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     Abstract:  Throughout this paper, we assume 

that G = (V,E) is a finite, simple connected graph 

with at least two vertices. Acharya and 

Sampathkumar [2] introduced the concept of 

graphoidal covers and graphoidal covering number 

of a graph. Arumugam and Suresh Suseela [4] 

introduced the concept of acyclic graphoidal cover 

and acyclic graphoidal covering number of a graph. 

An elaborate review of results in graphoidal covers 

with several interesting applications and a 

collection of unsolved problems is given in [3]. 

Any graph theoretic concept which depends only 

on adjacency of vertices can be extended in the 

context of graphoidally covered graph and ψ = E(G) 

yields the original concept as a special case.  

          A graphoidal cover of a graph G is a 

collection of paths(not necessarily open) in G 

satisfying the following conditions. 

(i) Every path in ψ has at least two vertices. 

(ii) Every vertex of G in an internal vertex of  

at most one path in ψ. 

(iii) Every edge of G in exactly one path in ψ. 

     A  graphoidal cover  ψ of a graph G is 

called an acyclic graphoidal cover if every 

member of ψ is a path.  we assume throughout 

that ψ is an acyclic graphoidal cover of G. 

            Let G be a connected graph. Given an 

acyclic graphoidal cover ψ of G, we associate with 

the pair (G,ψ) another graph with vertex set V (G) 

which we denote by G(ψ).   

 

 

 

         Given any graph theoretic parameter  Ω, we 

can use the concept of acyclic graphoidal covers to 

define two new parameters associated with Ω as 

follows: 

         For any acyclic graphoidal cover ψ of G,            

let   Ωψ = Ω(G(ψ)). We now define    Ωgc(G) = 

min{Ω(G(ψ))} and    ΩGC(G) = max{Ω(G(ψ))}, 

where the minimum and maximum are taken over 

all acyclic graphoidal covers ψ of G. Since Ωψ(G) = 

Ω(G), where ψ = E(G), we have    Ωgc(G) ≤ Ω(G) ≤ 

ΩGC(G). We now proceed to study Ωgc(G) and 

ΩGC(G), where Ω is a domination related parameter. 

      We first determine  γgc(G) and γGC(G) for 

standard graphs. 

      The parameters γgc(G) and γGC(G) are 

respectively called the gc-domination number and 

GC-domination number of G. 

Theorem 1.1. Let G be any graph. Then  γ(G) = 1 

if and only if γgc(G) = 1. 

Proof. Since γgc(G) ≤ γ(G), it follows that  if        

γ(G) = 1, then γgc(G) = 1. 

        Conversely, let γgc(G) = 1. Let ψ be an acyclic 

graphoidal cover of G such that γgc(G) = γψ(G) = 1. 

Then there exists a vertex, say v1, such that v1 is   

ψ-adjacent to all the vertices of  V −{v1}. Let Pi be 

the v1 - vi  path     in ψ, 2 ≤ i ≤ n. If Pi has length 

greater than 1 for some i, then v1 is not ψ-adjacent 

to the vertex w1 which is adjacent to vi and is on Pi. 

Hence each Pi has length 1, so that degG(v1) = n − 1. 

Thus γ(G) = 1. 
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Corollary 1.2. If γ(G) = 2, then γgc(G) = 2. 

Proof. Since γgc(G) ≤ γ(G) = 2 and γgc(G) ≠ 1,      

we have γgc(G) = 2. 

Remark 1.3. The converse of Corollary 1.2 is not 

true. 

Example 1.4. Consider the acyclic graphoidal 

cover ψ = {(1,2),(2,3),(3,4),(2,5),(3,5,6)} of the 

graph G given in Figure 1.1(a). Then G(ψ) is given 

in Figure 1.1(b)    
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                          Figure 1.1 (a)          
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                                Figure 1.1(b) 

              Here γ(G) = 3 and γgc(G) = 2. 

Theorem 1.5.For the star K1,n  , γgc (K1,n ) = 1 and  

γGC ( K1,n ) = 2. 

Proof. Let V (G) = {v0,v1,v2,...,vn} with deg v0 = n 

and deg vi = 1 for all i = 1,2,...,n. 

          Let ψ be any acyclic graphoidal cover of G. 

If v0 is interior to ψ, then G(ψ) is isomorphic to    

K2 ∪ K1, n − 2 and hence γψ(G) = 2.  

          If v0 is exterior to ψ, then ψ = E(G) and 

hence γψ(G) = 1. 

Thus for any acyclic graphoidal cover ψ, we have 

γψ(G) = 1 or 2 and hence γgc(G) = 1 and   γgc(G) = 2. 

Theorem 1.6. For the bistar G=B(n1,n2) where 

n1,n2 ≥ 3, we have γgc(B(n1,n2)) = 2 and                  

γGC (B(n1,n2)) = 4.  

Proof.  

    Let V (B(n1,n2)) ={u,v,u1,u2,..., ,v1,v2,..., }  

with   deg ui = deg vj = 1 for all 1 ≤ i ≤ n1,1 ≤ j ≤ n2,         

N[u] = {u,u1,u2,..., } and N[v] = {v,v1,v2,..., }. 

Let ψ be any acyclic graphoidal cover of B(n1,n2). 

Let S be the set of vertices which are interior to ψ.  

Case i. |S| = 0.  

        Then ψ = E(G) and hence γψ (B(n1,n2)) = 2.  

Case ii. |S| = 1.  

         Assume without loss of generality that S = 

{u}. Let P be the path in ψ having u as an internal 

vertex. Then P = (ui,u,uj) for some i , j where 1 ≤ i 

< j ≤ n1 or P = (ui,u,v) for some i,1 ≤ i ≤ n1. Hence 

ψ = {P}∪{E(G) \ E(P)} so that G(ψ) is isomorphic 

to K2 ∪B(n1 − 2,n2) or  ∪ . Thus 

γψ(B(n1,n2)) = 3 or 2.  

Case iii. Let |S| = 2.  

        Then S = {u,v}. If both u and v are internal 

vertices of the same path P in ψ then P = (ui,u,v,vj) 

for some i, j where 1 ≤ i ≤ n1,1 ≤ j ≤ n2 and                

ψ = {P}∪{E(G) \ E(P)}. In this case G(ψ) is 

isomorphic to K2 ∪  ∪  and  hence          

γψ(B(n1,n2)) = 3.  

        If u and v are internal vertices of two diff erent 

paths P1 and P2 in ψ, then P1 = (ui,u,uj) for some  i, j,            

1 ≤ i < j ≤ n1, and P2 = (vr,v,vs) for some  r, s,           

1 ≤ r < s ≤ n2, and ψ = {P1,P2} ∪{E(G)\ E(P1 ∪ P2)}.      

        In this case G(ψ) is isomorphic to                         

2K2 ∪ B(n1 – 2 , n2 − 2) and hence γψ(B(n1,n2)) = 4. 

Thus γgc(B(n1,n2)) = 2 and γGC(B(n1,n2)) = 4. 

Theorem 1.7. For the tree T = S(K1,n), we have  

γgc(T) = n and  γGC(T) = n + 2. 
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Proof. Let V (T) = {u,u1,u2,...,un,v1,v2,...,vn} and 

E(T) = {uui , uivi : i = 1,2,...,n}. Let ψ be any 

acyclic graphoidal cover of  T. Let S be the set of 

all vertices which are interior to ψ. 

Case i. S = φ. 

        Then ψ = E(T) and γψ(T) = γ(T) = n.  

Case ii. S = {u}.  

       Without loss of generality we can take ψ = 

{(u1,u,u2),(u1,v1),(u2,v2),...,(un,vn),(u,u3),(u,u4),..., 

(u,un)}. In this case T(ψ) is isomorphic to               

P4 ∪ S(K1,n−2) and  hence  γψ(T) = n.  

Case iii. S = {u1,u2,...,un}.  

      In this case ψ = {uuivi : i = 1,2,...,n} and T(ψ) is 

isomorphic to nK1 ∪ K1,n and hence γψ(T) = n + 1.  

Case iv. S = {u,u1,u2,...,un}.  

      In this case  

ψ = {(v1,u1,u,u2,v2),(u,ui,vi) : i = 3,4,...,n} and      

T(ψ) is isomorphic to nK1∪K2 ∪ K1,n−2 and          

γψ(T) = n + 2.  

Case v. S = {u1,u2,...,uk} for some k,where1 ≤ k < n.  

       Then ψ = {(v1,u1,u),(v2,u2,u),...,(vk,uk,u),(u,uk+1), 

(uk+1,vk+1),...,(u,un),(un,vn)}. In this case T(ψ) is 

isomorphic to the graph given in Figure 1.2 and  

γψ(T) = n + 1. 

 

          u  
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                             Figure 1.2 

Case vi. S = {u,u1,u2,...,uk} for some k, 1 ≤ k < n.  

Then ψ = {(v1,u1,u,uk,vk),(v2,u2,u),...,(vk−1,vk−1,u), 

(u,uk+1),(uk+1,vk+1),...,(u,un),(un,vn)}. In this case T(ψ) 

is isomorphic to the graph given in Figure 1.3 and 

γψ(T) = n + 2. 
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Hence γgc(T) = n and γGC(T) = n + 2.  

Theorem 1.8. For any path Pn , γgc(Pn) = and 

γGC(Pn) = n − 1.  

Proof. Let ψ be any acyclic graphoidal cover of Pn.  

Case i. |ψ| = n − 1.  

      Then ψ = E(Pn) and γψ (Pn) = γ (Pn) = . 

Case ii. |ψ| = 1.  

       Then ψ = {Pn}and Pn(ψ) is isomorphic to        

K2 ∪ (n−2)K1. Hence  γψ (Pn) = n − 1.  

Case iii. Let ψ ={Q1,Q2,Q3,...,Qr},where  

                2 ≤ r ≤ n − 2.  

Then Pn (ψ) is isomorphic to  Pr+1 ∪ (n – r − 1)K1. 

Thus      γψ (Pn) =  + (n – r − 1) ≤  n−1. 

         Hence γgc (Pn) = and γGC (Pn) = n − 1.  

Theorem 1.9. For any cycle Cn , γgc (Cn) = and 

γGC ( Cn) = n − 1.  

Proof. If ψ is any acyclic graphoidal cover of Cn 

with |ψ| = 2, then Cn(ψ) = K2 ∪ (n − 2)K1 and hence           

γψ(Cn) = n − 1. Further, obviously, γψ(Cn) ≤ n − 1 

for any acyclic graphoidal cover ψ of Cn.                          

Hence γGC(Cn) = n − 1.  

          Now, for the acyclic graphoidal cover            

ψ = E(Cn), we have γψ(Cn) = γ(Cn) = so that   

γgc(Cn) ≤ .  Now, let ψ be any acyclic graphoidal 

cover of Cn with |ψ| = r > 2. Then Cn(ψ) is 

isomorphic to Cr ∪ (n − r)K1. Hence                  

γψ(Cn) = + (n − r) ≥ . Hence γgc(Cn) = .  

Theorem 1.10. . Let G = Wn + 1 be the wheel on 

n+1 vertices. Then γgc(G) = 1 and γGC(G) =  .  

 

Proof. Since γ(G) = 1, it follows that γgc(G) = 1. 
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          Let V (G) = {v,v1,v2,...,vn} and let   E(G) = 

{vvi : 1 ≤ i ≤ n}∪{vivi + 1 : 1 ≤ i ≤ n−1}∪ {v1,vn}. 

Now, let   P1 = (v, v2i − 1, v2i), where 1 ≤ i ≤ and 

let Q = (v,vn ,v1). Let ψ = {P1, P2,..., } ∪ S if n is 

even and let  ψ = {P1, P2, ..., , Q}∪S if n is odd, 

where S is the set of edges of G not covered by the 

paths Pi’s. Now, if n is even, then G(ψ) is 

isomorphic to S( ) and if n is odd, then G(ψ) is 

isomorphic to the graph obtained from  by 

subdividing all the edges of  except one edge. 

Hence     γψ(G) = , so that γGC(G) ≥ .       Now, 

let ψ be any acyclic graphoidal cover of G. Since 

δ(G) ≥ 3, we have G(ψ) has no isolates and hence 

γψ(G) ≤    = .             Hence γGC(G) ≤ . 

        Thus γGC(G) = .  

 

The following theorem gives a domination chain 

for gc-domination. 

Theorem 1.11. For any graph G,                     

irgc(G) ≤ γgc(G) ≤ igc(G) ≤ β0 gc(G) ≤ Γgc(G) ≤ 

IRgc(G). 

Proof. Let G be any graph. Let ψ be an acyclic 

graphoidal  cover of G, such that γgc(G) = γψ(G).  

Now, irψ(G) ≤ γψ(G) = γgc(G). Further                   

irgc(G) ≤ irψ(G) and hence irgc(G) ≤ γgc(G).  

     Now, choose an acyclic graphoidal cover ψ of G 

such that igc(G) = iψ(G).Then  

γgc(G) ≤ γψ(G) ≤ iψ(G) = igc(G) and hence  

γgc(G) ≤ igc(G). By a similar argument, we can 

prove that igc(G) ≤ β0 gc(G), β0 gc(G) ≤ Γgc(G) and 

Γgc(G) ≤ IRgc(G).  

Hence 

irgc(G) ≤ γgc(G) ≤ igc(G) ≤ β0 gc(G) ≤ Γgc(G) ≤ 

IRgc(G). 

          The following theorem gives a domination 

chain for GC-domination. 

Theorem 1.12. For any graph G, irGC(G) ≤ γGC(G) 

≤ iGC(G) ≤ β0 GC(G) ≤ ΓGC(G) ≤ IRGC(G). 

Proof. Let G be any graph. Choose an acyclic 

graphoidal cover ψ of G such that irGC(G) = irψ(G).               

        Then     irGC(G) = irψ(G) ≤ γψ(G) ≤ γGC(G) and 

hence     irGC(G) ≤ γGC(G).  

       By a similar argument we can prove that  

γGC(G) ≤ iGC(G), iGC(G) ≤ β0 GC(G),  

β0 GC(G) ≤ ΓGC(G) and  ΓGC(G) ≤ IRGC(G). 

 Hence  

 irGC(G) ≤ γGC(G) ≤ IGC(G) ≤ β0 GC(G) ≤ ΓGC(G) ≤ 

IRGC(G). 

Theorem 1.13. For any graph G,                              

                          γgc(G) ≤  2 irgc(G) − 1. 

Proof. Let G be any graph G and let ψ be any 

acyclic graphoidal cover of G. We have, for any 

graph G γ(G) ≤  2 ir(G) − 1.  It follows from  this 

γψ(G) ≤ 2 irψ(G) − 1. Now choose an acyclic 

graphoidal cover ψ of G such that irψ(G) = irgc(G). 

Then γgc(G) ≤ γψ(G) ≤ 2 irψ(G) − 1 = 2 irgc(G) − 1. 

       Thus γgc(G) ≤ 2 irgc(G) − 1 

Corollary 1.14. For any graph G,  

                     ≤  irgc(G) ≤ γgc(G).  

Theorem 1.15. For any graph G, 

              < irgc(G) ≤ γgc(G) ≤ 2 irgc − 1. 

Proof. Let G be any graph and ψ be any acyclic 

graphoidal cover of G. 

           It follows from Theorem 1.13 and Corollary 

1.14 that   < irgc(G) ≤ γgc(G) ≤ 2 irgc − 1. 

CONCLUSION 

    I found the parameters γgc(G) and γGC(G) for 

standard graphs and we can find the same 

parameters for any graph.. 
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