Some Results on Positive Elements in the Tensor Product of C^{*}-algebras

Anamika Sarma ${ }^{1}$, Nilakshi Goswami ${ }^{2}$
${ }^{1}$ Research Scholar, ${ }^{2}$ Assistant Professor, Department of Mathematics, Gauhati University, Assam, India

Abstract

In this paper, we discuss different properties of positive elements in the tensor product of two C^{*}-algebras. Considering the cone of positive elements in a C^{*}-algebra \mathcal{A}, we define a cone norm on the set of Hermitian elements of \mathcal{A}. Some results regarding positive forms in the tensor product are also derived here.

AMS Subject Classification-47L40, 22D25.
Keywords- C^{*}-algebra, positive element, tensor product, cone norm, positive form.

1 Introduction

In 1943, Gelfand and Naimark introduced the notion of a C^{*}-algebra, which is a Banach algebra with an involution * satisfying $\left\|a^{*}\right\|=\|a\|$ and $\left\|a^{*} a\right\|=$ $\|a\|^{2}$. The term C^{*}-algebra was introduced by I.E.Segal in 1947 to describe norm-closed subalgebras of $\beta(\mathcal{H})$, space of bounded linear operatorson some Hilbert space \mathcal{H} (C stands for closed). In 1969, A.Guichardet [7] discussed about C^{*}-tensor norms and the tensor product of C^{*} algebras. Kaijserand Sinclair [10] studied about the projective tensor product of C*-algebras in1984. Blecher in his paper [1], investigated the geometrical properties of algebra norms on the tensor product of C*- algebras. Keith Conard in his paper[3] discussed about the tensor products of linear maps.

In this paper, we derive some results on positive elements in the tensorproduct of two C*algebras. We also define a cone norm on the set of Hermitianelements of a C^{*}-algebra. Some results regarding positive forms in the tensorproduct of two C*-algebras are also discussed here.

Definition 1.1. [11]:Let \mathcal{A} and \mathcal{B} be two C^{*} algebras, $\mathcal{A} \otimes B$ denote the algebraic tensor product of \mathcal{A} and \mathcal{B}. Then $\mathcal{A} \otimes B$ is a C^{*}-algebra under the natural definitions:

$$
(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right)=a a^{\prime} \otimes b b^{\prime}
$$

and \quad involution $\left(\sum_{i} a_{i} \otimes b_{i}\right)^{*} \quad=\sum_{i} a_{i}^{*} \otimes b_{i}^{*}$ where $a, a^{\prime}, a_{i} \in \mathcal{A}$ and $b, b^{\prime}, b_{i} \in \mathcal{B}$.

Definition 1.2. [1]:If α is a norm on $\mathcal{A} \otimes B$ then α is called a crossnorm if $\|a \otimes b\|_{\alpha}=\|a\| \|$ $b \|$ for $a \in \mathcal{A}$ and $b \in \mathcal{B}$.

Definition 1.3. [11]: A norm on a *-algebra \mathcal{A} that satisfies $\left\|a^{*} a\right\|=\|a\|^{2}$ for all a in \mathcal{A} is called a C^{*}-norm.

If α is an algebra norm defined on an algebra \mathcal{A}, we call α a C^{*}-norm on \mathcal{A} if there is an involution on the α-completion of \mathcal{A} making it into a C^{*} algebra. If \mathcal{A} and \mathcal{B} are C^{*}-algebras, then there are several norms α that turn $\mathcal{A} \otimes_{\alpha} \mathcal{B}$ (completion of $\mathcal{A} \otimes B$ with respect to α) into a C^{*}-algebra.
Definition 1.4. [13]: Let \mathcal{A} be a C^{*}-algebra. An element $a \in \mathcal{A}$ is called
i) self adjoint or hermitian if $a=a^{*}$
ii) normal if $a^{*} a=a a^{*}$
iii) a projection if $a=a^{2}=a^{*}$
iv) unitary if $a^{*} a=e=a a^{*}$ (e being the unit element of \mathcal{A})

Definition 1.5. [14]: Let \mathcal{A} be a C^{*}-algebra. An element $a \in \mathcal{A}$ is called positive if $a=a^{*}$ and $\sigma(a) \subseteq \mathbb{R}^{+}$. It is denoted by $a \geq 0$.

The set of all positive elements of \mathcal{A} is denoted by \mathcal{A}^{+}. For a unital C^{*}-algebra \mathcal{A} with $a, b \in \mathcal{A}$, we write $a \geq b$ when a and b are self adjoint and $(a-$ $b) \geq 0$. Then \geq is a partial order on the set of self adjoint elements of \mathcal{A}.

Definition 1.6.[4]:Let \mathcal{A} be a C^{*}-algebra. A linear form (or functional) f on \mathcal{A} is said to be positive if $f\left(x^{*} x\right) \geq 0$ for each $x \in \mathcal{A}$. A state on \mathcal{A} isa continuous positive linear form f on \mathcal{A} such that $\|f\|=1$.

Definition 1.7. [13]: A trace on \mathcal{A} is a positive linear form f with $f(e)=1$ satisfying $f(a b)=f(b a)$ for all $a, b \in \mathcal{A}$. This condition is usually called the trace property. The trace is said to be faithful if $f\left(a^{*} a\right)=0$ occurs only for $a=0$.
If \mathcal{A} is commutative, every positive linear form is a trace.
Definition 1.8. [2] A positive linear form f on \mathcal{A} is called pure if for any positive linear form g on \mathcal{A} satisfying $g \leq f$, we have $g=\alpha f$ for some $\alpha \geq 0$. We call a positive form f (which is also a homomorphism) pure (uptohomomorphism), if for any positive linear form (also homomorphism) g on
\mathcal{A} satisfying $g \leq f$, we have $g=\alpha f$ for some $\alpha \geq$ 0.

2 MAIN RESULTS

First, we discuss some properties of positive elements in the tensor product of two concrete C*algebras. For a Hilbert space \mathcal{H}, a sub-algebra of $\beta(\mathcal{H})$ which is closed under norm and under adjoint operation is called a concreteC*-algebra. If \mathcal{A} is a concrete C^{*}-algebra, it can be represented by $\mathcal{A} \hookrightarrow \beta(\mathcal{H})$. From the GNS theorem [14], we have, every C^{*}-algebra is isometrically $*$ isomorphic to a concrete C^{*}-algebra. Here, we take two concrete C^{*} algebras \mathcal{A} and \mathcal{B} and a C^{*} - norm α (which is also a cross norm) on $\mathcal{A} \otimes \mathcal{B}$.

Lemma2.1[14]: Let \mathcal{A} be a C^{*}-algebra and $a \in \mathcal{A}$. Then the following are equivalent:
i) $\quad a \geq 0$.
ii) $\quad a=b^{*} b$ for some $b \in \mathcal{A}$.
iii) $\quad a=b^{2}$ for some self adjoint element $b \in \mathcal{A}$.

Lemma 2.2([14], [15]): Let \mathcal{A} be a C^{*}-algebra and $a, b \in \mathcal{A}$.
i) If $a \geq 0$ and $-a \geq 0$, then $a=0$.
ii) If $a, b \geq 0$ and $a b=b a$, then $a b \geq 0$ and $a+b \geq 0$.
iii) If \mathcal{A} is a unital C^{*}-algebra, $a=a^{*}$ and \| $a \| \leq 2$, then $a \geq 0$ if and only if $\|a-e\| \leq 1$
iv) If a is positive and $a^{n}=a^{m}$ for some integers $0 \leq m \leq n$, then a is a projection.
v) Every projection is a positive element.
vi) Let a be a positive element in \mathcal{A}. Then for a given arbitrary positive integern, there exists a unique positive element $b \in \mathcal{A}$ such that $b^{n}=a$.
vii) Let $t \in \mathbb{R}^{+}$and $a, b \in \mathcal{A}^{+}$. Then $t a+b \in \mathcal{A}^{+}$.
viii) \quad If $0 \leq a \leq b$ then $\|a\| \leq\|b\|$.
ix) If $a, b \in \mathcal{A}^{+}$then
$\|a-b\| \leq \max (a\|\| b \|$,
Regarding positive elements in $\mathcal{A} \otimes_{\alpha} \mathcal{B}$ we derive the following result:

Theorem 2.3 For $a \in \mathcal{A}$ and $b \in \mathcal{B}$,
i) If $a \geq 0, b \geq 0$ then $a \otimes b \geq 0$ and the converse holds if $a \otimes b \neq 0$.
ii) If a and b are projections, then $a \otimes b$ is also a projection.
iii) If a and b are two normal elements, then $a \otimes b$ is also a normal element.
iv) Let $a, c \in \mathcal{A}$ and $b, d \in \mathcal{B}$ be positive elements such that $b \geq a$ and $d \geq$ c.Then
$\|a \otimes b-c \otimes d\| \leq(\|b\|+\|d\|)^{2}$.
v) For unital C^{*}-algebras \mathcal{A} and \mathcal{B}, if $a \otimes b \in \mathcal{A} \otimes_{\alpha} \mathcal{B}$ is such thatmax $a\|\| b \|,) \leq 2$, then

$$
\begin{aligned}
& \left\|e_{1} \otimes e_{2}-a \otimes b\right\| \\
& \leq\left\{\begin{array}{l}
1+2\|b\| \text {, if } a \text { is positive } \\
1+2\|a\| \text {, if } b \text { is positive }
\end{array}\right.
\end{aligned}
$$

(where e_{1} and e_{2} are unit elements of \mathcal{A} and \mathcal{B} respectively)

Proof:

i) As $a \geq 0$ and $b \geq 0 \quad$ so, $a=c^{*} c, b=$ $d^{*} d$
for some $c \in \mathcal{A}, d \in \mathcal{B}$. So,

$$
a \otimes b=c^{*} c \otimes d^{*} d
$$

$$
=(c \otimes d)^{*}(c \otimes d)
$$

for $c \otimes d \in \mathcal{A} \otimes_{\alpha} \mathcal{B}$ which implies $a \otimes b \geq 0$.
Conversely, let $a \otimes b \geq 0$ and $a \geq 0$ but $b \leq 0 \Rightarrow$ $-b \geq 0$.
Therefore, $\quad a \otimes(-b) \geq 0 \Rightarrow-a \otimes b \geq 0 \Rightarrow a \otimes$ $b \leq 0$.
So, $a \otimes b=0$, a contradiction.
Thus $a \otimes b \geq 0 \Rightarrow a \geq 0, b \geq 0$.
ii) $\quad a$ and b are projections implies $a=$ $a 2=a *$
and $b=b^{2}=b^{*}$. Now,

$$
\begin{aligned}
& a \otimes b=a^{*} \otimes b^{*}=(a \otimes b)^{*} \\
& a \otimes b=a^{2} \otimes b^{2}=(a \otimes b)^{2}
\end{aligned}
$$

showing that $a \otimes b$ is a projection.
iii) As a and b are normal elements,

$$
a^{*} a=a a^{*} \text { and } b^{*} b=b b^{*}
$$

Now,

$$
\begin{aligned}
(a \otimes b)(a \otimes b)^{*} & =a a^{*} \otimes b b^{*} \\
& =a^{*} a \otimes b^{*} b \\
& =(a \otimes b)^{*}(a \otimes b)
\end{aligned}
$$

Thus, $(a \otimes b)$ is also normal.
iv) $\quad\|a \otimes b-c \otimes d\| \leq\|a \otimes b\|+\| c \otimes$ $d \|$

$$
\begin{aligned}
& \quad=\|a\|\|b\|+\|c\| \\
& \|d\| \\
& \leq\|b\|\|b\|+\|d\| \\
& \|d\| \\
& \text { (by Lemma 2.2(viii)) } \\
& =\|b\|^{2}+\|d\|^{2}
\end{aligned}
$$

$$
\leq(\|b\|+\|d\|)^{2}
$$

v) Let $a \in \mathcal{A}$ be positive and $b \in \mathcal{B}$ be arbitrary. Then , \| $e_{1} \otimes e_{2}-a \otimes b \|$

$$
\begin{aligned}
& =\left\|\left(e_{1}-a\right) \otimes b+e_{1} \otimes\left(e_{2}-b\right)\right\| \\
& \leq\left\|e_{1}-a\right\|\|b\|+\left\|e_{1}\right\|\left\|e_{2}-b\right\| \\
& \quad \leq 1 .\|b\|+\left\|e_{2}-b\right\|[\text { by Lemma } \\
& \leq 1+2\|b\|
\end{aligned}
$$

2.2 (iii)]

Similarly if $b \in \mathcal{B}$ is positive, then
$\left\|e_{1} \otimes e_{2}-a \otimes b\right\| \leq 1+2\|a\|$

Next, we consider the set of Hermitian elements H (which is avector space over \mathbb{R}) on a commutative realC*-algebra \mathcal{A}. With the help of positive elements we show that it is a cone Banach space over \mathcal{A}. As a genealization of normed spaces, cone normedspaces play a very important role in different branches of functionalanalysis. In 2009, .M.E.Gordji et al introduced the notion of conenormed spaces.

Definition 2.4 [5]For a vector space E, a subset P (of E) is
called a cone whenever
i) $\quad P$ is a closed, non empty set and $P \neq\{0\}$,
ii) $\quad a x+b y \in P$ for all $x, y \in P$ and $a, b \geq 0$,
iii) $\quad P \cap(-P)=\{0\}$.

With respect to P a partial ordering \leq can be defined on E by $x \leq y$ if and only if $(y-x) \in P$. The cone P is normal if there is a number $K \geq 1$ such that for all $x, y \in E, 0 \leq x \leq y \Rightarrow\|x\| \leq K\|y\|$.

Definition 2.5 [5]Let X be a real vector space. If the mapping $\|.\|_{P}: X \rightarrow E$ satisfies:
a) $\|x\|_{P} \geq 0 \forall x \in X$ and $\|x\|_{P}=0$ iff $x=0$,
b) $\|\alpha x\|_{P}=|\alpha|\|x\|_{P}, \forall x \in X$ and $\alpha \in \mathbb{R}$,
c) $\|x+y\|_{P} \leq\|x\|_{P}+\|y\|_{P}, \forall x, y \in X$,
then $\|\cdot\|_{P}$ is called a cone norm on X and $\left(X,\|\cdot\|_{P}\right)$ is called a cone normed space over E.

Here, we define a map: $\|.\|_{P}: H \rightarrow \mathcal{A}$ such that

$$
\|x\|_{P}=\left\{\begin{array}{c}
x, \text { if } x \text { is positive } \\
0, \text { if } x=0 \\
-x, \text { if } x \text { is not positive }
\end{array}\right.
$$

Theorem 2.6: With respect to $\|g\|_{P}, \mathrm{H}$ is a cone Banach space over \mathcal{A}.

Proof: Let $x \in$ Hbe arbitrary and α be a scalar. Then
i) $\quad\|x\|_{P} \geq 0 \forall x \in$ Hand $\|x\|_{P}=$ 0 iff $x=0$ (by definition)
ii)

Case I: Let $x \geq 0$
For $\alpha \geq 0,\|\alpha x\|_{P}=\alpha x=|\alpha|\|x\|_{P}$
For $\alpha \leq 0,\|\alpha x\|_{P}=-\alpha x=|\alpha|\|x\|_{P}$
Case II: Let $x \leq 0$
For $\alpha \geq 0,\|\alpha x\|_{P}=-\alpha x=\alpha(-x)=|\alpha|\|x\|_{P}$
For $\alpha \leq 0,\|\alpha x\|_{P}=\alpha x=(-\alpha)(-x)=|\alpha|\|x\|_{P}$
iii) Let $x, y \in \mathrm{H}$ be arbitrary.

Case I: Let $x \geq 0$
For $y \geq 0,\|x+y\|_{P}=x+y=\|x\|_{P}+\|y\|_{P}$
For $y \leq 0$ and $x \geq-y$ i.e., $x+y \geq 0$,

$$
\|x\|_{P}+\|y\|_{P}=x-y \geq x+y=\|x+y\|_{P}
$$

$$
\begin{aligned}
& (-y \geq 0 \Rightarrow-2 y \geq 0 \Rightarrow(x-y)-(x+y) \geq 0 \Rightarrow \\
& x-y \geq x+y) \\
& \text { For }-y \geq 0 \text { and }-y \geq x \text { i.e., }-(x+y) \geq 0 \\
& \quad\|x\|_{P}+\|y\|_{P}=x-y \geq-(x+y)=\|x+y\|_{P} \\
& (x \geq 0 \Rightarrow 2 x \geq 0 \Rightarrow(x-y)+(x+y) \geq 0) \\
& \text { Case II: If }-x \geq 0,-y \geq 0 \\
& \quad\|x\|_{P}+\|y\|_{P}=(-x)+(-y)=-(x+y) \\
& =\|x+y\|_{P}
\end{aligned}
$$

Thus $\|.\|_{P}$ is a cone norm on H .
To show that $\left(\mathrm{H},\|\cdot\|_{P}\right)$ is complete:
Let $\left\{x_{n}\right\}$ be a Cauchy sequence in H.As $\mathrm{H} \subseteq \mathcal{A}$ and \mathcal{A} is complete, so $\left\{x_{n}\right\}$ converges to some x asn $\rightarrow \infty$ i.e., $\lim _{\mathrm{n} \rightarrow \infty}\left(x_{n}-x\right)=0 \Rightarrow \lim _{\mathrm{n} \rightarrow \infty}\left\|\left(x_{n}-x\right)\right\|_{P}=0$ (by definition of the cone norm).
Thus H is complete with respect to $\|.\|_{P}$, i.e., it is a cone BanachSpace.

In [8], H.L.Guang and Z.Xian, proved the following fixed pointtheorem in cone Banach spaces.

Theorem 2.7: Let $\left(\mathrm{X},\|.\|_{P}\right)$ be a complete cone normed space, P be a normal cone with normal constant K. Suppose the mapping: $T: X \rightarrow X$ satisfies the contractive condition : $\|T x-T y\|_{P} \leq$ $k\|x-y\|_{P}, \forall x, y \in X, \quad$ where $k \in[0,1) \quad$ is \quad a constant. Then T has a unique fixed point in X.

Example 2.8 For the cone Banach space ($\mathrm{H},\|\cdot\|_{P}$), we defineT $x=\frac{x}{\alpha}(\alpha \geq 1), x \in \mathrm{H}$. Then

$$
\|T x-T y\|_{P}=T x-T y \text {, if } T x-T y \text { is positive }
$$

$y \geq 0$)

$$
=\frac{x}{\alpha}-\frac{y}{\alpha}=\frac{x-y}{\alpha}=\frac{1}{\alpha}\|x-y\|_{P} \quad(\text { as } x-
$$

$$
\|T x-T y\|_{P}=0, \quad \text { if } T x-T y=0
$$

$$
=\frac{1}{\alpha}\|x-y\|_{P} \quad(\text { as } x-y
$$

$$
=0)
$$

$\|T x-T y\|_{P}=-(T x-T y)$, if $T x-T y$ is not positive

$$
\begin{aligned}
& =-\left(\frac{x}{\alpha}-\frac{y}{\alpha}\right)=-\frac{1}{\alpha}(x-y) \\
& =\frac{1}{\alpha}\|x-y\|_{P}(\text { as }-(x-y) \\
& \geq 0)
\end{aligned}
$$

Thus k\| $T x-T y\left\|_{P} \leq \frac{1}{\alpha}\right\| x-y \|_{P}$. So by the above theorem T has a unique fixed point in H .

Next we discuss some properties of positive linear forms on C^{*}-algebras. From [12] we have,

Lemma 2.9: Let \mathcal{A} be a C^{*}-algebra. Then
i) Every positive linear form f on \mathcal{A} is bounded
and has norm $f(e)$ (if \mathcal{A} is unital with unit e).
ii) If f is a positive linear form on \mathcal{A}, then
$f\left(a^{*}\right)=\overline{f(a)},|f(a)|^{2} \leq\|f\| f\left(a^{*} a\right) \forall a \in \mathcal{A}$ and $\left|f\left(b^{*} a\right)\right|^{2} \leq f\left(b^{*} b\right) f\left(a^{*} a\right)$.
iii) If f is a bounded linear form on a unital
C^{*}-algebra \mathcal{A} then f is positive iff $f(e)=1$.
iv) If f_{1} and f_{2} are positive linear forms on a
unital $\quad \mathrm{C}^{*}$-algebra, then $\left\|f_{1}+f_{2}\right\|=\left\|f_{1}\right\|+\|$ $f_{2} \|$.

Lemma 2.10:[12] Let \mathcal{B} be a C^{*}-subalgebra of a C^{*} algebra \mathcal{A} and suppose that f_{0} is a positive linear
form on \mathcal{B}. Then there isa positive linear form f on \mathcal{A} extending f_{0} such that $\|f\|=\left\|f_{0}\right\|$.
For two unital C^{*}-algebras \mathcal{A} and \mathcal{B}, let $\mathcal{F}\left(\mathcal{A} \otimes_{\alpha} \mathcal{B}\right), \mathcal{F}(\mathcal{A})$ and $\mathcal{F}(\mathcal{B})$ be the sets of all positive linear forms on $\mathcal{A} \otimes_{\alpha} \mathcal{B}, \mathcal{A}$ and $\mathcal{B r e s p e c t i v e l y .}$ Here we find a relation between $\mathcal{F}\left(\mathcal{A} \otimes_{\alpha} \mathcal{B}\right)$ and $\mathcal{F}(\mathcal{A})$ and $\mathcal{F}(\mathcal{B})$.

Theorem 2.11: Corresponding to a positive linearform $f \in \mathcal{F}\left(\mathcal{A} \otimes_{\alpha} \mathcal{B}\right)$, there exist two positive linear forms \widetilde{f}_{1} and \widetilde{f}_{2} on \mathcal{A} and \mathcal{B} respectively.
Proof: We consider the set

$$
\begin{gathered}
I=\left\{x \in \mathcal{A} \otimes_{\alpha} \mathcal{B}: f\left(x^{*} y\right)+f\left(y^{*} x\right)=0 \forall y\right. \\
\left.\in \mathcal{A} \otimes_{\alpha} \mathcal{B}\right\}
\end{gathered}
$$

Then I is a subspace of $\mathcal{A} \otimes_{\alpha} \mathcal{B}$, as for $x_{1}, x_{2} \in$ $I, \alpha, \beta \in \mathbb{K}$ and $y \in \mathcal{A} \otimes_{\alpha} \mathcal{B}$ arbitrary,

$$
\begin{aligned}
& f\left(\left(\alpha x_{1}+\beta x_{2}\right)^{*} y+y^{*}\left(\alpha x_{1}+\beta x_{2}\right)\right) \\
& =f\left(\bar{\alpha} x_{1}^{*} y\right)+f\left(\bar{\beta} x_{2}^{*} y\right)+f\left(y^{*} \alpha x_{1}\right) \\
& +f\left(y^{*} \beta x_{2}\right) \\
& =f\left(x_{1}^{*}(\bar{\alpha} y)\right)+f\left((\bar{\alpha} y)^{*} x_{1}\right)+f\left(x_{2}^{*}(\bar{\beta} y)\right) \\
& +f\left((\bar{\beta} y)^{*} x_{2}\right) \\
& =0 \quad \text { (using the definition of } I \text {) }
\end{aligned}
$$

Again, for $x \in I$ and $y, z \in \mathcal{A} \otimes_{\alpha} \mathcal{B}$ arbitrary,

$$
\begin{gathered}
f\left((z x)^{*} y+y^{*}(z x)\right)=f\left(x^{*} z^{*} y+y^{*} z x\right) \\
=f\left(x^{*}\left(z^{*} y\right)+\left(z^{*} y\right)^{*} x\right) \\
=0
\end{gathered}
$$

showingthat I is also an ideal.
Let $g_{1} \in \mathcal{A}^{*}$ and $g_{2} \in \mathcal{B}^{*}$ (the dual spaces) be two homomorphisms. We define $h_{1}: I \rightarrow \mathcal{A}$ by

$$
h_{1}\left(\sum_{i} p_{i} \otimes q_{i}\right)=\sum_{i} g_{2}\left(q_{i}\right) p_{i}
$$

Clearly h_{1} is linear.
For $x=\sum_{i} p_{i} \otimes q_{i}, y=\sum_{j} a_{j} \otimes b_{j} \in I$,

$$
\begin{aligned}
& \begin{array}{l}
h_{1}(x y)=h_{1}\left(\sum_{i, j} p_{i} a_{j} \otimes q_{i} b_{j}\right) \\
=\sum_{i, j} g_{2}\left(q_{i} b_{j}\right) p_{i} a_{j} \\
=\sum_{i, j} g_{2}\left(q_{i}\right) g_{2}\left(b_{j}\right) p_{i} a_{j}
\end{array} .
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\sum_{i} g_{2}\left(q_{i}\right) p_{i}\right)\left(\sum_{j} g_{2}\left(b_{j}\right) a_{j}\right) \\
& =h_{1}\left(\sum_{i} p_{i} \otimes q_{i}\right) h_{1}\left(\sum_{j} a_{j}\right. \\
& \left.\otimes b_{j}\right) \quad=h_{1}(x) h_{1}(y)
\end{aligned}
$$

showing that h_{1} is also a homomorphism.
Similarly, we can define (using g_{1}) a homomorphism $h_{2}: I \rightarrow \mathcal{B}$.
Let $I_{1}=h_{1}(I), I_{2}=h_{2}(I)$. Then, I_{1} and I_{2} are also ideals of \mathcal{A} and \mathcal{B} respectively.
We define $f_{1}: I_{1} \rightarrow \mathbb{K}$ by $f_{1}\left(a_{1}\right)=f\left(a_{1} \otimes e_{2}\right), a_{1} \in$ $I_{1}\left(e_{2}\right.$ being the unitelement of $\left.\mathcal{B}\right)$. Then, f_{1} is linear.

$$
\begin{aligned}
f_{1}\left(a_{1}{ }^{*} a_{1}\right) & =f\left(a_{1}{ }^{*} a_{1} \otimes e_{2}\right) \\
& =f\left(\left(a_{1} \otimes e_{2}\right)^{*}\left(a_{1} \otimes e_{2}\right)\right) \\
& \geq 0(\text { since } f \text { is a positive form })
\end{aligned}
$$ which shows that f_{1} is a positive linear form on I_{1}. Now, using Lemma 2.10, f_{1} can be extended to a positive linearform $\widetilde{f}_{1}: \mathcal{A} \rightarrow \mathbb{K}$, where $\left.\widetilde{f}_{1}\right|_{I_{1}}=f_{1}$, i.e. $\widetilde{f}_{1} \in \mathcal{F}(\mathcal{A})$ with $\left\|\widetilde{f}_{1}\right\|=\left\|f_{1}\right\|$.

Similarly, defining $f_{2}: I_{2} \rightarrow \mathbb{K}$ by $f_{2}\left(b_{1}\right)=$ $f\left(e_{1} \otimes b_{1}\right), b_{1} \in I_{2}\left(e_{1}\right.$ being the unitelement of \mathcal{A}, we can find $\widetilde{f_{2}} \in \mathcal{F}(\mathcal{B})$ with $\left.\widetilde{f}_{2}\right|_{I_{2}}=f_{2}$ and $\left\|\widetilde{f}_{2}\right\|=\|$ $f_{2} \|$.

Theorem 2.12: If I contains the unit element, the following propertiesof f are inherited by f_{1} and f_{2} :
(i) If f is a trace so are f_{1} and f_{2}.
(ii) If f is faithful so are f_{1} and f_{2}.
(iii) If f is state, f_{1} and f_{2} are also states.
(iv) If f is pure so are f_{1} and f_{2}.
(If f is such that $\operatorname{Re} f(x)=0 \forall x \in \mathcal{A} \otimes_{\alpha} \mathcal{B}$, then $f\left(x+x^{*}\right)=0$ so, I containsthe unit element, i.e. $I=\mathcal{A} \otimes_{\alpha} \mathcal{B}$ and accordingly I_{1} and I_{2} also contain the
unit elements.)

$$
\begin{aligned}
& \text { Proof : i) } f_{1}\left(e_{1}\right)=f\left(e_{1} \otimes e_{2}\right)=1 \\
& \begin{array}{c}
f_{1}\left(a_{1} a_{2}\right)=f\left(a_{1} a_{2} \otimes e_{2}\right) \\
=f\left(\left(a_{1} \otimes e_{2}\right)\left(a_{2} \otimes e_{2}\right)\right) \\
=f\left(\left(a_{2} \otimes e_{2}\right)\left(a_{1} \otimes e_{2}\right)\right)=f\left(a_{2} a_{1} \otimes e_{2}\right) \\
=f_{1}\left(a_{2} a_{1}\right)
\end{array}
\end{aligned}
$$

showing that f_{1} is a trace. Similarly f_{2} is also a trace.

$$
\text { ii) } \begin{gathered}
f_{1}\left(a_{1}{ }^{*} a_{1}\right)=0 \Rightarrow f\left(a_{1}{ }^{*} a_{1} \otimes e_{2}\right)=0 \\
\quad=f\left(\left(a_{1} \otimes e_{2}\right)^{*}\left(a_{1} \otimes e_{2}\right)\right)=0 \\
\Rightarrow a_{1} \otimes e_{2}=0 \Rightarrow\left\|a_{1} \otimes e_{2}\right\|=0 \\
\Rightarrow\left\|a_{1}\right\|\left\|e_{2}\right\|=0 \Rightarrow\left\|a_{1}\right\|=0 \Rightarrow a_{1}=0
\end{gathered}
$$

which implies f_{1} is faithful. Similarly, f_{2} is also faithful.
(iii) Clearly if f is continuous, f_{1} and f_{2} are also continuous. Also $\|f\|=1$.
Now, $\left\|f_{1}\right\|=f_{1}\left(e_{1}\right)=f\left(e_{1} \otimes e_{2}\right)=\|f\|=1$.
Similarly, $\left\|f_{2}\right\|=1$, which shows that f_{1} and f_{2} are states.
iv) If g is a positive linear form dominated by f, i.e, $g \leq f$ then $g=\alpha f$ for some $\alpha \geq 0$. Let $g_{1} \leq f_{1}$.
We define $h: \mathcal{A} \otimes_{\alpha} \mathcal{B} \rightarrow \mathbb{K}$ by

$$
h\left(\sum_{i} p_{i} \otimes q_{i}\right)=\sum_{i} g_{1}\left(p_{i}\right) f\left(e_{1} \otimes q_{i}\right)
$$

Then h is a positive linear form on $\mathcal{A} \otimes_{\alpha}$ B.Also, $h\left(\left(\sum_{i} p_{i} \otimes q_{i}\right)^{*}\left(\sum_{i} p_{i} \otimes q_{i}\right)\right)=$ $h\left(\sum_{i, j} p_{i}{ }^{*} p_{j} \otimes q_{i}{ }^{*} q_{j}\right)$

$$
=h\left(\sum_{i} p_{i}^{*} p_{i} \otimes q_{i}^{*} q_{i}\right)
$$

$$
+\frac{1}{2} h\left(\sum _ { i , j , i \neq j } \left(p_{i}^{*} p_{j} \otimes q_{i}^{*} q_{j}\right.\right.
$$

$$
\left.\left.+p_{j}{ }^{*} p_{i} \otimes q_{j}^{*} q_{i}\right)\right)
$$

$$
=\sum_{i} g_{1}\left(p_{i}{ }^{*} p_{i}\right) f\left(e_{1} \otimes q_{i}{ }^{*} q_{i}\right)
$$

$$
+\frac{1}{2} \sum_{i, j, i \neq j}\left(g _ { 1 } (p _ { i } { } ^ { * } p _ { j }) f \left(e_{1}\right.\right.
$$

$$
\left.\otimes q_{i}^{*} q_{j}\right) \quad+g_{1}\left(p_{j}^{*} p_{i}\right) f\left(e_{1}\right.
$$

$$
\left.\left.\otimes q_{j}^{*} q_{i}\right)\right)
$$

$$
\leq \sum_{i} f_{1}\left(p_{i}^{*} p_{i}\right) f\left(e_{1} \otimes q_{i}^{*} q_{i}\right)
$$

$$
+\frac{1}{2} \sum_{i, j, i \neq j} \bar{\alpha}_{i, j} f\left(e_{1} \otimes q_{i}^{*} q_{j}\right)
$$

$$
+\alpha_{i, j} f\left(e_{1} \otimes q_{j}{ }^{*} q_{i}\right)
$$

$$
\text { taking } \alpha_{i, j}=g_{1}\left(p_{j}{ }^{*} p_{i}\right)
$$

$$
=\sum_{i} f_{1}\left(p_{i}^{*} p_{i}\right) f\left(e_{1} \otimes q_{i}^{*} q_{i}\right)+\frac{1}{2} \sum_{i, j, i \neq j} f\left(\left(\alpha_{i, j} e_{1}\right.\right.
$$

$\left.\otimes q_{i}\right)^{*}$
$\left.\left(e_{1} \otimes q_{j}\right)+\left(e_{1} \otimes q_{j}\right)^{*}\left(\alpha_{i, j} e_{1} \otimes q_{i}\right)\right)$
$=\sum_{i} f_{1}\left(p_{i}{ }^{*} p_{i}\right) f\left(e_{1} \otimes q_{i}{ }^{*} q_{i}\right)+\frac{1}{2} .0$ (by definition of I)

$$
=\sum_{i} f\left(p_{i}^{*} p_{i} \otimes e_{2}\right) f\left(e_{1} \otimes q_{i}^{*} q_{i}\right)+A
$$

(where $A=\frac{1}{2} \sum_{i, j, i \neq j}\left(f_{1}\left(p_{i}{ }^{*} p_{j}\right) f\left(e_{1} \otimes q_{i}{ }^{*} q_{j}\right)+\right.$ $f_{1}\left(p_{j}{ }^{*} p_{i}\right) f\left(e_{1} \otimes q_{j}{ }^{*} q_{i}\right)$,
which is also 0 by definition of I and as in the above argument, taking $\left.\alpha_{i, j}=f_{1}\left(p_{j}{ }^{*} p_{i}\right).\right)$

$$
\begin{aligned}
&=\sum_{i} f\left(\left(p_{i}^{*} \otimes q_{i}^{*}\right)\left(p_{i} \otimes q_{i}\right)\right) \\
&+\frac{1}{2} \sum_{i, j, i \neq j}\left(f \left((p _ { i } ^ { * } \otimes q _ { i } ^ { * }) \left(p_{j}\right.\right.\right. \\
&\left.\left.\otimes q_{j}\right)\right) \\
&+ f\left(\left(p_{j}^{*} \otimes q_{j}^{*}\right)\left(p_{i} \otimes q_{i}\right)\right)
\end{aligned}
$$

$$
=f\left(\left(\sum_{i} p_{i} \otimes q_{i}\right)^{*}\left(\sum_{i} p_{i} \otimes q_{i}\right)\right)
$$

Showing that $h \leq f$. So, $h=\alpha f$ for some $\alpha \geq 0$. Then ,

$$
\begin{aligned}
h\left(\sum_{i} p_{i} \otimes q_{i}\right) & =\alpha f\left(\sum_{i} p_{i} \otimes q_{i}\right) \\
& =\alpha \sum_{i} f_{1}\left(p_{i}\right) f\left(e_{1} \otimes q_{i}\right)
\end{aligned}
$$

$\Rightarrow \sum_{i} g_{1}\left(p_{i}\right) f\left(e_{1} \otimes q_{i}\right)=\alpha \sum_{i} f_{1}\left(p_{i}\right) f\left(e_{1} \otimes q_{i}\right)$
$\left.\quad \Rightarrow \sum_{i}\left(g_{1}\left(p_{i}\right)-\alpha f_{1}\left(p_{i}\right)\right) f\left(e_{1} \otimes q_{i}\right)\right)=0 \quad$ for any
$\sum_{i} p_{i} \otimes q_{i} \in \mathcal{A} \otimes_{\alpha} \mathcal{B}$.
So, in particular, for $a \otimes e_{2} \in I_{1} \otimes \mathcal{B} \subseteq \mathcal{A} \otimes_{\alpha} \mathcal{B}$;

$$
\begin{gathered}
\left(g_{1}(a)-\alpha f_{1}(a)\right) f\left(e_{1} \otimes e_{2}\right) \\
=0 \\
\Rightarrow\left(g_{1}(a)-\alpha f_{1}(a)\right)\|f\|=0 \\
\Rightarrow g_{1}(a)=\alpha f_{1}(a),
\end{gathered}
$$

$a \in \mathcal{A}$ being arbitrary, we have, $g_{1}=\alpha f_{1}$.Thus, f_{1} is a pure positive form.
Similarly, we can show that f_{2} is also pure.
Now we proceed for the converse part of Theorem2.11.

Theorem 2.13Corresponding to two positive linear forms $f_{1} \in \mathcal{F}(\mathcal{A})$ and $f_{2} \in \mathcal{F}(\mathcal{B})$ there exists a positive form \widetilde{f} on $\mathcal{A} \otimes_{\alpha} \mathcal{B}$.
Proof: For $f_{1} \in \mathcal{F}(\mathcal{A})$, we construct the set

$$
I_{1}=\left\{a_{1} \in \mathcal{A}: f_{1}\left(a_{1}^{*} a+a^{*} a_{1}\right)=0 \forall a \in \mathcal{A}\right\}
$$

Then, I_{1} is a subspace of \mathcal{A}, as for $x_{1}, x_{2} \in$ $I_{1}, \alpha, \beta \in \mathbb{K}$ and $y \in \mathcal{A}$ arbitrary,

$$
f_{1}\left(\left(\alpha x_{1}+\beta x_{2}\right)^{*} y+y^{*}\left(\alpha x_{1}+\beta x_{2}\right)\right)=0
$$

(as in linear Theorem 2.11),
Again, for $x \in I_{1}$ and arbitrary $y, z \in \mathcal{A}$;
$f_{1}\left((z x)^{*} y+y^{*}(z x)\right)=0$, showing that I_{1} is an ideal of \mathcal{A}.

Similarly, for $f_{2} \in \mathcal{F}(\mathcal{B})$ wetake $I_{2}=\left\{b_{1} \in \mathcal{B}: f_{2}\left(b_{1}^{*} b+b^{*} b_{1}\right)=0 \forall b \in \mathcal{B}\right\}$,
which will be an ideal of \mathcal{B}. Let

$$
\begin{aligned}
& I=\left\{\sum_{i} x_{i} \otimes y_{i} \in I_{1} \otimes I_{2}: \sum_{i, j, i \neq j} f_{1}\left(x_{i}^{*}\right) f_{2}\left(y_{j}\right)\right. \\
&+\sum_{i, j, i \neq j} f_{1}\left(x_{i}\right) f_{2}\left(y_{j}^{*}\right)=
\end{aligned}
$$

0 \}
Clearly, for $p, q \in I$, and $\alpha, \beta \in \mathbb{K}, \alpha p+\beta q \in I$.
Also, for $p \in I, x \in \mathcal{A} \otimes_{\alpha} \mathcal{B}$,

$$
\begin{gathered}
p x=\left(\sum_{i} p_{i} \otimes q_{i}\right)\left(\sum_{j} x_{j} \otimes y_{j}\right) \\
=\sum_{i, j} p_{i} x_{j} \otimes q_{i} y_{j}
\end{gathered}
$$

Now, each $p_{i} x_{j} \in I_{1}, q_{i} y_{j} \in I_{2}$. So

$$
\begin{aligned}
& f_{1}\left(\left(p_{i} x_{j}\right)^{*} a+a^{*}\left(p_{i} x_{j}\right)\right)=0 \forall a \in \mathcal{A} \text { and } \forall i, j \\
& f_{2}\left(\left(q_{i} y_{j}\right)^{*} b+b^{*}\left(q_{i} y_{j}\right)\right)=0 \forall b \in \mathcal{B} \text { and } \forall i, j
\end{aligned}
$$

In particular, for $a=f_{2}\left(q_{i} y_{j}\right) e_{1}$, we get

$$
\begin{aligned}
& f_{1}\left(\left(p_{i} x_{j}\right)^{*} f_{2}\left(q_{i} y_{j}\right)+\left(f_{2}\left(q_{i} y_{j}\right)\right)^{*}\left(p_{i} x_{j}\right)\right)=0 \\
\Rightarrow & f_{1}\left(\left(p_{i} x_{j}\right)^{*}\right) f_{2}\left(q_{i} y_{j}\right)+f_{1}\left(p_{i} x_{j}\right) f_{2}\left(\left(q_{i} y_{j}\right)^{*}\right)=0
\end{aligned}
$$

This will hold for any pair (i, j). Hence $p x \in I$, showing that I is an ideal.
We define $f: I \rightarrow \mathbb{K}$ by $f\left(\sum_{i} a_{i} \otimes b_{i}\right)=$
$\sum_{i} f_{1}\left(a_{i}\right) f_{2}\left(b_{i}\right)$
Clearly, f is linear and

$$
\begin{gathered}
f\left(\left(\sum_{i} a_{i} \otimes b_{i}\right)^{*}\left(\sum_{i} a_{i} \otimes b_{i}\right)\right) \\
=f\left(\sum_{i, j} a_{i}^{*} a_{j} \otimes b_{i}^{*} b_{j}\right) \\
=\sum_{i, j} f_{1}\left(a_{i}^{*} a_{j}\right) f_{2}\left(b_{i}^{*} b_{j}\right) \\
=\sum_{i} f_{1}\left(a_{i}^{*} a_{i}\right) f_{2}\left(b_{i}^{*} b_{i}\right) \\
+\frac{1}{2}\left(\sum_{i, j, i \neq j} f_{1}\left(\left(a_{j}^{*} a_{i}\right)^{*}\right) f_{2}\left(b_{i}^{*} b_{j}\right)\right. \\
\left.+f_{1}\left(a_{j}^{*} a_{i}\right) f_{2}\left(\left(b_{i}^{*} b_{j}\right)^{*}\right)\right) \\
=\sum_{i} f_{1}\left(a_{i}^{*} a_{i}\right) f_{2}\left(b_{i}^{*} b_{i}\right)+0
\end{gathered}
$$

$$
\geq 0
$$

which implies that f is a positive linear form on I.
Now, using Lemma 2.10 we get a positive linearform
\tilde{f} on $\mathcal{A} \otimes_{\alpha} \mathcal{B}$ so that $\left.\widetilde{f}\right|_{I}=f$ and $\|\tilde{f}\|=\|f\|$.

Theorem 2.14 If I_{1} and I_{2} contain the unit elements, (i.e, $I_{1}=\mathcal{A}$ and $I_{2}=\mathcal{B}$) the positive linear form f defined in the above theorem satisfies the following properties:
i) If f_{1} and f_{2} are traces then f is also a trace.
ii)If f_{1} and f_{2} are faithful so is f.
iii)If f_{1} and f_{2} are states then f is also a state.
iv)If f_{1} and f_{2} are pure then f is also pure.

Proof:

$$
\begin{aligned}
& \text { i) } f\left(e_{1} \otimes e_{2}\right)=f_{1}\left(e_{1}\right) f_{2}\left(e_{2}\right)=1 \\
& f\left(\left(\sum_{i} a_{i} \otimes b_{i}\right)\right.\left.\left(\sum_{j} c_{j} \otimes d_{j}\right)\right) \\
&=\sum_{i, j} f_{1}\left(a_{i} c_{j}\right) f_{2}\left(b_{i} d_{j}\right) \\
&=\sum_{i, j} f_{1}\left(c_{j} a_{i}\right) f_{2}\left(d_{j} b_{i}\right)=f\left((\sum _ { j } c _ { j } \otimes d _ { j }) \left(\sum_{i} a_{i} \otimes\right.\right. \\
& \text { bi), }
\end{aligned}
$$

Which shows that f is a trace.

$$
\begin{gather*}
f\left(\left(\sum_{i} a_{i} \otimes b_{i}\right)^{*}\left(\sum_{i} a_{i} \otimes b_{i}\right)\right)=0 \\
\Rightarrow \sum_{i, j} f_{1}\left(a_{i}^{*} a_{j}\right) f_{2}\left(b_{i}^{*} b_{j}\right) \\
=0
\end{gather*}
$$

$$
\Rightarrow \sum_{i} f_{1}\left(a_{i}^{*} a_{i}\right) f_{2}\left(b_{i}^{*} b_{i}\right)=0 \text { (by the }
$$

$$
\text { definition of } f \text { in theorem 2.13) }
$$

showing that f is faithful.
iii) $\quad f$ is continuous if f_{1} and f_{2} are continuous. Also,

$$
\begin{gathered}
\|f\|=f\left(e_{1} \otimes e_{2}\right)= \\
=f_{1}\left(e_{1}\right) f_{2}\left(e_{2}\right) \\
=\left\|f_{1}\right\|\left\|f_{2}\right\| \\
=1
\end{gathered}
$$

which implies f is also a state.
iv) Let $g \leq f$, we define $h_{1}: \mathcal{A} \rightarrow \mathbb{K}$ by

$$
\begin{aligned}
h_{1}(a)= & g\left(a \otimes e_{2}\right) \\
h_{1}\left(a^{*} a\right) & =g\left(a^{*} a \otimes e_{2}\right) \\
& =g\left(\left(a \otimes e_{2}\right)^{*}(a\right. \\
& \left.\left.\otimes e_{2}\right)\right) \\
& \leq f\left(\left(a \otimes e_{2}\right)^{*}(a\right. \\
& \left.\left.\otimes e_{2}\right)\right) \\
& =f\left(a^{*} a \otimes e_{2}\right) \\
= & f_{1}\left(a^{*} a\right) f_{2}\left(e_{2}\right) \\
= & f_{1}\left(a^{*} a\right)
\end{aligned}
$$

$$
\Rightarrow h_{1} \leq f_{1}
$$

So, $h_{1}=\alpha f_{1}$ for some $\alpha \geq 0$.
Therefore, $h_{1}(a)=\alpha f_{1}(a)$

$$
\begin{aligned}
\Rightarrow g\left(a \otimes e_{2}\right)= & \alpha f_{1}(a) f_{2}\left(e_{2}\right) \\
& =\alpha f\left(a \otimes e_{2}\right) \\
\forall a \in \mathcal{A} . &
\end{aligned}
$$

Now, let $\quad h_{2}: \mathcal{B} \rightarrow \mathbb{K}$ be definedby $h_{2}(b)=$ $g\left(e_{1} \otimes b\right)$
As above we can show that $h_{2} \leq f_{2}$. So,
$h_{2}=\beta f_{2}$ for some $\beta \geq 0$.
Therefore, $h_{2}(b)=\beta f_{2}(b)$.
Now, for $a \otimes b \in I$,

$$
\begin{aligned}
g(a \otimes b)=g((a & \left.\otimes e_{2}\right)\left(e_{1} \otimes b\right) \\
& =h_{1}(a) h_{2}(b) \\
& =\alpha f_{1}(a) \beta f_{2}(b) \\
& =\alpha \beta f(a \otimes b)
\end{aligned}
$$

showing that f is pure (upto homomorphism).

Concluding Remark: We have derived different results regarding positive elements and positive forms in the tensor product of C^{*}-algebras. In 2014, S.H.Jah and M.S.Ahmed [9] derived some results on

$$
\begin{aligned}
& \Rightarrow f_{1}\left(a_{i}^{*} a_{i}\right) f_{2}\left(b_{i}^{*} b_{i}\right) \\
& =0 \forall i \\
& \Rightarrow f_{1}\left(a_{i}^{*} a_{i}\right)=0 \text { or } f_{2}\left(b_{i}^{*} b_{i}\right) \\
& =0 \forall i \\
& \Rightarrow a_{i}=0 \text { orb } b_{i} \\
& =0 \forall i \\
& \Rightarrow \sum_{i} a_{i} \otimes b_{i} \\
& =0 \text {, }
\end{aligned}
$$

positive-normal operators in semi-Hilbertian spaces. Considering this aspect, the following problem can be raised:

Using a positive-normal element and a positive form on each of the two C^{*}-algebras \mathcal{A} and \mathcal{B}, can we obtain a class of positive forms on their tensor product?

References

[1] D.P. Blecher, Geometry of the tensor product of C^{*} algebras, Math.Proc.CambridgePhilos.Soc., 104 (1988), 119-127.
[2] C.H. Chu, C^{*}-algebras, Queen Mary,University of London.
[3] K. Conard,Tensor product II. [www.math.uconn.edu]
[4] J.Dixmier, C^{*}-algebras, North-Holland Publishing Company, (1977).
[5] M.E.Gordji,M.Ramezani,H.Khodaei andH.Baghani, cone normed spacesarXiv:0912.0960v1[math.FA] 4 Dec, 2009
[6] N.Goswami, A Type of Positive form on Involutive Measure Algebras,Antarctica J.Math., 8(2) (2011), 159-166.
[7] A.Guichardet, Tensor products of C^{*}-algebras, Arhus Universitet, Matematisk Institute, (1969).
[8] H.L.Guang and Z.Xian, Cone metric spaces and fixed point theorems ofcontractive mappings, J. Math.Anal. Appl., 332 (2007)1468-1476.
[9] S.H.Jah and M.S.Ahmed, Positive-Normal Operators in Semi-HilbertinSpaces, Int. Math. Forum, vol.9, (2014) no. 11, 533-559
[10] S.Kaijser and A.M.Sinclair, Projective tensor products of C^{*}-algebras,Math.Scand 65 (1984), 161-187.
[11] A.S.Kavruk, Complete positivity in opeartor algebras, M.Sc. thesis,Bilkent University (2006).
[12] G.J.Murphy, C^{*}-algebras and operatortheory, Harcourt Brace Javnovich,(1990)
[13] Ian F.Putnam, Lecture Notes on C^{*}-algebras, 23 Sept, (2015)
[14] M Rieffel, $208 C^{*}$-algebras, Notes by Qiaochu Yuan, Spring (2013)
[15] V.Shirbisheh, Lectures on C^{*}-algebra, arXiv:1211.3404v1[math.OA]Nov 14, (2012)

