gc - domination and GC-domination numbers of a graph

A.Muthukamatchi

Department of Mathematics, Government Arts College for women, Nilakkottai-624 208 Tamil Nadu, India

Abstract: Throughout this paper, we assume that G = (V,E) is a finite, simple connected graph with at least two vertices. Acharya and Sampathkumar [2] introduced the concept of graphoidal covers and graphoidal covering number of a graph. Arumugam and Suresh Suseela [4] introduced the concept of acyclic graphoidal cover and acyclic graphoidal covering number of a graph. An elaborate review of results in graphoidal covers with several interesting applications and a collection of unsolved problems is given in [3]. Any graph theoretic concept which depends only on adjacency of vertices can be extended in the context of graphoidally covered graph and $\psi = E(G)$ yields the original concept as a special case.

A *graphoidal cover* of a graph G is a collection of paths(not necessarily open) in G satisfying the following conditions.

- (i) Every path in ψ has at least two vertices.
- (ii) Every vertex of G in an internal vertex of at most one path in ψ.
- (iii) Every edge of G in exactly one path in ψ .

A graphoidal cover ψ of a graph G is called an *acyclic graphoidal cover* if every member of ψ is a path. we assume throughout that ψ is an acyclic graphoidal cover of G.

Let G be a connected graph. Given an acyclic graphoidal cover ψ of G, we associate with the pair (G, ψ) another graph with vertex set V (G) which we denote by G(ψ).

Given any graph theoretic parameter Ω , we can use the concept of acyclic graphoidal covers to define two new parameters associated with Ω as follows:

For any acyclic graphoidal cover ψ of G, let $\Omega_{\psi} = \Omega(G(\psi))$. We now define $\Omega_{gc}(G) =$ min{ $\Omega(G(\psi))$ } and $\Omega_{GC}(G) = \max{\{\Omega(G(\psi))\}}$, where the minimum and maximum are taken over all acyclic graphoidal covers ψ of G. Since $\Omega_{\psi}(G) =$ $\Omega(G)$, where $\psi = E(G)$, we have $\Omega_{gc}(G) \leq \Omega(G) \leq$ $\Omega_{GC}(G)$. We now proceed to study $\Omega_{gc}(G)$ and $\Omega_{GC}(G)$, where Ω is a domination related parameter.

We first determine $\gamma_{gc}(G)$ and $\gamma_{GC}(G)$ for standard graphs.

The parameters $\gamma_{gc}(G)$ and $\gamma_{GC}(G)$ are respectively called the gc-domination number and GC-domination number of G.

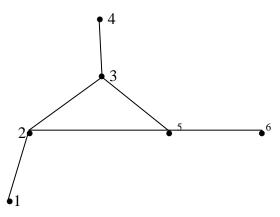
Theorem 1.1. Let G be any graph. Then $\gamma(G) = 1$ if and only if $\gamma_{gc}(G) = 1$.

Proof. Since $\gamma_{gc}(G) \le \gamma(G)$, it follows that if $\gamma(G) = 1$, then $\gamma_{gc}(G) = 1$.

Conversely, let $\gamma_{gc}(G) = 1$. Let ψ be an acyclic graphoidal cover of G such that $\gamma_{gc}(G) = \gamma_{\psi}(G) = 1$. Then there exists a vertex, say v_I , such that v_I is ψ -adjacent to all the vertices of $V - \{v_I\}$. Let P_i be the $v_I - v_i$ path in ψ , $2 \le i \le n$. If P_i has length greater than 1 for some i, then v_I is not ψ -adjacent to the vertex w_I which is adjacent to v_i and is on P_i . Hence each P_i has length 1, so that $\deg_G(v_I) = n - 1$. Thus $\gamma(G) = 1$. **Corollary 1.2**. If $\gamma(G) = 2$, then $\gamma_{gc}(G) = 2$. *Proof.* Since $\gamma_{gc}(G) \le \gamma(G) = 2$ and $\gamma_{gc}(G) \ne 1$, we have $\gamma_{gc}(G) = 2$.

Remark 1.3. *The converse of Corollary 1.2 is not true.*

Example 1.4. Consider the acyclic graphoidal cover $\psi = \{(1,2),(2,3),(3,4),(2,5),(3,5,6)\}$ of the graph G given in Figure 1.1(a). Then $G(\psi)$ is given in Figure 1.1(b)



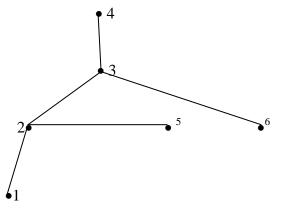


Figure 1.1(b)

Here $\gamma(G) = 3$ and $\gamma_{oc}(G) = 2$.

Theorem 1.5. For the star $K_{1,n}$, $\gamma_{gc}(K_{1,n}) = 1$ and $\gamma_{GC}(K_{1,n}) = 2$. *Proof.* Let V (G) = { $v_0, v_1, v_2, ..., v_n$ } with deg v_0 = n and deg v_i = 1 for all i = 1, 2, ..., n.

Let ψ be any acyclic graphoidal cover of G. If v_0 is interior to ψ , then $G(\psi)$ is isomorphic to $K_2 \cup K_1$, $_{n-2}$ and hence $\gamma_{\psi}(G) = 2$. If v_0 is exterior to ψ , then $\psi = E(G)$ and hence $\gamma_{\psi}(G) = 1$. Thus for any acyclic graphoidal cover ψ , we have $\gamma_{\psi}(G) = 1$ or 2 and hence $\gamma_{gc}(G) = 1$ and $\gamma_{gc}(G) = 2$. **Theorem 1.6.** For the bistar $G=B(n_1,n_2)$ where $n_1,n_2 \ge 3$, we have $\gamma_{gc}(B(n_1,n_2)) = 2$ and $\gamma_{GC}(B(n_1,n_2)) = 4$. **Proof.**

Let V (B(n_1, n_2)) = { $u, v, u_1, u_2, ..., u_{n_1}, v_1, v_2, ..., v_{n_2}$ } with $deg u_i = deg v_j = 1$ for all $1 \le i \le n_1, 1 \le j \le n_2$, N[u] = { $u, u_1, u_2, ..., u_{n_1}$ } and N[v] = { $v, v_1, v_2, ..., v_{n_2}$ }. Let ψ be any acyclic graphoidal cover of B(n_1, n_2). Let S be the set of vertices which are interior to ψ . **Case i.** |S| = 0.

Then $\psi = E(G)$ and hence $\gamma_{\psi}(B(n_1, n_2)) = 2$. **Case ii.** |S| = 1.

Assume without loss of generality that $S = \{u\}$. Let P be the path in ψ having *u* as an internal vertex. Then $P = (u_i, u, u_j)$ for some i, j where $1 \le i \le j \le n_1$ or $P = (u_i, u, v)$ for some i, $1 \le i \le n_1$. Hence $\psi = \{P\} \cup \{E(G) \setminus E(P)\}$ so that $G(\psi)$ is isomorphic to $K_2 \cup B(n_1 - 2, n_2)$ or $K_{1,n_2+1} \cup K_{1,n_1-1}$. Thus $\gamma_{\psi}(B(n_1, n_2)) = 3$ or 2. **Case iii.** Let |S| = 2.

Then S = {u,v}. If both u and v are internal vertices of the same path P in ψ then P = (u_i, u, v, v_j) for some i, j where $1 \le i \le n_1, 1 \le j \le n_2$ and $\psi = \{P\} \cup \{E(G) \setminus E(P)\}$. In this case G(ψ) is isomorphic to K₂ \cup K_{1,n1-2} \cup K_{1,n2-2} and hence $\gamma_{\psi}(B(n_1, n_2)) = 3$.

If *u* and *v* are internal vertices of two different paths P₁ and P₂ in ψ , then P₁ = (u_i , u_i) for some i, j, $1 \le i < j \le n_1$, and P₂ = (v_n , v, v_s) for some r, s, $1 \le r < s \le n_2$, and $\psi = \{P_1, P_2\} \cup \{E(G) \setminus E(P_1 \cup P_2)\}$. In this case G(ψ) is isomorphic to $2K_2 \cup B(n_1 - 2, n_2 - 2)$ and hence $\gamma_{\psi}(B(n_1, n_2)) = 4$. Thus $\gamma_{gc}(B(n_1, n_2)) = 2$ and $\gamma_{GC}(B(n_1, n_2)) = 4$. **Theorem 1.7**. For the tree $T = S(K_1, n_i)$, we have $\gamma_{gc}(T) = n$ and $\gamma_{GC}(T) = n + 2$. *Proof.* Let V (T) = { $u,u_1,u_2,...,u_n,v_1,v_2,...,v_n$ } and E(T) = { $uu_i, u_iv_i : i = 1,2,...,n$ }. Let ψ be any acyclic graphoidal cover of T. Let S be the set of all vertices which are interior to ψ .

Case i. $S = \phi$.

Then $\psi = E(T)$ and $\gamma_{\psi}(T) = \gamma(T) = n$.

Case ii. $S = \{u\}$.

Without loss of generality we can take $\psi = \{(u_1, u, u_2), (u_1, v_1), (u_2, v_2), ..., (u_n, v_n), (u, u_3), (u, u_4), ..., (u, u_n)\}$. In this case T(ψ) is isomorphic to P₄ \cup S(K_{1,n-2}) and hence γ_{ψ} (T) = n. **Case iii.** S = {u₁, u₂, ..., u_n}.

In this case $\psi = \{uu_iv_i : i = 1, 2, ..., n\}$ and $T(\psi)$ is isomorphic to $nK_1 \cup K_{1,n}$ and hence $\gamma_{\psi}(T) = n + 1$.

Case iv. $S = \{u, u_1, u_2, ..., u_n\}.$

In this case

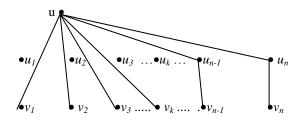
 $\psi = \{(v_1, u_1, u, u_2, v_2), (u, u_i, v_i) : i = 3, 4, ..., n\}$ and

 $T(\psi)$ is isomorphic to $nK_1 \cup K_2 \cup K_{1,n-2}$ and

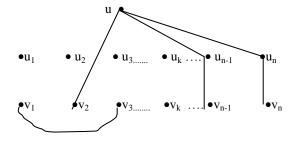
 $\gamma_{\psi}(T) = n + 2.$

Case v. $S = \{u_1, u_2, \dots, u_k\}$ for some k, where $1 \le k < n$.

Then $\psi = \{(v_1, u_1, u), (v_2, u_2, u), \dots, (v_k, u_k, u), (u, u_{k+1}), (u_{k+1}, v_{k+1}), \dots, (u, u_n), (u_n, v_n)\}$. In this case $T(\psi)$ is isomorphic to the graph given in Figure 1.2 and $\gamma_{\psi}(T) = n + 1$.



Case vi. $S = \{u, u_1, u_2, ..., u_k\}$ for some $k, l \le k < n$. Then $\psi = \{(v_1, u_1, u, u_k, v_k), (v_2, u_2, u), ..., (v_{k-1}, v_{k-1}, u), (u, u_{k+1}), (u_{k+1}, v_{k+1}), ..., (u, u_n), (u_n, v_n)\}$. In this case $T(\psi)$ is isomorphic to the graph given in Figure 1.3 and $\gamma_{\psi}(T) = n + 2$.



Hence $\gamma_{gc}(T) = n$ and $\gamma_{GC}(T) = n + 2$. **Theorem 1.8**. For any path P_n , $\gamma_{gc}(P_n) = \begin{bmatrix} n \\ n \end{bmatrix}$ and $\gamma_{\rm GC}(\mathbf{P}_{\rm n})=n-1.$ *Proof.* Let ψ be any acyclic graphoidal cover of P_n. **Case i**. $|\psi| = n - 1$. Then $\psi = E(P_n)$ and $\gamma_{\psi}(P_n) = \gamma(P_n) = \left[\frac{\pi}{2}\right]$. Case ii. $|\psi| = 1$. Then $\psi = \{P_n\}$ and $P_n(\psi)$ is isomorphic to $K_2 \cup (n-2)K_1$. Hence $\gamma_{\psi}(P_n) = n - 1$. **Case iii**. Let $\psi = \{Q_1, Q_2, Q_3, \dots, Q_r\}$, where $2 \le r \le n-2$. Then $P_n(\psi)$ is isomorphic to $P_{r+1} \cup (n-r-1)K_1$. Thus $\gamma_{W}(P_{n}) = \left[\frac{r+1}{2}\right] + (n-r-1) \le n-1.$ Hence $\gamma_{gc}(P_n) = \begin{bmatrix} n \\ n \end{bmatrix}$ and $\gamma_{GC}(P_n) = n - 1$. **Theorem 1.9.** For any cycle C_n , $\gamma_{gc}(C_n) = \begin{bmatrix} n \\ 2 \end{bmatrix}$ and $\gamma_{\rm GC}(C_n) = n - 1.$ *Proof.* If ψ is any acyclic graphoidal cover of C_n with $|\psi| = 2$, then $C_n(\psi) = K_2 \cup (n-2)K_1$ and hence $\gamma_{\psi}(C_n) = n - 1$. Further, obviously, $\gamma_{\psi}(C_n) \le n - 1$ for any acyclic graphoidal cover ψ of C_n . Hence $\gamma_{GC}(C_n) = n - 1$. Now, for the acyclic graphoidal cover $\psi = E(C_n)$, we have $\gamma_{\psi}(C_n) = \gamma(C_n) = \left\lceil \frac{n}{2} \right\rceil$ so that $\gamma_{gc}(C_n) \leq \left[\frac{n}{2}\right]$. Now, let ψ be any acyclic graphoidal cover of C_n with $|\psi| = r > 2$. Then $C_n(\psi)$ is

$$\begin{split} \gamma_{\psi}(C_n) &= \left\lceil \frac{r}{3} \right\rceil + (n-r) \geq \left\lceil \frac{\pi}{3} \right\rceil. \text{ Hence } \gamma_{gc}(C_n) = \left\lceil \frac{\pi}{3} \right\rceil. \\ \text{Theorem 1.10. . Let } G &= W_{n+1} \text{ be the wheel on} \\ n+1 \text{ vertices. Then } \gamma_{gc}(G) &= 1 \text{ and } \gamma_{GC}(G) = \left\lceil \frac{\pi}{2} \right\rceil. \end{split}$$

isomorphic to $C_r \cup (n - r)K_1$. Hence

Proof. Since $\gamma(G) = 1$, it follows that $\gamma_{gc}(G) = 1$.

Let V (G) = $\{v, v_1, v_2, ..., v_n\}$ and let E(G) = $\{vv_i: 1 \le i \le n\} \cup \{v_iv_{i+1}: 1 \le i \le n-1\} \cup \{v_i, v_n\}.$ Now, let $P_1 = (v, v_{2i-1}, v_{2i})$, where $1 \le i \le \frac{n}{2}$ and let $\mathbf{Q} = (v, v_n, v_l)$. Let $\psi = \{\mathbf{P}_1, \mathbf{P}_2, \dots, \mathbf{P}_{\lfloor \frac{n}{2} \rfloor}\} \cup \mathbf{S}$ if n is even and let $\psi = \{P_1, P_2, ..., P_{[n]}, Q\} \cup S$ if n is odd, where S is the set of edges of G not covered by the paths P_i 's. Now, if n is even, then $G(\psi)$ is isomorphic to $S(K_1 \times)$ and if n is odd, then $G(\psi)$ is isomorphic to the graph obtained from K_{1} by subdividing all the edges of $K_{1, \lceil \frac{n}{2} \rceil}$ except one edge. Hence $\gamma_{\Psi}(G) = \left[\frac{n}{2}\right]$, so that $\gamma_{GC}(G) \ge \left[\frac{n}{2}\right]$. Now, let ψ be any acyclic graphoidal cover of G. Since $\delta(G) \ge 3$, we have $G(\psi)$ has no isolates and hence $\gamma_{\Psi}(G) \leq \left\lfloor \frac{n+1}{2} \right\rfloor = \left\lceil \frac{n}{2} \right\rceil.$ Hence $\gamma_{GC}(G) \leq \frac{n}{2}$. Thus $\gamma_{GC}(G) = \begin{bmatrix} \frac{\pi}{2} \end{bmatrix}$.

The following theorem gives a domination chain for gc-domination.

Theorem 1.11. For any graph G,

 $ir_{gc}(G) \le \gamma_{gc}(G) \le i_{gc}(G) \le \beta_{0 \ gc}(G) \le \Gamma_{gc}(G) \le IR_{gc}(G).$

Proof. Let G be any graph. Let ψ be an acyclic graphoidal cover of G, such that $\gamma_{gc}(G) = \gamma_{\psi}(G)$. Now, $ir_{\psi}(G) \le \gamma_{\psi}(G) = \gamma_{gc}(G)$. Further $ir_{gc}(G) \le ir_{\psi}(G)$ and hence $ir_{gc}(G) \le \gamma_{gc}(G)$.

Now, choose an acyclic graphoidal cover ψ of G

such that $i_{gc}(G) = i_{\psi}(G)$. Then

 $\gamma_{gc}(G) \le \gamma_{\psi}(G) \le i_{\psi}(G) = i_{gc}(G)$ and hence

 $\gamma_{gc}(G) \leq i_{gc}(G)$. By a similar argument, we can prove that $i_{gc}(G) \leq \beta_{0 gc}(G)$, $\beta_{0 gc}(G) \leq \Gamma_{gc}(G)$ and $\Gamma_{gc}(G) \leq IR_{gc}(G)$.

Hence

$$\begin{split} & \text{ir}_{gc}(G) \leq \gamma_{gc}(G) \leq i_{gc}(G) \leq \beta_0 \, _{gc}(G) \leq \Gamma_{gc}(G) \leq \\ & \text{IR}_{gc}(G). \end{split}$$

The following theorem gives a domination chain for GC-domination.

Theorem 1.12. For any graph G, $ir_{GC}(G) \leq \gamma_{GC}(G)$ $\leq i_{GC}(G) \leq \beta_{0 \ GC}(G) \leq \Gamma_{GC}(G) \leq IR_{GC}(G).$ *Proof.* Let G be any graph. Choose an acyclic graphoidal cover ψ of G such that $ir_{GC}(G) = ir_{\psi}(G)$.

 $\label{eq:G} \begin{array}{ll} Then & ir_{GC}(G)=ir_{\psi}(G)\leq\gamma_{\psi}(G)\leq\gamma_{GC}(G) \mbox{ and } \\ hence & ir_{GC}(G)\leq\gamma_{GC}(G). \end{array}$

By a similar argument we can prove that $\gamma_{GC}(G) \leq i_{GC}(G), i_{GC}(G) \leq \beta_{0 \ GC}(G),$

 $\beta_{0 \text{ GC}}(G) \leq \Gamma_{\text{GC}}(G) \text{ and } \Gamma_{\text{GC}}(G) \leq \text{IR}_{\text{GC}}(G).$

Hence

$$\begin{split} & ir_{GC}(G) \leq \gamma_{GC}(G) \leq I_{GC}(G) \leq \beta_{0 \; GC}(G) \leq \Gamma_{GC}(G) \leq \\ & IR_{GC}(G). \end{split}$$

Theorem 1.13. For any graph G,

$$\gamma_{\rm gc}(G) \le 2 \operatorname{ir}_{\rm gc}(G) - 1.$$

Proof. Let G be any graph G and let ψ be any acyclic graphoidal cover of G. We have, for any graph G $\gamma(G) \leq 2$ ir(G) – 1. It follows from this $\gamma_{\psi}(G) \leq 2$ ir $_{\psi}(G) - 1$. Now choose an acyclic graphoidal cover ψ of G such that ir $_{\psi}(G) =$ ir $_{gc}(G)$. Then $\gamma_{gc}(G) \leq \gamma_{\psi}(G) \leq 2$ ir $_{\psi}(G) - 1 = 2$ ir $_{gc}(G) - 1$.

Thus $\gamma_{gc}(G) \le 2$ ir_{gc}(G) - 1

Corollary 1.14. For any graph G,

$$\frac{1+\gamma_{gc}(G)}{2} \leq ir_{gc}(G) \leq \gamma_{gc}(G).$$

Theorem 1.15. For any graph G,

$$\frac{\gamma_{gc}(G)}{2} \quad < \operatorname{ir}_{gc}(G) \leq \gamma_{gc}(G) \leq 2 \text{ ir}_{gc} - 1.$$

Proof. Let G be any graph and ψ be any acyclic graphoidal cover of G.

It follows from Theorem 1.13 and Corollary

1.14 that
$$\frac{\gamma_{gc}(G)}{2} < \operatorname{ir}_{gc}(G) \le \gamma_{gc}(G) \le 2 \operatorname{ir}_{gc} - 1.$$

CONCLUSION

I found the parameters $\gamma_{gc}(G)$ and $\gamma_{GC}(G)$ for

standard graphs and we can find the same

parameters for any graph ...

REFERENCES

B. D. Acharya and Purnima Gupta, Domination in graphoidal covers of a graph, *Discrete Math.*, **206**(1999), 3 - 33.
B. D. Acharya and E. Sampathkumar, Graphoidal covers and graphoidal covering number of a graph, *Indian J. pure appl. Math.*, **18**(10)(1987), 882 - 890.

[3] S. Arumugam, B. D. Acharya and E. Sampathkumar, Graphoidal covers of a graph - A creative review, *Proceedings of the National workshop on Graph Theory and its Applications*, Manonmaniam Sundaranar University, Tirunelveli, Eds. S. Arumugam, B. D. Acharya and E. Sampathkumar, Tata McGraw Hill, (1996), 1 - 28.

[4] S. Arumugam and J. Suresh Suseela, Acyclic graphoidal covers and path partitions in a graph, *Discrete Math.*,**190**(1998), 67 - 77.

[5] C. Berge, *The Theory of graphs and its applications*, Methuren, London (1962).

[6] B. Bollobas and E.J. Cockayne, Graph theoretic parameters concerning domination, independence and irredundance, *J. Graph Theory*, **3**(1979), 241 - 250

[7] G. Chartrand and L. Lesniak, *Graphs and Digraphs*, Fourth Edition, CRC Press, Boca Raton, 2004

[8] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, *Networks*, **7**(1977), 241 – 261.

[9] F. Harary, Graph Theory, Addision - Wesley, Reading Mass, 1972.

[10] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, (1997).

[11] T. W. Haynes, S. T. Hedetniemi and P. J. Slater. Domination in Graphs - Advanced Topics, Marcel Dekker, Inc.,New York, (1997).