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1 INTRODUCTION

In 1943, Gelfand and Naimark introduced the notion
of a C*-algebra,which is a Banach algebra with an
involution * satisfying |l a* lI=Il a |l and || a*a ll=
|l a I>. The term C*-algebra was introduced by
I.LE.Segal in 1947 to describe norm-closed
subalgebras of B(#H), space of bounded linear
operatorson some Hilbert space H (C stands for
closed). In 1969, A.Guichardet [7] discussed about
C*-tensor norms and the tensor product of C*-
algebras. Kaijserand Sinclair [10] studied about the
projective tensor product of C*-algebras in1984.
Blecher in his paper [1], investigated the geometrical
properties of algebra norms on the tensor product of
C*- algebras. Keith Conard in his paper[3] discussed
about the tensor products of linear maps.

In this paper, we derive some results on
positive elements in the tensorproduct of two C*-
algebras. We also define a cone norm on the set of
Hermitianelements of a C*-algebra. Some results
regarding positive forms in the tensorproduct of two
C*-algebras are also discussed here.

Definition 1.1. [11]:LetA and B be two C*-
algebras, A ¢B denote the algebraic tensor product
of A and B. Then A &IB is a C*-algebra under the
natural definitions:

(a®b)(d ®b) =aa Qbb

and involution(¥; a; ® b,)"
aa, a;eA and b, b, b;€eB.

=Y, a; @ bjwhere

Definition 1.2. [1]:If @ is a norm on A ¢9B then a is
called a crossnormif [l a @ b ll,=Il a IllI
b |Iforae A and b e B.

Definition 1.3. [11]: A norm on a *-algebra Athat
satisfies || a*a ll=Il a II*> for all a in A is called a
C*-norm.

If o is an algebra norm defined on an algebraA,
we call o a C*-norm on A if there is an involution
on the oa-completion of A making it into a C*-
algebra. If A andB are C*-algebras, then there are
several norms o that turn A ®, B (completion of
A ¢9Bwith respect to a) into a C*-algebra.
Definition 1.4. [13]: Let A be a C*-algebra. An
element a € A is called
i) self adjoint or hermitian if a = a*

ii) normal if a*a = aa”

iii) a projectionifa = a? = a*

iv) unitary if a*a =e =aa” (e being the unit
element of A)

Definition 1.5. [14]: Let A be a C*-algebra. An
element a € A is called positive if a =a* and
o(a) € R*. It is denoted by a > 0.

The set of all positive elements of Ais denoted by
AT. For a unital C*-algebra A with a,b € A, we
writea = b when a and b are self adjoint and(a —
b) = 0. Then > is a partial order on the set of self
adjoint elements of A.

Definition 1.6.[4]:Let A be a C*-algebra. A linear
form (or functional) f oncA s said to be positive if
f(x*x) =0 for eachx € A. A state on A isa
continuous positive linear form f on A such that

I fi=1

Definition 1.7. [13]: A trace on Ais a positive linear
form f with f(e) = 1satisfying f(ab) = f (ba)for
all a,b € A. This condition is usually called the
trace property. The trace is said to be faithful if
f(a*a) = 0 occurs only for a = 0.

If A is commutative, every positive linear form is a
trace.

Definition 1.8. [2] A positive linear form f on Ais
called pure if for any positive linear form g onA
satisfyingg < f, we have g = affor somea = 0.
We call a positive form f (which is also a
homomorphism) pure (uptohomomorphism), if for
any positive linear form (also homomorphism)g on
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A satisfying g < f, we have g = af for somea >
0.

2 MAIN RESULTS

First, we discuss some properties of positive
elements in the tensor product of two concrete C*-
algebras. For a Hilbert space H, a sub-algebra of
B (FH)which is closed under norm and under adjoint
operation is called a concreteC*-algebra. If A is a
concrete C*-algebra, it can be represented by
A & B(H). From the GNS theorem [14], we have,
every C*-algebra is isometrically * isomorphic to a
concrete C*-algebra. Here, we take two concrete C*-
algebras A and B and a C*- norm « (which is also a
Cross norm) on A ¢9B.

Lemma2.1[14]: Let A be a C*-algebra and
a € A. Then the following are equivalent:

i) a=0.

i) a = b*b for some b € A.

iii) a = b% for some self adjoint element
beA.

Lemma 2.2([14], [15]): Let A be a C*-algebra and
a,b € A.
i) Ifa>0and —a = 0,ithena = 0.
i) If a,b >0 and ab = ba, then ab =0
anda+b = 0.
iii) If A is a unital C*-algebra,a = a* and
I all<2,then a >0 if and only if
la—el<1
iv) If ais positive and a™ = a™ for some
integers 0 <m<n, then a is a
projection.
V) Every projection is a positive element.
Vi) Let a be a positive element in A. Then
for a given arbitrary positive integern,
there exists a unique positive element
b € A such that b™ = a.

vii) Let teR*tand a,b€AT. Then
ta+beAt

viii) Ifo<a<bthenllal<Ibl.

iX) Ifa,b € A" then

la—>bl<maxif@llal,llbl)

Regarding positive elements in A Q, B
we derive the following result:

Theorem 2.3 Fora € A and b € B,

i) Ifa>0,b>=0thena® b = 0and
the converse holds if a @ b # 0.

i) If a and b are projections, thena @ b
is also a projection.

iii) If a and b are two normal elements,
then a @ b is also a normal element.

iv) Let a,c € A and b,d € B be positive
elements such that b >a and d >
¢.Then

la®b—c@dI< (b1 +IdI)

V) For unital C*-algebras A and B, if
a®beAR,B is such thatmaxi(]l
al,llbll) <2, then

leie®e; —a®bll
1+ 2|l b ll,if ais positive
- {1 + 2 |l a ll,if b is positive
(whereeq ande, are unit elements of A and B
respectively)

Proof:
i) As a=0andb =0 so, a=c*c,b=
d*d
for somec € A,d € B. So,
a®b=c'c®dd
=(c®d)(c®d)
forc®deAQ, Bwhichimpliessa® b = 0.
Conversely, let a®@b>0and a=>0but b <0 =
-b=0.
Therefore,
b <0.
So, a @ b = 0, a contradiction.
Thusa®b>0=>a=>0,b=>0.
i) a and b are projections implies a =
alZ=a*
and b = b?> = b*. Now,
a@b=a"QRb"=(aQb)"
a®b=a’>Qb?>=(a®b)?
showing that a ® b is a projection.
iii) As a and b are normal elements,
a*a =aa*and b*b = bb*.

a®(b)=20=>-a@®@®b=20>aQ

Now,

(a®b)(a®b)=aa* Q bb*
=a'a® b*b
=(a®b)(a®b)

Thus, (a ® b) is also normal.
iv) la@b-cQ@dISNa@DbIl +Hl c ®

dll

=lalllbll+lcl
Ildll
<lIblllbll+Idl
Ildl
(by Lemma 2.2 (viii))
=1l b 1241 d II?
< b I+ dI?
V) Let a € A be positive and b € B be

arbitrary. Then , lle; @ e; —a® b |l

=" (el—a)®b+ €1®(ez—b) II
<lles—alllbll+Il e;lllle; —bll
<1.0bll+lle;—bl[by Lemma
2.2 (iii)]
<14+21bI

Similarly if b € B is positive, then

let®e,—a@bl<1+21all
O
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Next, we consider the set of Hermitian elements
H (which is avector space over R) on a commutative
realC*-algebra A. With the help of positive
elements we show that it is a cone Banach space
over A. As a genealization of normed spaces, cone
normedspaces play a very important role in different
branches of functionalanalysis. In 2009, .M.E.Gordji
et al introduced the notion of conenormed spaces.

Definition 2.4 [5]For a vector space E, a subset P

(ofE) is
called a cone whenever
i) P is a closed, non empty set and
P # {0},
i) ax + by € Pforall x,y € P and
a,b>=0,

i) P n(=P)={0}

With respect toP a partial ordering< can be
defined on E byx < yif and only if (y —x) € P.
The cone Pis normal if there is a number K > 1such
thatforallx,y € E,0<x<y=lxI<KIyl.

Definition 2.5 [5]Let X be a real vector space. If the
mapping II. llp: X — E satisfies:
a) llxllp=0VxeXand | xll,=0iffx =0,
b) llaxllp=|alllxllp,Vx € Xand a € R,
c) lx+yllp<llxlp+lyllpVxy€ELX,
then |I. 1l is called a cone norm on X and (X, II.1lp)
is called a cone normed space over E.
Here, we define a map: |l.llp: H — A such

that

x, if x is positive

0,ifx=0

—x, if x is not positive

I x llp=

Theorem 2.6: With respect to Il g I, , H is a cone
Banach
space over A.

Proof: Let x € Hbe arbitrary and « be a scalar. Then
i) Il x|l[p=0Vx€Hand |l x llp,=
0 iff x = 0 (by definition)
i)

Casel:Letx >0
Fora = 0,1l ax llp=ax = |a| ll x llp
Fora < 0,ll ax llp=—ax = |a| Il x lIp

Casell: Letx <0

Fora =0, ax llp=—ax = a(—x) = |a| | x lIp

Fora <0,ll ax llp=ax = (—a)(—=x) = |a| | x lIp
iii) Let x,y € H be arbitrary.

Casel:Letx =0

Fory=0,llx+yllp=x+y=lxllp+lylp

Fory<Oandx = -yi.e.,x+y =0,
Ixllp+llyllp=x—y=2x+y=Ilx+ylp

(—y=20=>-2y20=>x—-y)—-(x+y)=0>
x—y=x+y)

For—y>0and —y >xi.e.,,—(x+y) =0,
Ixllp+lyllp=x—y=>—(x+y)=Ilx+ylp

x=20=22x>0=>(x—y)+(x+y)=0)
Casell: If-x=>0,—y =0,
I llp+ly llp=(=x) + (=y) = —(x +¥)
=lx+ylp

Thus [I. Il » is a cone norm on H.
To show that (H, II. llp) is complete:
Let{x,} be a Cauchy sequence in H.As H € A and
Ais complete, so {x, } converges to some x asn — oo
ie., lim, . (x, —x)=0=> r}1_210 I, —x)llp =0
(by definition of the cone norm).
Thus H is complete with respectto Il 1l , i.e., itisa
cone BanachSpace.

O

In [8], H.L.Guang and Z.Xian, proved the following
fixed pointtheorem in cone Banach spaces.

Theorem 2.7: Let (X,1l.1lp) be a complete cone
normed space,P be a normal cone with normal
constant K. Suppose the mapping: T: X — Xsatisfies
the contractive condition : ITx =Ty llp<
kllx—ylp,Vx,y€X, whereke[01) is a
constant. Then Thas a unique fixed point inX.

Example 2.8 For the cone Banach space (H, II.1Ip),
we defineTx = g(a > 1), x € H. Then
| Tx — Ty llp= Tx — Ty, if Tx — Ty is positive
x y x=y 1
——=;le—yllp (asx —

a a a
y=0)

I Tx =Ty ll,=0, ifTx—Ty=0

1
—Ellx—yllp (asx—y
=0)
| Tx — Ty llp=—(Tx —Ty),if Tx — Ty is not
positive
_ x yy 1
= ( )— Pt

a a
=%le—yllp (as—(x—y)
> 0)
Thus Kl Tx = Ty lp< Il x = y . So by the
above theorem T has a unique fixed point in H.

Next we discuss some properties of positive linear
forms on C*-algebras. From [12] we have,

Lemma 2.9: Let A be a C*-algebra. Then
i) Every positive linear form f on Ais
bounded
and has norm f(e) (if A is unital with unit e).
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i) If fis a positive linear form on A,
then
f@)=Ff@,If@P<Ifllfl@a)VaeA
and |f(b*@)|* < f(b*b)f (a"a).

iii) If fis a bounded linear form on a
unital

C*-algebra A then f is positive iff f(e) = 1.

iv) If f; and f,are positive linear forms on
a

unital C*-algebra, thenll fi + £ I=Il fi Il +II
f2 Il

Lemma 2.10:[12] Let B be a C*-subalgebra of a C*-
algebrac.A and suppose that f; is a positive linear
form on B.Then there isa positive linear form f on A
extending f, such that || £ II=Il f; Il

For two unital C*-algebras A and B, let

F(A Q, B), F(A) andF (B)be the sets of all
positive linear forms on A , B, Aand
‘Brespectively. Here we find a relation between

F(A Q, B)and F(A) andF (B).

Theorem 2.11: Corresponding to a positive
linearform f € F(A Q, B), there exist two positive
linear forms f; and £, on <A and B respectively.
Proof: We consider the set

[={x€EAQ,B:f(xy)+f(y'x)=0Vy
€ AR, B}
Then | is a subspace of A ®, B, as forx;, x, €
I,a, B € Kandy € A Q, B arbitrary,
f((ax; + Bx;)y + Yi(mﬁ + Bx;))
= f@xiy) + f(Bxsy) + f(y"ax,)
+ " Bxz)
= f(xi@y) + F(@) x) + £ (x3(By))

+ f((By) x2)

=0 (using the definition of I)

Again, for x € I and y, z € A ®, Barbitrary,
f(@)y +y*(zx)) = f(x*2"y + y*2x)
=fx"(z"y) + (z2"y)"x)
=0,

showingthat | is also an ideal.
Let g; € A" andg, € B* (the dual spaces) be two
homomorphisms. We defineh,: I - A by

mQ i ®a) =) 5.0

i
Clearly hy is linear.
Forx =Xipi®qi, y=2;4 Qb €1,

hy (xy) = hy Zpia,- ® q:b;
Lj
= ZQZ(qibj)piaj
i

= Zgz(qi)gz(bj)piaj
ij

=<Zgz(qi)pi> Zgz(@)aj
=hy <Zpl- ®Qz>h1 Zaj

J

® bj> = h )M (),

showing thath; is also a homomorphism.
Similarly, we can define (usingg;) a homomorphism
hy,:1 - B.
Let I, = hy(I),I, = hy(I). Then, I; and I, are also
ideals of A4 and Brespectively.
We define fi:I; » Kby fi(a;) = f(a; ® e;),a; €
I, (e;being the unitelement of B). Then, f; is linear.
filai"ay) = f(a1"a; @ e3)

= f((a1 ®er) (a1 ® ez))

> 0 (since f is a positive form),
which shows that f; is a positive linear form on I;.
Now, using Lemma 2.10, f; can be extended to a
positive linearform fi: A — K,where fi|;, = fi.ie.
A EFEA withII f; =1l £ 1.
Similarly, defining f,: I, - Kby f,(b;) =
f(e1 ® by), by € L,(e;being the unitelement of A,
we can find f; € F(B) with f;|,, = fy and | 7 lI=Il
f2 Il o

Theorem 2.12: If | contains the unit element, the
following propertiesof f are inherited by f; and f:

(M If fis atrace so are f; and f,.

(i) If fis faithful so are f; and f;.

(iii) If fis state, f; and f, are also states.
(iv) If fis pure so are f; and f,.

(If fis such that Re f(x) = 0OVx € A Q, B, then
f(x+ x*) = 0s0, | containsthe unit element,
i.e.d = A Q, B andaccordingly I; and I, also
contain the

unit elements.)

Proof :i) fi(e1) = f(e; ®e;) =1
filaia;) = f(a1a; ® ez)
= f((a1 ® ex)(a; ® ez))
= f((az Re)(a ® 32)) = fla,01 Q e3)
= fi(azay),

showing that f; is a trace. Similarly f, is also a
trace.

i) fila"a;) =0= f(a;"a; ® e;) =0
= f((a1 Rex)(a; ® 92)) =0
24 ®e =0=2a; Qe I=0
Sla;lle;I=0=>la; I=0>a; =0,

which implies f; is faithful. Similarly, £, is also
faithful.
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(iii) Clearly if f is continuous, f; and f, are also
continuous. Also || f lI= 1.

Now, Il fi lI= fi(er) = f(e; ® ez) =l f 1= 1.
Similarly, Il £, lI= 1, which shows that f; and f,are
states.

iv) If g is a positive linear form dominated by f, i.e,
g < ftheng = af forsomea = 0. Let g, < f;.
We define h : A Q, B —» Kby

h(Z P ® CIi) = Z 9:1(p) f(e1 ® qi)
Then Lh is a poslitive linear form on

A Ry BAISOK((Ep: ® 4.) Cip: ® q)) =
h(Zi,j pi'r; ® ql'*qj)

= h(Z pi'D: ® qi*qi>

1
+ Eh( Z ri"p; ® q:"q;
L%

+p,'p ® q;°q:))
= Z_gl(pi*pi)f(el ® q:"q:)

1
+3 D, @p)S e
L,]*,L¢]
® q; q}')
® Qj*Qi))

WACHNICT- XD
1
+ Z a;fe; ® q,"q)

it
+a;;f(e1 ®q;"q:),
takinga; ; = g, (Pj*Pi)

ilplpl 1 qi qi 2 ij ©1
l,],li]
®q)"
(e1 ®q)+ (1 Qg (aijer D qy))

=Y ipi"p)f(e1 ® q;"q)) +%. 0 (by definition
of )

+9:(p;"p)f (ex

= Zf(l’i*pi Qey)f(e1 ®qi"q) +4,

(where A = %Zi,j,i;tj (fiei'p)f(e1 ® g7 q;) +

fl(pj *pi)f(el X qj*qi)l
which is also 0 by definition of | and as in the above

argument, takinge, ; = f(p;*p;).)

= Ff ® 4B ® 4)

+% Z f ((Pi* ® Qi*)(Pj
i

® Qj))
+f (0" ® 40 ® a))

{(gro) ()

Showing that h < f. So, h = af for some a = 0.
Then,

h(Zpi ® qi> = af(ZPi ®Qi)
- aZfl(mf(el ® a)

> G@f@®a) =a ) ip)fe ®a)

5 5 — afi(p)f (e, ®a)) =0 for
any

2iPi®qg EAR,B.
So, in particular, for a @ e; €L @ BS A Q, B;

(g1(a) = af1((6)l)) fle1 ®e)

= (91(‘1) - afl(a)) Il fl=0
= g1(@) = afi(a),
a € A being arbitrary, we have, g; = af;.Thus, f;
is a pure positive form.
Similarly, we can show that £, is also pure.
Now we proceed for the converse part of
Theorem2.11.

Theorem 2.13Corresponding to two positive linear
forms f; € F(A) andf, € F(B) there exists a
positive form f on A ®, B.

Proof: For f; € F(A) , we construct the set

L ={a €A:filaja+aa)) =0Va e A}

Then, I; is a subspace of A, as for x;, x, €
I,a,f € Kandy € A arbitrary,
fi((ax; + Bx;)"y + y*(ax; + Bx;)) = 0
(as in linear Theorem 2.11),
Again, forx € I; and arbitrary y, z € A;
fi((zx)*y + y*(2x)) = 0, showing that, is an ideal
of A.
Similarly, for f, € F(B)wetake
I, ={b; € B: f,(bib+ b*bh;) =0Vb € B},
which will be an ideal of B. Let
I = {Z X Q®y €L QLy: Z A ()
i 1,j,i#]
+ X2 [1() f (yj *) =
0}
Clearly, forp,q € I,and a, 8 € K,ap + fq € I.
Also,forpel, x e A Q, B,

(e (3se0)

= Zpixj X q;y;
ij
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Now, each p;x; € I3, q;y; € I,. SO
f ((pl-xj)*a + a*(pl-xj)) =0Va€eAandVi,j

2 ((qiyj)*b + b*(qiyj)) =0Vbe€eBandVi,j
In particular, for a = f,(q;y;)e;, we get

£ (i) @) + @) (i) ) = 0
= fi((r) N fa(ay)) + filpix) ) fo((@y)™) = 0

This will hold for any pair (i, j). Hence px € I,
showing that I is an ideal.

We define f:1 -» Kby f(O;a; Q b;) =

2 fi(a)f2(by)

Clearly, fis linear and

((geen) (geen)

=f<z aq ®b:b,-)

ij
= Zijfl(a;ai)fz(b;bj)
= Z_fl(a;ai)fz(bi*bi)

S OIICERTCD
+f1(a;ai>fz((b:b,-)*))

= Z'fl(a;‘ai)fz(b;bi) +0

>0,
which implies that fis a positive linear form on I.
Now, using Lemma 2.10 we get a positive
linearform

fonAQ®,Bsothat f |, =fand Il £ =l f I.

O
Theorem 2.14 If I; and I, contain the unit elements,
(i.e,; = A and I, = B) the positive linear form f
defined in the above theorem satisfies the following
properties:
i) If f; and f, are traces then f is also a trace.
i)If f; and £, are faithful so is f.
iii)If f; and f,are states then f is also a state.
iv)If f; and f,are pure then f is also pure.

Proof:

i) fler ®ey) = file)fa(ex) =1

f (Zai®bi><zcj ®dj>

= Zf1(aicj)f2(bidj)

ij
= Zi,j f1(Cjai)f2(dj bi) = f((Z, G ® dj)(Zi a ®
b7),

Which shows that f is a trace.

i) f((Ziai ®b)(Xia ® bz)) =0
= )., filaia)f(orh)
=0
=Y filaia)fo(bib;) =0 (by  the
definition of f in theorem 2.13)
= fi(aja) f2(b;b;)
=0Vi
= fi(aja;) =0 or f,(b/b;)
=0Vi
= a; = 0 orb;
=0Vi

@Zai®bi
i
=0

showing that f is faithful.
iii) f is continuous if f; and f,are
continuous. Also,
I fl=f(er ®ey) = filefa(er)

=0
= 1,

which implies f is also a state.
iv) Let g < f, we define h;: A - Kby
hi(a) = g(a ® ez)
hi(a*a) = g(a"a ® e;)
=9((a®e)(a
® e))
<f(@®e)(a
® e))
=fla*'a® ey)
= fila*a)f2(ez)
= fi(a*a)
= h < fi.
So, hy = af; for some a = 0.
Therefore, hy (a) = afi(a)
= g(a® ey) = afi(a)fz(ez)
=af(a® e;)
Vac€EA.
Now, let h,: B — Kbe definedbyh, (b) =
g(e; @ b)
As above we can show that h, < f,. So,
h, = Bf, forsome g > 0.
Therefore, h,(b) = Bf,(b).
Now, fora @ b € I,
g(a®b) =g(la®ey)(e; ®b)
= hi(a)h,(b)
= af1(a)pf>(b)
=aff(a®b),
showing that f is pure (upto homomorphism).
O

Concluding Remark: We have derived different
results regarding positive elements and positive
forms in the tensor product of C*-algebras. In 2014,
S.H.Jah and M.S.Ahmed [9] derived some results on
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positive-normal operators in semi-Hilbertian spaces.
Considering this aspect, the following problem can
be raised:

Using a positive-normal element and a

positive form on each of the two C*-algebrasA and
B, can we obtain a class of positive forms on their
tensor product?
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