoidal covers with several interesting applications and a collection of unsolved problems is given in [3]. Any graph theoretic concept which depends only on adjacency of vertices can be extended in the context of graphoidally covered graph and $\psi=\mathrm{E}(\mathrm{G})$ yields the original concept as a special case.

A graphoidal cover of a graph G is a collection of paths(not necessarily open) in G satisfying the following conditions.
(i) Every path in ψ has at least two vertices.
(ii) Every vertex of G in an internal vertex of at most one path in ψ.
(iii) Every edge of G in exactly one path in ψ.

A graphoidal cover ψ of a graph G is called an acyclic graphoidal cover if every member of ψ is a path. we assume throughout that ψ is an acyclic graphoidal cover of G.

Let G be a connected graph. Given an acyclic graphoidal cover ψ of G, we associate with the pair (G, ψ) another graph with vertex set $V(G)$ which we denote by $\mathrm{G}(\psi)$.

Given any graph theoretic parameter Ω, we can use the concept of acyclic graphoidal covers to define two new parameters associated with Ω as follows:

For any acyclic graphoidal cover ψ of G, let $\quad \Omega_{\psi}=\Omega(\mathrm{G}(\psi))$. We now define $\quad \Omega_{\mathrm{gc}}(\mathrm{G})=$ $\min \{\Omega(\mathrm{G}(\psi))\}$ and $\quad \Omega_{\mathrm{GC}}(\mathrm{G})=\max \{\boldsymbol{\Omega}(\mathrm{G}(\psi))\}$, where the minimum and maximum are taken over all acyclic graphoidal covers ψ of G. Since $\Omega_{\psi}(G)=$ $\Omega(\mathrm{G})$, where $\psi=\mathrm{E}(\mathrm{G})$, we have $\Omega_{\mathrm{gc}}(\mathrm{G}) \leq \Omega(\mathrm{G}) \leq$ $\Omega_{\mathrm{GC}}(\mathrm{G})$. We now proceed to study $\Omega_{\mathrm{gc}}(\mathrm{G})$ and $\Omega_{\mathrm{GC}}(\mathrm{G})$, where Ω is a domination related parameter.

We first determine $\gamma_{\mathrm{gc}}(\mathrm{G})$ and $\gamma_{\mathrm{GC}}(\mathrm{G})$ for standard graphs.

The parameters $\gamma_{\mathrm{gc}}(\mathrm{G})$ and $\gamma_{\mathrm{GC}}(\mathrm{G})$ are respectively called the gc-domination number and GC-domination number of G.
Theorem 1.1. Let G be any graph. Then $\gamma(G)=1$ if and only if $\gamma_{g c}(G)=1$.
Proof. Since $\gamma_{\mathrm{gc}}(\mathrm{G}) \leq \gamma(\mathrm{G})$, it follows that if $\gamma(\mathrm{G})=1$, then $\gamma_{\mathrm{gc}}(\mathrm{G})=1$.

Conversely, let $\gamma_{\mathrm{gc}}(\mathrm{G})=1$. Let ψ be an acyclic graphoidal cover of G such that $\gamma_{\mathrm{gc}}(\mathrm{G})=\gamma_{\psi}(\mathrm{G})=1$. Then there exists a vertex, say v_{l}, such that v_{l} is ψ-adjacent to all the vertices of $\mathrm{V}-\left\{v_{l}\right\}$. Let P_{i} be the $v_{l}-v_{i}$ path in $\psi, 2 \leq \mathrm{i} \leq \mathrm{n}$. If P_{i} has length greater than 1 for some i , then v_{l} is not ψ-adjacent to the vertex w_{l} which is adjacent to v_{i} and is on P_{i}. Hence each P_{i} has length 1 , so that $\operatorname{deg}_{\mathrm{G}}\left(v_{l}\right)=\mathrm{n}-1$. Thus $\gamma(\mathrm{G})=1$.

Corollary 1.2. If $\gamma(\mathrm{G})=2$, then $\gamma_{\mathrm{gc}}(\mathrm{G})=2$.
Proof. Since $\gamma_{\mathrm{gc}}(\mathrm{G}) \leq \gamma(\mathrm{G})=2$ and $\gamma_{\mathrm{gc}}(\mathrm{G}) \neq 1$, we have $\gamma_{\mathrm{gc}}(\mathrm{G})=2$.

Remark 1.3. The converse of Corollary 1.2 is not true.

Example 1.4. Consider the acyclic graphoidal cover $\psi=\{(1,2),(2,3),(3,4),(2,5),(3,5,6)\}$ of the graph G given in Figure 1.1(a). Then $G(\psi)$ is given in Figure 1.1(b)

Figure 1.1 (a)

Figure 1.1(b)
Here $\gamma(\mathrm{G})=3$ and $\gamma_{\mathrm{gc}}(\mathrm{G})=2$.
Theorem 1.5.For the star $K_{l, n}, \gamma_{g c}\left(K_{l, n}\right)=1$ and $\gamma_{G C}\left(K_{l, n}\right)=2$.
Proof. Let V $(\mathrm{G})=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ with deg $v_{0}=\mathrm{n}$ and $\operatorname{deg} v_{i}=1$ for all $i=1,2, \ldots, n$.

Let ψ be any acyclic graphoidal cover of G. If v_{0} is interior to ψ, then $\mathrm{G}(\psi)$ is isomorphic to $\mathrm{K}_{2} \cup \mathrm{~K}_{1},{ }_{\mathrm{n}-2}$ and hence $\gamma_{\psi}(\mathrm{G})=2$.

If v_{0} is exterior to ψ, then $\psi=\mathrm{E}(\mathrm{G})$ and hence $\gamma_{\psi}(\mathrm{G})=1$.
Thus for any acyclic graphoidal cover ψ, we have $\gamma_{\psi}(\mathrm{G})=1$ or 2 and hence $\gamma_{\mathrm{gc}}(\mathrm{G})=1$ and $\gamma_{\mathrm{gc}}(\mathrm{G})=2$.
Theorem 1.6. For the bistar $G=B\left(n_{1}, n_{2}\right)$ where $n_{1}, n_{2} \geq 3$, we have $\gamma_{g c}\left(B\left(n_{1}, n_{2}\right)\right)=2$ and $\gamma_{G C}\left(B\left(n_{1}, n_{2}\right)\right)=4$.

Proof.

Let $\mathrm{V}\left(\mathrm{B}\left(n_{l}, n_{2}\right)\right)=\left\{u, v, u_{1}, u_{2}, \ldots, u_{n_{1}}, v_{l}, v_{2}, \ldots, v_{n_{2}}\right\}$
with $\operatorname{deg} u_{i}=\operatorname{deg} v_{j}=1$ for all $1 \leq \mathrm{i} \leq \mathrm{n}_{1}, 1 \leq \mathrm{j} \leq \mathrm{n}_{2}$,
$\mathrm{N}[u]=\left\{u, u_{1}, u_{2}, \ldots, u_{n_{1}}\right\}$ and $\mathrm{N}[v]=\left\{v, v_{1}, v_{2}, \ldots, v_{n_{2}}\right\}$.
Let ψ be any acyclic graphoidal cover of $\mathrm{B}\left(n_{1}, n_{2}\right)$.
Let S be the set of vertices which are interior to ψ.
Case i. $|\mathrm{S}|=0$.
Then $\psi=\mathrm{E}(\mathrm{G})$ and hence $\gamma_{\psi}\left(\mathrm{B}\left(n_{1}, n_{2}\right)\right)=2$.
Case ii. $|\mathrm{S}|=1$.
Assume without loss of generality that $\mathrm{S}=$ $\{u\}$. Let P be the path in ψ having u as an internal vertex. Then $\mathrm{P}=\left(u_{i}, u, u_{j}\right)$ for some i, j where $1 \leq \mathrm{i}$ $<\mathrm{j} \leq \mathrm{n}_{1}$ or $\mathrm{P}=\left(u_{i}, u, v\right)$ for some $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}_{1}$. Hence $\psi=\{\mathrm{P}\} \cup\{\mathrm{E}(\mathrm{G}) \backslash \mathrm{E}(\mathrm{P})\}$ so that $\mathrm{G}(\psi)$ is isomorphic to $\mathrm{K}_{2} \cup \mathrm{~B}\left(n_{1}-2, n_{2}\right)$ or $K_{1, n_{2}+1} \cup K_{1, n_{1}-1}$. Thus $\gamma_{\psi}\left(\mathrm{B}\left(n_{1}, n_{2}\right)\right)=3$ or 2.
Case iii. Let $|S|=2$.
Then $S=\{u, v\}$. If both u and v are internal vertices of the same path P in ψ then $\mathrm{P}=\left(u_{i}, u, v, v_{j}\right)$ for some i, j where $1 \leq \mathrm{i} \leq \mathrm{n}_{1}, 1 \leq \mathrm{j} \leq \mathrm{n}_{2}$ and $\psi=\{P\} \cup\{\mathrm{E}(\mathrm{G}) \backslash \mathrm{E}(\mathrm{P})\}$. In this case $\mathrm{G}(\psi)$ is isomorphic to $\mathrm{K}_{2} \cup K_{1, n_{1}-2} \cup K_{1, n_{2}-2}$ and hence $\gamma_{\psi}\left(\mathrm{B}\left(n_{l}, n_{2}\right)\right)=3$.

If u and v are internal vertices of two diff erent paths P_{1} and P_{2} in ψ, then $\mathrm{P}_{1}=\left(u_{i}, u, u_{j}\right)$ for some i, j, $1 \leq \mathrm{i}<\mathrm{j} \leq n_{l}$, and $\mathrm{P}_{2}=\left(v_{r}, v, v_{s}\right)$ for some r, s, $1 \leq \mathrm{r}<\mathrm{s} \leq n_{2}$, and $\psi=\left\{\mathrm{P}_{1}, \mathrm{P}_{2}\right\} \cup\left\{\mathrm{E}(\mathrm{G}) \backslash \mathrm{E}\left(\mathrm{P}_{1} \cup \mathrm{P}_{2}\right)\right\}$.

In this case $\mathrm{G}(\psi)$ is isomorphic to
$2 \mathrm{~K}_{2} \cup \mathrm{~B}\left(\mathrm{n}_{1}-2, \mathrm{n}_{2}-2\right)$ and hence $\gamma_{\psi}\left(\mathrm{B}\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)\right)=4$.
Thus $\gamma_{\mathrm{gc}}\left(\mathrm{B}\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)\right)=2$ and $\gamma_{\mathrm{GC}}\left(\mathrm{B}\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)\right)=4$.
Theorem 1.7. For the tree $T=S\left(K_{l, n}\right)$, we have $\gamma_{g c}(T)=n$ and $\gamma_{G C}(T)=n+2$.

Proof. Let V $(\mathrm{T})=\left\{u, u_{l}, u_{2}, \ldots, u_{n}, v_{l}, v_{2}, \ldots, v_{n}\right\}$ and $\mathrm{E}(\mathrm{T})=\left\{u u_{i}, u_{i} v_{i}: i=1,2, \ldots, n\right\}$. Let ψ be any acyclic graphoidal cover of T. Let S be the set of all vertices which are interior to ψ.
Case i. $S=\varphi$.
Then $\psi=\mathrm{E}(\mathrm{T})$ and $\gamma_{\psi}(\mathrm{T})=\gamma(\mathrm{T})=\mathrm{n}$.
Case ii. $\mathrm{S}=\{\mathrm{u}\}$.
Without loss of generality we can take $\psi=$ $\left\{\left(u_{1}, u, u_{2}\right),\left(u_{l}, v_{l}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{n}, v_{n}\right),\left(u, u_{3}\right),\left(u, u_{4}\right), \ldots\right.$, $\left(u, u_{n}\right) \gamma$. In this case $\mathrm{T}(\psi)$ is isomorphic to $\mathrm{P}_{4} \cup \mathrm{~S}\left(\mathrm{~K}_{1, \mathrm{n}-2}\right)$ and hence $\gamma_{\psi}(\mathrm{T})=\mathrm{n}$.

Case iii. $S=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$.
In this case $\psi=\left\{u u_{i} v_{i}: \mathrm{i}=1,2, \ldots, \mathrm{n}\right\}$ and $\mathrm{T}(\psi)$ is isomorphic to $\mathrm{nK}_{1} \cup \mathrm{~K}_{1}, \mathrm{n}$ and hence $\gamma_{\psi}(\mathrm{T})=n+1$.

Case iv. S $=\left\{u, u_{1}, u_{2}, \ldots, u_{n}\right\}$.
In this case
$\psi=\left\{\left(v_{l}, u_{1}, u, u_{2}, v_{2}\right),\left(u, u_{i}, v_{i}\right): \mathrm{i}=3,4, \ldots, n\right\}$ and
$\mathrm{T}(\psi)$ is isomorphic to $\mathrm{nK}_{1} \cup \mathrm{~K}_{2} \cup \mathrm{~K}_{1}, \mathrm{n}_{\mathrm{n}-2}$ and $\gamma_{\psi}(\mathrm{T})=\mathrm{n}+2$.

Case v. $\mathrm{S}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{k}}\right\}$ for some k, where $1 \leq k<n$.
Then $\psi=\left\{\left(v_{l}, u_{1}, u\right),\left(v_{2}, u_{2}, u\right), \ldots,\left(v_{k}, u_{k}, u\right),\left(u, u_{k+1}\right)\right.$, $\left.\left(u_{k+1}, v_{k+1}\right), \ldots,\left(u, u_{n}\right),\left(u_{n}, v_{n}\right)\right\}$. In this case $\mathrm{T}(\psi)$ is isomorphic to the graph given in Figure 1.2 and $\gamma_{\psi}(\mathrm{T})=\mathrm{n}+1$.

Figure 1.2
Case vi. $\mathrm{S}=\left\{u, u_{1}, u_{2}, \ldots, u_{k}\right\}$ for some $k, l \leq k<n$. Then $\psi=\left\{\left(v_{1}, u_{1}, u, u_{k}, v_{k}\right),\left(v_{2}, u_{2}, u\right), \ldots,\left(v_{k-1}, v_{k-1}, u\right)\right.$, $\left.\left(u, u_{k+1}\right),\left(u_{k+1}, v_{k+1}\right), \ldots,\left(u, u_{n}\right),\left(u_{n}, v_{n}\right)\right\}$. In this case T (ψ) is isomorphic to the graph given in Figure 1.3 and $\gamma_{\psi}(\mathrm{T})=\mathrm{n}+2$.

Figure 1.3
Hence $\gamma_{\mathrm{gc}}(\mathrm{T})=\mathrm{n}$ and $\gamma_{\mathrm{GC}}(\mathrm{T})=\mathrm{n}+2$.
Theorem 1.8. For any path $P_{n}, \gamma_{g c}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$ and $\gamma_{G C}\left(\mathrm{P}_{\mathrm{n}}\right)=\mathrm{n}-1$.

Proof. Let ψ be any acyclic graphoidal cover of P_{n}.
Case i. $|\psi|=\mathrm{n}-1$.
Then $\psi=E\left(P_{n}\right)$ and $\gamma_{\psi}\left(\mathrm{P}_{\mathrm{n}}\right)=\gamma\left(\mathrm{P}_{\mathrm{n}}\right)=\left\lceil\frac{n}{3}\right\rceil$.
Case ii. $|\psi|=1$.
Then $\psi=\left\{\mathrm{P}_{\mathrm{n}}\right\}$ and $\mathrm{P}_{\mathrm{n}}(\psi)$ is isomorphic to $K_{2} \cup(n-2) K_{1}$. Hence $\gamma_{\psi}\left(P_{n}\right)=n-1$.

Case iii. Let $\psi=\left\{\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}, \ldots, \mathrm{Q}_{\mathrm{r}}\right\}$, where

$$
2 \leq r \leq n-2 .
$$

Then $\mathrm{P}_{\mathrm{n}}(\psi)$ is isomorphic to $\mathrm{P}_{\mathrm{r}+1} \cup(\mathrm{n}-\mathrm{r}-1) \mathrm{K}_{1}$.
Thus $\quad \gamma_{\psi}\left(\mathrm{P}_{\mathrm{n}}\right)=\left\lceil\frac{\mathrm{r}+1}{3}\right\rceil+(\mathrm{n}-\mathrm{r}-1) \leq \mathrm{n}-1$.
Hence $\gamma_{\mathrm{gc}}\left(\mathrm{P}_{\mathrm{n}}\right)=\left[\frac{\mathrm{n}}{3}\right]$ and $\gamma_{\mathrm{GC}}\left(\mathrm{P}_{\mathrm{n}}\right)=\mathrm{n}-1$.
Theorem 1.9. For any cycle $C_{n}, \gamma_{\mathrm{gc}}\left(C_{n}\right)=\left[\frac{n}{3}\right]$ and $\gamma_{G C}\left(C_{n}\right)=n-1$.
Proof. If ψ is any acyclic graphoidal cover of C_{n} with $|\psi|=2$, then $\mathrm{C}_{\mathrm{n}}(\psi)=\mathrm{K}_{2} \cup(\mathrm{n}-2) \mathrm{K}_{1}$ and hence $\gamma_{\psi}\left(\mathrm{C}_{\mathrm{n}}\right)=\mathrm{n}-1$. Further, obviously, $\gamma_{\psi}\left(\mathrm{C}_{\mathrm{n}}\right) \leq \mathrm{n}-1$ for any acyclic graphoidal cover ψ of C_{n}. Hence $\gamma_{G C}\left(C_{n}\right)=n-1$.

Now, for the acyclic graphoidal cover $\psi=\mathrm{E}\left(\mathrm{C}_{\mathrm{n}}\right)$, we have $\gamma_{\psi}\left(\mathrm{C}_{\mathrm{n}}\right)=\gamma\left(\mathrm{C}_{\mathrm{n}}\right)=\left[\frac{n}{3}\right]$ so that $\gamma_{\mathrm{gc}}\left(\mathrm{C}_{\mathrm{n}}\right) \leq\left\lceil\frac{n}{3}\right\rceil$. Now, let ψ be any acyclic graphoidal cover of C_{n} with $|\psi|=r>2$. Then $C_{n}(\psi)$ is isomorphic to $\mathrm{C}_{\mathrm{r}} \mathrm{U}(\mathrm{n}-\mathrm{r}) \mathrm{K}_{1}$. Hence $\gamma_{\psi}\left(C_{n}\right)=\left\lceil\frac{r}{3}\right\rceil+(n-r) \geq\left\lceil\frac{n}{3}\right\rceil$. Hence $\gamma_{g c}\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$.

Theorem 1.10. . Let $\mathrm{G}=\mathrm{W}_{\mathrm{n}+1}$ be the wheel on $\mathrm{n}+1$ vertices. Then $\gamma_{\mathrm{gc}}(\mathrm{G})=1$ and $\gamma_{\mathrm{GC}}(\mathrm{G})=\left\lceil\frac{\mathrm{n}}{2}\right\rceil$.

Proof. Since $\gamma(\mathrm{G})=1$, it follows that $\gamma_{\mathrm{gc}}(\mathrm{G})=1$.

Let $\mathrm{V}(\mathrm{G})=\left\{\nu, v_{l}, v_{2}, \ldots, v_{n}\right\}$ and let $\mathrm{E}(\mathrm{G})=$ $\left\{v v_{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{v_{i} v_{i+1}: 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{v_{l}, v_{n}\right\}$. Now, let $\mathrm{P}_{1}=\left(v, v_{2 i-1}, v_{2 i}\right)$, where $1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor$ and let $\mathrm{Q}=\left(v, v_{n}, v_{l}\right)$. Let $\psi=\left\{\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, P_{\left[\frac{n}{2}\right]}\right\} \cup \mathrm{S}$ if n is even and let $\psi=\left\{\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, P_{\left[\frac{n}{2}\right]}, \mathrm{Q}\right\} \cup S$ if n is odd, where S is the set of edges of G not covered by the paths P_{i} 's. Now, if n is even, then $\mathrm{G}(\psi)$ is isomorphic to $S\left(K_{1} \frac{n}{2}\right)$ and if n is odd, then $\mathrm{G}(\psi)$ is isomorphic to the graph obtained from $K_{1,}{ }_{\left.\frac{\pi}{2}\right]}$ by subdividing all the edges of $\left.K_{1, ~} \sqrt{\frac{n}{2}}\right\rceil$ except one edge. Hence $\quad \gamma_{\psi}(G)=\left\lceil\frac{n}{2}\right\rceil$, so that $\gamma_{G C}(G) \geq\left\lceil\frac{n}{2}\right\rceil$. Now, let ψ be any acyclic graphoidal cover of G. Since $\delta(\mathrm{G}) \geq 3$, we have $\mathrm{G}(\psi)$ has no isolates and hence $\gamma_{\psi}(\mathrm{G}) \leq\left\lfloor\frac{n+1}{2}\right\rfloor=\left\lceil\frac{n}{2}\right\rceil . \quad$ Hence $\gamma_{G C}(\mathrm{G}) \leq\left\lceil\frac{n}{2}\right\rceil$.

$$
\text { Thus } \gamma_{\mathrm{GC}}(\mathrm{G})=\left\lceil\frac{n}{2}\right\rceil
$$

The following theorem gives a domination chain for gc-domination.
Theorem 1.11. For any graph G,
$i r_{g c}(G) \leq \gamma_{g c}(G) \leq i_{g c}(G) \leq \beta_{0}{ }_{g c}(G) \leq \Gamma_{g c}(G) \leq$ $I R_{g c}(G)$.
Proof. Let G be any graph. Let ψ be an acyclic graphoidal cover of G , such that $\gamma_{\mathrm{gc}}(\mathrm{G})=\gamma_{\psi}(\mathrm{G})$. Now, $\mathrm{ir}_{\psi}(\mathrm{G}) \leq \gamma_{\psi}(\mathrm{G})=\gamma_{\mathrm{gc}}(\mathrm{G})$. Further $\mathrm{ir}_{\mathrm{gc}}(\mathrm{G}) \leq \mathrm{ir}_{\psi}(\mathrm{G})$ and hence $\mathrm{ir}_{\mathrm{gc}}(\mathrm{G}) \leq \gamma_{\mathrm{gc}}(\mathrm{G})$.

Now, choose an acyclic graphoidal cover ψ of G such that $\mathrm{i}_{\mathrm{gc}}(G)=\mathrm{i}_{\psi}(G)$.Then
$\gamma_{\mathrm{gc}}(\mathrm{G}) \leq \gamma_{\psi}(\mathrm{G}) \leq \mathrm{i}_{\psi}(\mathrm{G})=\mathrm{i}_{\mathrm{gc}}(\mathrm{G})$ and hence $\gamma_{\mathrm{gc}}(\mathrm{G}) \leq \mathrm{i}_{\mathrm{gc}}(\mathrm{G})$. By a similar argument, we can prove that $\mathrm{i}_{\mathrm{gc}}(\mathrm{G}) \leq \beta_{0 \mathrm{gc}}(\mathrm{G}), \beta_{0 \mathrm{gc}}(\mathrm{G}) \leq \Gamma_{\mathrm{gc}}(\mathrm{G})$ and $\Gamma_{\mathrm{gc}}(\mathrm{G}) \leq \mathrm{IR}_{\mathrm{gc}}(\mathrm{G})$.
Hence

$$
\begin{aligned}
& \mathrm{ir}_{\mathrm{gc}}(\mathrm{G}) \leq \gamma_{\mathrm{gc}}(\mathrm{G}) \leq \mathrm{i}_{\mathrm{gc}}(\mathrm{G}) \leq \beta_{0 \mathrm{gc}}(\mathrm{G}) \leq \Gamma_{\mathrm{gc}}(\mathrm{G}) \leq \\
& \mathrm{IR}_{\mathrm{gc}}(\mathrm{G}) .
\end{aligned}
$$

The following theorem gives a domination chain for GC-domination.
Theorem 1.12. For any graph $G, i r_{G C}(G) \leq \gamma_{G C}(G)$ $\leq i_{G C}(G) \leq \beta_{0} G_{G C}(G) \leq \Gamma_{G C}(G) \leq I R_{G C}(G)$.

Proof. Let G be any graph. Choose an acyclic graphoidal cover ψ of G such that $\mathrm{ir}_{\mathrm{GC}}(\mathrm{G})=\mathrm{ir}_{\psi}(\mathrm{G})$.

Then $\quad \operatorname{ir}_{\mathrm{GC}}(\mathrm{G})=\mathrm{ir}_{\psi}(\mathrm{G}) \leq \gamma_{\psi}(\mathrm{G}) \leq \gamma_{\mathrm{GC}}(\mathrm{G})$ and hence $\quad \operatorname{ir}_{G C}(G) \leq \gamma_{G C}(G)$.

By a similar argument we can prove that
$\gamma_{\mathrm{GC}}(\mathrm{G}) \leq \mathrm{i}_{\mathrm{GC}}(\mathrm{G}), \mathrm{i}_{\mathrm{GC}}(\mathrm{G}) \leq \beta_{0 \mathrm{GC}}(\mathrm{G})$,
$\beta_{0 \text { GC }}(\mathrm{G}) \leq \Gamma_{\mathrm{GC}}(\mathrm{G})$ and $\Gamma_{\mathrm{GC}}(\mathrm{G}) \leq \mathrm{IR}_{\mathrm{GC}}(\mathrm{G})$.
Hence

$$
\begin{aligned}
& \operatorname{ir}_{\mathrm{GC}}(\mathrm{G}) \leq \gamma_{\mathrm{GC}}(\mathrm{G}) \leq \mathrm{I}_{\mathrm{GC}}(\mathrm{G}) \leq \beta_{0 \mathrm{GC}}(\mathrm{G}) \leq \Gamma_{\mathrm{GC}}(\mathrm{G}) \leq \\
& \mathrm{IR}_{\mathrm{GC}}(\mathrm{G}) .
\end{aligned}
$$

Theorem 1.13. For any graph G,

$$
\gamma_{\mathrm{gc}}(\mathrm{G}) \leq 2 \mathrm{ir}_{\mathrm{gc}}(\mathrm{G})-1
$$

Proof. Let G be any graph G and let ψ be any acyclic graphoidal cover of G. We have, for any graph $\mathrm{G} \gamma(\mathrm{G}) \leq 2 \operatorname{ir}(\mathrm{G})-1$. It follows from this $\gamma_{\psi}(\mathrm{G}) \leq 2 \mathrm{ir}_{\psi}(\mathrm{G})-1$. Now choose an acyclic graphoidal cover ψ of G such that $\mathrm{ir}_{\psi}(\mathrm{G})=\mathrm{ir}_{\mathrm{gc}}(\mathrm{G})$. Then $\gamma_{\mathrm{gc}}(\mathrm{G}) \leq \gamma_{\psi}(\mathrm{G}) \leq 2 \mathrm{ir}_{\psi}(\mathrm{G})-1=2 \mathrm{ir}_{\mathrm{gc}}(\mathrm{G})-1$.

Thus $\gamma_{\mathrm{gc}}(\mathrm{G}) \leq 2 \mathrm{ir}_{\mathrm{gc}}(\mathrm{G})-1$
Corollary 1.14. For any graph G,

$$
\frac{1+\gamma_{g c}(G)}{2} \leq i r_{g c}(G) \leq \gamma_{g c}(G)
$$

Theorem 1.15. For any graph G,

$$
\frac{\mathrm{Ygc}(G)}{2}<\mathrm{ir}_{\mathrm{gc}}(\mathrm{G}) \leq \gamma_{\mathrm{gc}}(\mathrm{G}) \leq 2 \mathrm{ir}_{\mathrm{gc}}-1 .
$$

Proof. Let G be any graph and ψ be any acyclic graphoidal cover of G.

It follows from Theorem 1.13 and Corollary 1.14 that $\frac{\operatorname{Mgc}^{(G)}}{2}<\mathrm{ir}_{\mathrm{gc}}(\mathrm{G}) \leq \gamma_{\mathrm{gc}}(\mathrm{G}) \leq 2 \mathrm{ir}_{\mathrm{gc}}-1$.

CONCLUSION

I found the parameters $\gamma_{\mathrm{gc}}(\mathrm{G})$ and $\gamma_{\mathrm{GC}}(\mathrm{G})$ for standard graphs and we can find the same parameters for any graph..

REFERENCES

[1] B. D. Acharya and Purnima Gupta, Domination in graphoidal covers of a graph, Discrete Math., 206(1999), 3-33. [2] B. D. Acharya and E. Sampathkumar, Graphoidal covers and graphoidal covering number of a graph, Indian J. pure appl. Math., 18(10)(1987), 882-890.
[3] S. Arumugam, B. D. Acharya and E. Sampathkumar,Graphoidal covers of a graph - A creative review, Proceedings of the National workshop on Graph Theory and its Applications, Manonmaniam Sundaranar University, Tirunelveli, Eds. S. Arumugam, B. D. Acharya and E. Sampathkumar, Tata McGraw Hill, (1996), 1-28.
[4] S. Arumugam and J. Suresh Suseela, Acyclic graphoidal covers and path partitions in a graph, Discrete Math.,190(1998), 67-77.
[5] C. Berge, The Theory of graphs and its applications, Methuren, London (1962).
[6] B. Bollobas and E.J. Cockayne, Graph theoretic parameters concerning domination, independence and irredundance, J. Graph Theory, 3(1979), 241-250
[7] G. Chartrand and L. Lesniak, Graphs and Digraphs, Fourth Edition, CRC Press, Boca Raton, 2004
[8] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks, 7(1977), $241-261$.
[9] F. Harary, Graph Theory, Addision - Wesley, Reading Mass,1972.
[10] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, (1997).
[11] T. W. Haynes, S. T. Hedetniemi and P. J. Slater. Domination in Graphs - Advanced Topics, Marcel Dekker, Inc.,New York, (1997).

