
International Journal of Mathematics Trends and Technology (IJMTT) – Volume 51 Number 3 November 2017 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 237 

Some Results on Positive Elements in the 

Tensor Product of C*-algebras 
Anamika Sarma

1
, Nilakshi Goswami

2   
 

1
Research Scholar, 

2
Assistant Professor, Department of Mathematics, Gauhati University,  

Assam, India 

 

 

Abstract —In this paper, we discuss different 

properties of positive elements in the tensor product 

of two C*-algebras. Considering the cone of positive 

elements in a C*-algebra 𝒜, we define a cone norm 

on the set of Hermitian elements of 𝒜. Some results 

regarding positive forms in the tensor product are 

also derived here. 

 

AMS Subject Classification—47L40, 22D25. 

 

Keywords— C*-algebra, positive element, tensor 

product, cone norm, positive form. 

1 INTRODUCTION  

In 1943, Gelfand and Naimark introduced the notion 

of a C*-algebra,which is a Banach algebra with an 

involution * satisfying ∥ 𝑎∗ ∥=∥ 𝑎 ∥ and ∥ 𝑎∗𝑎 ∥=
∥ 𝑎 ∥2. The term C*-algebra was introduced by 

I.E.Segal in 1947 to describe norm-closed 

subalgebras of 𝛽(ℋ), space of bounded linear 

operatorson some Hilbert space ℋ (C stands for 

closed). In 1969, A.Guichardet [7] discussed about 

C*-tensor norms and the tensor product of C*-

algebras. Kaijserand Sinclair [10] studied about the 

projective tensor product of C*-algebras in1984. 

Blecher in his paper [1], investigated the geometrical 

properties of algebra norms on the tensor product of 

C*- algebras. Keith Conard in his paper[3] discussed 

about the tensor products of linear maps. 

In this paper, we derive some results on 

positive elements in the tensorproduct of two C*-

algebras. We also define a cone norm on the set of 

Hermitianelements of a C*-algebra. Some results 

regarding positive forms in the tensorproduct of two 

C*-algebras are also discussed here. 

 

Definition 1.1. [11]:Let𝒜 and ℬ be two C*-

algebras, 𝒜⊗ℬ denote the algebraic tensor product 

of 𝒜 and ℬ. Then 𝒜⊗ℬ is a C*-algebra under the 

natural definitions: 

 𝑎 ⊗ 𝑏  𝑎′ ⊗𝑏′ = 𝑎𝑎′ ⊗𝑏𝑏′  

and involution( 𝑎𝑖 ⊗𝑏𝑖𝑖 )*
 = 𝑎𝑖

∗⊗𝑏𝑖
∗

𝑖 where 

𝑎, 𝑎′ , 𝑎𝑖𝜖𝒜 𝑎𝑛𝑑 𝑏, 𝑏′ , 𝑏𝑖𝜖ℬ. 

Definition 1.2. [1]:If 𝛼 is a norm on 𝒜⊗ℬ then 𝛼 is 

called a crossnorm if ∥ 𝑎 ⊗ 𝑏 ∥𝛼=∥ 𝑎 ∥∥
𝑏 ∥for 𝑎 𝜖 𝒜 𝑎𝑛𝑑 𝑏 𝜖 ℬ. 

Definition 1.3. [11]: A norm on a *-algebra 𝒜that 

satisfies ∥ 𝑎∗𝑎 ∥=∥ 𝑎 ∥2 for all a in 𝒜 is called a 

C*-norm. 

 
If α is an algebra norm defined on an algebra𝒜, 

we call  a C*-norm on 𝒜 if there is an involution 

on the -completion of 𝒜 making it into a C*- 

algebra. If 𝒜 andℬ are C*-algebras, then there are 

several norms  that turn 𝒜⊗𝛼 ℬ  (completion of 

𝒜⊗ℬwith respect to α) into a C*-algebra. 

Definition 1.4. [13]: Let 𝒜 be a C*-algebra. An 

element  𝑎 ∈𝒜 is called 

i) self adjoint or hermitian if 𝑎 = 𝑎∗ 
ii) normal if 𝑎∗𝑎 = 𝑎𝑎∗ 
iii) a projection if 𝑎 = 𝑎2 = 𝑎∗ 
iv) unitary if 𝑎∗𝑎 = 𝑒 = 𝑎𝑎∗ (e being the unit 

element of 𝒜) 

Definition 1.5. [14]: Let 𝒜 be a C*-algebra. An 

element  𝑎 ∈𝒜 is called positive if 𝑎 = 𝑎∗ and 

𝜎(𝑎) ⊆ ℝ+. It is denoted by 𝑎 ≥ 0. 

    The set of all positive elements of 𝒜is denoted by 

𝒜+. For a unital C*-algebra 𝒜 with 𝑎, 𝑏 ∈𝒜, we 

write𝑎 ≥ 𝑏 when a and b are self adjoint and(𝑎 −
𝑏) ≥ 0. Then ≥ is a partial order on the set of self 

adjoint elements of 𝒜. 
 

Definition 1.6.[4]:Let 𝒜 be a C*-algebra. A linear 

form (or functional) f  on𝒜  is said to be positive if 

𝑓(𝑥∗𝑥) ≥ 0 for each𝑥 ∈𝒜. A state on 𝒜 isa 

continuous positive linear form f on 𝒜 such that 

∥ 𝑓 ∥= 1. 
 

Definition 1.7. [13]: A trace on 𝒜is a positive linear 

form f with 𝑓 𝑒 = 1satisfying 𝑓 𝑎𝑏 = 𝑓(𝑏𝑎)for 

all 𝑎, 𝑏 ∈𝒜. This condition is usually called the 

trace property. The trace is said to be faithful if 

𝑓 𝑎∗𝑎 = 0 occurs only for 𝑎 = 0. 

If 𝒜 is commutative, every positive linear form is a 

trace. 

Definition 1.8. [2] A positive linear form f on 𝒜is 

called pure if for any positive linear form g on𝒜 

satisfying𝑔 ≤ 𝑓,  we have 𝑔 = 𝛼𝑓for some𝛼 ≥ 0. 
We call a positive form f (which is also a 

homomorphism) pure (uptohomomorphism), if for 

any positive linear form (also homomorphism)g on 
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𝒜 satisfying 𝑔 ≤ 𝑓, we have 𝑔 = 𝛼𝑓 for some𝛼 ≥
0. 
 

2 MAIN RESULTS 

First, we discuss some properties of positive 

elements in the tensor product of two concrete C*-

algebras. For a Hilbert space ℋ, a sub-algebra of 

𝛽(ℋ)which is closed under norm and under adjoint 

operation is called a concreteC*-algebra. If 𝒜 is a 

concrete C*-algebra, it can be represented by 

𝒜 ↪ 𝛽(ℋ). From the GNS theorem [14], we have, 

every C*-algebra is isometrically * isomorphic to a 

concrete C*-algebra. Here, we take two concrete C*-

algebras 𝒜 and ℬ and a C*- norm 𝛼 (which is also a 

cross norm) on 𝒜⊗ℬ. 

 

Lemma2.1[14]: Let 𝒜 be a C*-algebra and 

𝑎 ∈ 𝒜. Then the following are equivalent: 

i) 𝑎 ≥ 0. 

ii) 𝑎 = 𝑏∗𝑏 for some 𝑏 ∈ 𝒜. 

iii) 𝑎 = 𝑏2 for some self adjoint element 

𝑏 ∈ 𝒜. 

 

Lemma 2.2([14], [15]): Let 𝒜 be a C*-algebra and 

𝑎, 𝑏 ∈ 𝒜. 

i) If 𝑎 ≥ 0 and −𝑎 ≥ 0,then 𝑎 = 0. 

ii) If 𝑎, 𝑏 ≥ 0 and 𝑎𝑏 = 𝑏𝑎, then 𝑎𝑏 ≥ 0 

and 𝑎 + 𝑏 ≥ 0. 

iii) If 𝒜 is a unital C*-algebra,𝑎 = 𝑎∗ and 

∥ 𝑎 ∥≤ 2, then 𝑎 ≥ 0 if and only if 

∥ 𝑎 − 𝑒 ∥≤ 1 

iv)  If ais positive and 𝑎𝑛 = 𝑎𝑚  for some 

integers 0 ≤ 𝑚 ≤ 𝑛, then  a is a 

projection. 

v)  Every projection is a positive element. 

vi) Let a be a positive element in 𝒜. Then 

for a given arbitrary positive integern, 

there exists a unique positive element 

𝑏 ∈ 𝒜 such that 𝑏𝑛 = 𝑎. 

vii)  Let 𝑡 ∈ ℝ+and 𝑎, 𝑏 ∈ 𝒜+. Then 

𝑡𝑎 + 𝑏 ∈ 𝒜+. 

viii)  If 0 ≤ 𝑎 ≤ 𝑏 then∥ 𝑎 ∥≤∥ 𝑏 ∥. 

ix) If 𝑎, 𝑏 ∈ 𝒜+ then  

∥ 𝑎 − 𝑏 ∥≤ max⁡(∥ 𝑎 ∥, ∥ 𝑏 ∥) 

 

Regarding positive elements in 𝒜⊗𝛼 ℬ 

we derive the following result: 

 

Theorem 2.3 For 𝑎 ∈ 𝒜 and 𝑏 ∈ ℬ, 

i) If 𝑎 ≥ 0, 𝑏 ≥ 0 then 𝑎 ⊗ 𝑏 ≥ 0 and 

the converse holds if 𝑎 ⊗ 𝑏 ≠ 0. 

ii) If a and b are projections, then 𝑎 ⊗ 𝑏 

is also a projection. 

iii) If a and b are two normal elements, 

then 𝑎 ⊗ 𝑏 is also a normal element. 

iv) Let 𝑎, 𝑐 ∈ 𝒜 and 𝑏, 𝑑 ∈ ℬ be positive 

elements such that 𝑏 ≥ 𝑎 and 𝑑 ≥
𝑐.Then 

∥ 𝑎 ⊗ 𝑏 − 𝑐 ⊗ 𝑑 ∥≤ (∥ 𝑏 ∥ +∥ 𝑑 ∥)2. 

v) For unital C*-algebras 𝒜 and ℬ, if 

𝑎 ⊗ 𝑏 ∈ 𝒜 ⊗𝛼 ℬ is such thatmax⁡(∥
𝑎 ∥, ∥ 𝑏 ∥) ≤ 2, then  

∥ 𝑒1 ⊗𝑒2 − 𝑎 ⊗ 𝑏 ∥

≤  
1 + 2 ∥ 𝑏 ∥, if 𝑎 is positive

1 + 2 ∥ 𝑎 ∥, if 𝑏 is positive
  

(where𝑒1 and𝑒2 are unit elements of 𝒜 and ℬ 

respectively) 

 

Proof: 

i) As 𝑎 ≥ 0 and 𝑏 ≥ 0  so, 𝑎 = 𝑐∗𝑐, 𝑏 =
𝑑∗𝑑 

for   some 𝑐 ∈ 𝒜, 𝑑 ∈ ℬ. So, 

𝑎 ⊗ 𝑏 = 𝑐∗𝑐 ⊗ 𝑑∗𝑑
=  𝑐 ⊗ 𝑑 ∗(𝑐 ⊗ 𝑑) 

for 𝑐 ⊗ 𝑑 ∈ 𝒜 ⊗𝛼 ℬ which implies 𝑎 ⊗ 𝑏 ≥ 0. 

Conversely, let 𝑎 ⊗ 𝑏 ≥ 0 and 𝑎 ≥ 0 but 𝑏 ≤ 0 ⇒
−𝑏 ≥ 0. 

Therefore,  𝑎 ⊗  −𝑏 ≥ 0 ⇒ −𝑎 ⊗ 𝑏 ≥ 0 ⇒ 𝑎 ⊗
𝑏 ≤ 0. 

So, 𝑎 ⊗ 𝑏 = 0, a contradiction. 

Thus 𝑎 ⊗ 𝑏 ≥ 0 ⇒ 𝑎 ≥ 0, 𝑏 ≥ 0.  

ii) a  and b are projections implies 𝑎 =
𝑎2=𝑎∗ 

and 𝑏 = 𝑏2 = 𝑏∗. Now,  

𝑎 ⊗ 𝑏 = 𝑎∗⊗ 𝑏∗ = (𝑎 ⊗ 𝑏)∗ 
𝑎 ⊗ 𝑏 = 𝑎2 ⊗𝑏2 =  𝑎 ⊗ 𝑏 2, 

showing that 𝑎 ⊗ 𝑏 is a projection. 

iii) As a and b are normal elements,  

𝑎∗𝑎 = 𝑎𝑎∗ and 𝑏∗𝑏 = 𝑏𝑏∗. 
Now,  

 𝑎 ⊗ 𝑏  𝑎 ⊗ 𝑏 ∗ = 𝑎𝑎∗⊗𝑏𝑏∗ 
                                 = 𝑎∗𝑎 ⊗ 𝑏∗𝑏 

                                              =  𝑎 ⊗ 𝑏 ∗(𝑎 ⊗ 𝑏) 

Thus, (𝑎 ⊗ 𝑏) is also normal. 

iv) ∥ 𝑎 ⊗ 𝑏– 𝑐 ⊗ 𝑑 ∥≤∥ 𝑎 ⊗ 𝑏 ∥ +∥ 𝑐 ⊗
𝑑 ∥ 

                               =∥ 𝑎 ∥∥ 𝑏 ∥ +∥ 𝑐 ∥
∥ 𝑑 ∥ 

                                 ≤∥ 𝑏 ∥∥ 𝑏 ∥ +∥ 𝑑 ∥
∥ 𝑑 ∥ 

(by Lemma 2.2(viii)) 

                      =∥ 𝑏 ∥2+∥ 𝑑 ∥2
 

          ≤ (∥ 𝑏 ∥ +∥ 𝑑 ∥)2 

v) Let 𝑎 ∈ 𝒜 be positive and 𝑏 ∈ ℬ be 

arbitrary. Then , ∥ 𝑒1 ⊗𝑒2 − 𝑎 ⊗ 𝑏 ∥
     

     =∥ (𝑒1 − 𝑎) ⊗ 𝑏 +  𝑒1 ⊗ (𝑒2 − 𝑏) ∥ 

         ≤∥ 𝑒1 − 𝑎 ∥∥ 𝑏 ∥ +∥  𝑒1 ∥∥ 𝑒2 − 𝑏 ∥ 
                      ≤ 1. ∥ 𝑏 ∥ +∥ 𝑒2 − 𝑏 ∥[by Lemma 

2.2 (iii)] 

  ≤ 1 + 2 ∥ 𝑏 ∥                                  
 
Similarly if 𝑏 ∈ ℬ is positive, then  

 

∥ 𝑒1 ⊗𝑒2 − 𝑎 ⊗ 𝑏 ∥≤ 1 + 2 ∥ 𝑎 ∥                    
□ 
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Next, we consider the set of Hermitian elements 

H (which is avector space over ℝ) on a commutative 

realC*-algebra 𝒜. With the help of positive 

elements we show that it is a cone Banach space 

over 𝒜. As a genealization of normed spaces, cone 

normedspaces play a very important role in different 

branches of functionalanalysis. In 2009, .M.E.Gordji 

et al introduced the notion of conenormed spaces. 

 

Definition 2.4 [5]For a vector space E, a subset P 

(of E) is 

called a cone whenever 

i) P is a closed, non empty set and 

𝑃 ≠ {0}, 

ii) 𝑎𝑥 + 𝑏𝑦 ∈ 𝑃 for all 𝑥, 𝑦 ∈ 𝑃 and 

𝑎, 𝑏 ≥ 0, 

iii) 𝑃 ∩  −𝑃 = {0}. 

 

With respect toP a partial ordering≤ can be 

defined on E by𝑥 ≤ 𝑦if and only if (𝑦 − 𝑥) ∈ 𝑃. 

The cone Pis normal if there is a number 𝐾 ≥ 1such 

that for all 𝑥, 𝑦 ∈  𝐸, 0 ≤ 𝑥 ≤ 𝑦 ⇒∥ 𝑥 ∥≤ 𝐾 ∥ 𝑦 ∥. 
 

Definition 2.5 [5]Let X be a real vector space. If the 

mapping ∥. ∥𝑃: 𝑋 → 𝐸 satisfies: 

a) ∥ 𝑥 ∥𝑃≥ 0 ∀ 𝑥 ∈ 𝑋and ∥ 𝑥 ∥𝑃= 0 iff 𝑥 = 0, 
b) ∥ 𝛼𝑥 ∥𝑃=  𝛼 ∥ 𝑥 ∥𝑃 , ∀ 𝑥 ∈ 𝑋 and α ∈ ℝ, 
c) ∥ 𝑥 + 𝑦 ∥𝑃≤∥ 𝑥 ∥𝑃+∥ 𝑦 ∥𝑃 , ∀ 𝑥, 𝑦 ∈ 𝑋, 
then  ∥. ∥𝑃 is called a cone norm on X and (𝑋, ∥. ∥𝑃) 

is called a cone normed space over E. 

 Here, we define a map:  ∥. ∥𝑃 : 𝐻 → 𝒜 such 

that  

 ∥ 𝑥 ∥𝑃=  
𝑥, if 𝑥 is positive

0, if 𝑥 = 0
−𝑥, if 𝑥 is not positive

  

 

 

Theorem 2.6: With respect to ∥ 𝑔 ∥𝑃  , H is a cone 

Banach 

space over 𝒜. 

 

Proof: Let 𝑥 ∈ Hbe arbitrary and 𝛼 be a scalar. Then 

i) ∥ 𝑥 ∥𝑃≥ 0 ∀ 𝑥 ∈ Hand ∥ 𝑥 ∥𝑃=
0 iff  𝑥 = 0 (by definition) 

ii)  

Case I: Let 𝑥 ≥ 0 

For 𝛼 ≥ 0, ∥ 𝛼𝑥 ∥𝑃= 𝛼𝑥 = |𝛼| ∥ 𝑥 ∥𝑃  

For 𝛼 ≤ 0, ∥ 𝛼𝑥 ∥𝑃= −𝛼𝑥 = |𝛼| ∥ 𝑥 ∥𝑃  

 

Case II: Let 𝑥 ≤ 0 

For 𝛼 ≥ 0, ∥ 𝛼𝑥 ∥𝑃= −𝛼𝑥 = 𝛼(−𝑥) = |𝛼| ∥ 𝑥 ∥𝑃 

For 𝛼 ≤ 0, ∥ 𝛼𝑥 ∥𝑃= 𝛼𝑥 = (−𝛼)(−𝑥) = |𝛼| ∥ 𝑥 ∥𝑃 

iii) Let 𝑥, 𝑦 ∈ H be arbitrary. 

 

Case I: Let 𝑥 ≥ 0 

For 𝑦 ≥ 0, ∥ 𝑥 + 𝑦 ∥𝑃= 𝑥 + 𝑦 =∥ 𝑥 ∥𝑃+∥ 𝑦 ∥𝑃  

For 𝑦 ≤ 0 and 𝑥 ≥ −𝑦 𝑖. 𝑒. , 𝑥 + 𝑦 ≥ 0, 
∥ 𝑥 ∥𝑃+∥ 𝑦 ∥𝑃= 𝑥 − 𝑦 ≥ 𝑥 + 𝑦 = ∥ 𝑥 + 𝑦 ∥𝑃 

 

(−𝑦 ≥ 0 ⇒ −2𝑦 ≥ 0 ⇒  𝑥 − 𝑦 −  𝑥 + 𝑦 ≥ 0 ⇒
𝑥 − 𝑦 ≥ 𝑥 + 𝑦) 

For −𝑦 ≥ 0 and − 𝑦 ≥ 𝑥 𝑖. 𝑒. , −( 𝑥 + 𝑦) ≥ 0, 
∥ 𝑥 ∥𝑃+∥ 𝑦 ∥𝑃= 𝑥 − 𝑦 ≥ −(𝑥 + 𝑦) = ∥ 𝑥 + 𝑦 ∥𝑃  

 

(𝑥 ≥ 0 ⇒ 2𝑥 ≥ 0 ⇒  𝑥 − 𝑦 +  𝑥 + 𝑦 ≥ 0) 

Case II: If – 𝑥 ≥ 0,−𝑦 ≥ 0, 
∥ 𝑥 ∥𝑃+∥ 𝑦 ∥𝑃=  −𝑥 +  −𝑦 = − 𝑥 + 𝑦 

=∥ 𝑥 + 𝑦 ∥𝑃  
 

Thus ∥. ∥𝑃  is a cone norm on H. 

To show that (H, ∥. ∥𝑃) is complete: 

Let{𝑥𝑛 } be a Cauchy sequence in H.As H ⊆ 𝒜 and 

𝒜is complete, so {𝑥𝑛 } converges to some x asn → ∞ 

i.e., limn→∞(𝑥𝑛 − 𝑥) = 0⇒ lim
n→∞

∥ (𝑥𝑛 − 𝑥) ∥𝑃 = 0 

(by definition of the cone norm). 

Thus H is complete with respect to ∥. ∥𝑃  , i.e., it is a 

cone BanachSpace.   

  □ 

 

In [8], H.L.Guang and Z.Xian, proved the following 

fixed pointtheorem in cone Banach spaces. 

 

Theorem 2.7:  Let (X, ∥. ∥𝑃) be a complete cone 

normed space,P be a normal cone with normal 

constant K. Suppose the mapping: 𝑇: 𝑋 → 𝑋satisfies 

the contractive condition :     ∥ 𝑇𝑥 − 𝑇𝑦 ∥𝑃≤
𝑘 ∥ 𝑥 − 𝑦 ∥𝑃 , ∀ 𝑥, 𝑦 ∈ 𝑋, where𝑘 ∈ [0,1) is a 

constant. Then Thas a unique fixed point inX. 

 

Example 2.8 For the cone Banach space (H, ∥. ∥𝑃), 

we define𝑇𝑥 =
𝑥

𝛼
 𝛼 ≥ 1 , 𝑥 ∈ H. Then  

∥ 𝑇𝑥 − 𝑇𝑦 ∥𝑃= 𝑇𝑥 − 𝑇𝑦, if 𝑇𝑥 − 𝑇𝑦 is positive 

 =
𝑥

𝛼
−

𝑦

𝛼
  =

𝑥−𝑦

𝛼
=

1

𝛼
∥ 𝑥 − 𝑦 ∥𝑃  (as 𝑥 −

𝑦 ≥ 0)   
∥ 𝑇𝑥 − 𝑇𝑦 ∥𝑃= 0, if 𝑇𝑥 − 𝑇𝑦 = 0 

                                             =
1

𝛼
∥ 𝑥 − 𝑦 ∥𝑃  (as 𝑥 − 𝑦

= 0)   
∥ 𝑇𝑥 − 𝑇𝑦 ∥𝑃= − 𝑇𝑥 − 𝑇𝑦 , if 𝑇𝑥 − 𝑇𝑦 is not 

positive 

                                 = −  
𝑥

𝛼
−
𝑦

𝛼
 = −

1

𝛼
 𝑥 − 𝑦 

=
1

𝛼
∥ 𝑥 − 𝑦 ∥𝑃  as −  𝑥 − 𝑦    

≥ 0  

Thus k∥ 𝑇𝑥 − 𝑇𝑦 ∥𝑃≤
1

𝛼
∥ 𝑥 − 𝑦 ∥𝑃. So by the 

above theorem T has a unique fixed point in H. 

 

Next we discuss some properties of positive linear 

forms on C*-algebras. From [12] we have, 

 

Lemma 2.9: Let 𝒜 be a C*-algebra. Then 

i)  Every positive linear form f on 𝒜is 

bounded 

and has norm f(e) (if 𝒜 is unital with unit e). 
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ii) If f is a positive linear form on 𝒜, 

then  

𝑓 𝑎∗ = 𝑓 𝑎       ,  𝑓 𝑎  2 ≤∥ 𝑓 ∥ 𝑓 𝑎∗𝑎 ∀ 𝑎 ∈ 𝒜  
         and  𝑓 𝑏∗𝑎  2 ≤ 𝑓(𝑏∗𝑏)𝑓(𝑎∗𝑎). 

iii) If f is a bounded linear form on a 

unital 

C*-algebra 𝒜 then f is positive iff f(e) = 1. 

iv) If 𝑓1 and 𝑓2are positive linear forms on 

a 

unital C*-algebra, then∥ 𝑓1 + 𝑓2 ∥=∥ 𝑓1 ∥ +∥
𝑓2 ∥. 
 

Lemma 2.10:[12] Let ℬ be a C*-subalgebra of a C*-

algebra𝒜 and suppose that 𝑓0 is a positive linear 

form on ℬ.Then there isa positive linear form f on 𝒜 

extending 𝑓0 such that ∥ 𝑓 ∥=∥ 𝑓0 ∥. 
 For two unital C*-algebras 𝒜 and ℬ, let 

ℱ(𝒜 ⊗𝛼 ℬ), ℱ(𝒜) andℱ(ℬ)be the sets of all 

positive linear forms on 𝒜⊗𝛼 ℬ, 𝒜and 

ℬrespectively. Here we find a relation between 

ℱ(𝒜 ⊗𝛼 ℬ)and ℱ(𝒜) andℱ(ℬ). 

 

Theorem 2.11: Corresponding to a positive 

linearform 𝑓 ∈ ℱ(𝒜 ⊗𝛼 ℬ), there exist two positive 

linear forms 𝑓1
  and 𝑓2

  on 𝒜 and ℬ respectively. 

Proof: We consider the set 

𝐼 = {𝑥 ∈ 𝒜 ⊗𝛼 ℬ: 𝑓 𝑥∗𝑦 + 𝑓 𝑦∗𝑥 = 0 ∀ 𝑦
∈ 𝒜 ⊗𝛼 ℬ} 

Then I is a subspace of 𝒜⊗𝛼 ℬ, as for𝑥1, 𝑥2 ∈
𝐼, 𝛼, 𝛽 ∈ 𝕂and𝑦 ∈ 𝒜 ⊗𝛼 ℬ arbitrary, 

    𝑓  𝛼𝑥1 + 𝛽𝑥2 
∗𝑦 + 𝑦∗ 𝛼𝑥1 + 𝛽𝑥2   

                    = 𝑓 𝛼 𝑥1
∗𝑦 + 𝑓 𝛽 𝑥2

∗𝑦 + 𝑓 𝑦∗𝛼𝑥1 

+ 𝑓 𝑦∗𝛽𝑥2  

          = 𝑓 𝑥1
∗ 𝛼 𝑦  + 𝑓  𝛼 𝑦 ∗𝑥1 + 𝑓  𝑥2

∗ 𝛽 𝑦  

+ 𝑓  𝛽 𝑦 
∗
𝑥2  

     = 0    (using the definition of 𝐼)             
Again, for 𝑥 ∈ 𝐼 and 𝑦, 𝑧 ∈ 𝒜 ⊗𝛼 ℬarbitrary, 

𝑓  𝑧𝑥 ∗𝑦 + 𝑦∗ 𝑧𝑥  = 𝑓 𝑥∗𝑧∗𝑦 + 𝑦∗𝑧𝑥  

                                  = 𝑓 𝑥∗(𝑧∗𝑦) +  𝑧∗𝑦 ∗𝑥  
                                       = 0, 

 showingthat I is also an ideal. 

Let 𝑔1 ∈ 𝒜
∗ and𝑔2 ∈ ℬ

∗ (the dual spaces) be two 

homomorphisms. We define𝑕1: 𝐼 → 𝒜 by 

𝑕1( 𝑝𝑖 ⊗ 𝑞𝑖
𝑖

) =  𝑔2(𝑞𝑖)

𝑖

𝑝𝑖  

Clearly 𝑕1 is linear.  

For𝑥 =  𝑝𝑖 ⊗𝑞𝑖𝑖 , 𝑦 =  𝑎𝑗 ⊗𝑏𝑗 ∈ 𝐼𝑗 , 

                  𝑕1 𝑥𝑦 = 𝑕1   𝑝𝑖𝑎𝑗 ⊗𝑞𝑖𝑏𝑗
𝑖,𝑗

 

=  𝑔2(𝑞𝑖𝑏𝑗
𝑖,𝑗

)𝑝𝑖𝑎𝑗  

=  𝑔2(𝑞𝑖)𝑔2(𝑏𝑗
𝑖,𝑗

)𝑝𝑖𝑎𝑗  

                                =   𝑔2 𝑞𝑖 

𝑖

𝑝𝑖   𝑔2 𝑏𝑗  

𝑗

𝑎𝑗 

= 𝑕1   𝑝𝑖 ⊗𝑞𝑖
𝑖

 𝑕1   𝑎𝑗
𝑗

⊗𝑏𝑗       = 𝑕1 𝑥 𝑕1 𝑦 , 

 

showing that𝑕1 is also a homomorphism. 

Similarly, we can define (using𝑔1) a homomorphism 

𝑕2: 𝐼 → ℬ. 

Let 𝐼1 = 𝑕1 𝐼 , 𝐼2 = 𝑕2 𝐼 . Then, 𝐼1 and 𝐼2 are also 

ideals of 𝒜 and ℬrespectively. 

We define 𝑓1: 𝐼1 → 𝕂 by 𝑓1 𝑎1 = 𝑓 𝑎1 ⊗ 𝑒2 , 𝑎1 ∈
𝐼1(𝑒2being the unitelement of ℬ). Then, 𝑓1 is linear. 

             𝑓1 𝑎1
∗𝑎1 = 𝑓 𝑎1

∗𝑎1 ⊗ 𝑒2        

= 𝑓  𝑎1 ⊗𝑒2 
∗ 𝑎1 ⊗𝑒2        

≥ 0  since 𝑓 is a positive form , 
which shows that 𝑓1 is a positive linear form on 𝐼1. 

Now, using Lemma 2.10, 𝑓1 can be extended to a 

positive linearform  𝑓1
 :𝒜 → 𝕂,where 𝑓1

 |𝐼1 = 𝑓1,i.e. 

𝑓1
 ∈ ℱ(𝒜) with ∥  𝑓1

 ∥=∥ 𝑓1 ∥. 
Similarly, defining 𝑓2: 𝐼2 → 𝕂 by 𝑓2 𝑏1 =
𝑓 𝑒1 ⊗𝑏1 , 𝑏1 ∈ 𝐼2(𝑒1being the unitelement of 𝒜, 

we can find 𝑓2
 ∈ ℱ(ℬ) with 𝑓2

 |𝐼2 = 𝑓2 and ∥  𝑓2
 ∥=∥

𝑓2 ∥.    □ 

 

Theorem 2.12: If I contains the unit element, the 

following propertiesof f are inherited by 𝑓1 and 𝑓2: 

(i) If f is a trace so are 𝑓1 and 𝑓2. 

(ii) If f is faithful so are 𝑓1 and 𝑓2. 

(iii) If f is state, 𝑓1 and 𝑓2 are also states. 

(iv) If f is pure so are 𝑓1 and 𝑓2. 

(If f is such that 𝑅𝑒 𝑓 𝑥 = 0∀𝑥 ∈ 𝒜 ⊗𝛼 ℬ, then  

𝑓(𝑥 + 𝑥∗) = 0 so, I containsthe unit element, 

i.e.𝐼 = 𝒜 ⊗𝛼 ℬ and accordingly 𝐼1 and 𝐼2 also 

contain the 

unit elements.) 

 

Proof : i) 𝑓1 𝑒1 = 𝑓 𝑒1 ⊗ 𝑒2 = 1 

𝑓1 𝑎1𝑎2 = 𝑓 𝑎1𝑎2 ⊗𝑒2 

= 𝑓  𝑎1 ⊗ 𝑒2  𝑎2 ⊗ 𝑒2   

= 𝑓  𝑎2 ⊗ 𝑒2  𝑎1 ⊗𝑒2  = 𝑓 𝑎2𝑎1 ⊗ 𝑒2 

= 𝑓1 𝑎2𝑎1 , 
 

showing that 𝑓1 is a trace. Similarly 𝑓2 is also a 

trace. 
 
ii)  𝑓1 𝑎1

∗𝑎1 = 0 ⇒ 𝑓 𝑎1
∗𝑎1 ⊗ 𝑒2 = 0 

= 𝑓  𝑎1 ⊗𝑒2 
∗ 𝑎1 ⊗𝑒2  = 0   

⇒ 𝑎1 ⊗ 𝑒2 = 0 ⇒∥ 𝑎1 ⊗𝑒2 ∥= 0  
⇒∥ 𝑎1 ∥∥ 𝑒2 ∥= 0 ⇒∥ 𝑎1 ∥= 0 ⇒ 𝑎1 = 0, 

 
which implies 𝑓1 is faithful. Similarly, 𝑓2 is also 

faithful. 
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(iii) Clearly if f is continuous, 𝑓1 and 𝑓2 are also 

continuous. Also ∥ 𝑓 ∥= 1. 

Now, ∥ 𝑓1 ∥= 𝑓1 𝑒1 = 𝑓 𝑒1 ⊗𝑒2 =∥ 𝑓 ∥= 1. 

Similarly, ∥ 𝑓2 ∥= 1, which shows that 𝑓1 and 𝑓2are 

states. 

iv) If g is a positive linear form dominated by f, i.e, 

𝑔 ≤ 𝑓 then 𝑔 = 𝛼𝑓 for some 𝛼 ≥ 0. Let 𝑔1 ≤ 𝑓1. 

We define 𝑕 ∶  𝒜 ⊗𝛼 ℬ → 𝕂by  

𝑕   𝑝𝑖 ⊗ 𝑞𝑖
𝑖

 =  𝑔1 𝑝𝑖 

𝑖

𝑓(𝑒1 ⊗𝑞𝑖) 

Then h is a positive linear form on 

𝒜⊗𝛼 ℬ.Also,𝑕   𝑝𝑖 ⊗ 𝑞𝑖𝑖  ∗  𝑝𝑖 ⊗ 𝑞𝑖𝑖   =

𝑕  𝑝𝑖
∗𝑝𝑗 ⊗𝑞𝑖

∗𝑞𝑗𝑖,𝑗   

    = 𝑕   𝑝𝑖
∗𝑝𝑖 ⊗𝑞𝑖

∗𝑞𝑖
𝑖

 

+
1

2
𝑕(  (𝑝𝑖

∗𝑝𝑗 ⊗ 𝑞𝑖
∗𝑞𝑗

𝑖,𝑗 ,𝑖≠𝑗

+ 𝑝𝑗
∗𝑝𝑖 ⊗ 𝑞𝑗

∗𝑞𝑖)) 

       =  𝑔1 𝑝𝑖
∗𝑝𝑖 𝑓 𝑒1 ⊗𝑞𝑖

∗𝑞𝑖    
𝑖

+
1

2
 (𝑔1(𝑝𝑖

∗𝑝𝑗 )𝑓(𝑒1

𝑖,𝑗 ,𝑖≠𝑗

⊗ 𝑞𝑖
∗𝑞𝑗 )           + 𝑔1 𝑝𝑗

∗𝑝𝑖 𝑓(𝑒1

⊗ 𝑞𝑗
∗𝑞𝑖)) 

≤ 𝑓1 𝑝𝑖
∗𝑝𝑖 𝑓 𝑒1 ⊗ 𝑞𝑖

∗𝑞𝑖 
𝑖

+
1

2
 𝛼 𝑖,𝑗𝑓(𝑒1 ⊗𝑞𝑖

∗𝑞𝑗
𝑖,𝑗 ,𝑖≠𝑗

)

+ 𝛼𝑖,𝑗𝑓(𝑒1 ⊗ 𝑞𝑗
∗𝑞𝑖), 

taking𝛼𝑖,𝑗 = 𝑔1 𝑝𝑗
∗𝑝𝑖  

=  𝑓1 𝑝𝑖
∗𝑝𝑖 𝑓 𝑒1 ⊗ 𝑞𝑖

∗𝑞𝑖 +
𝑖

1

2
 𝑓((𝛼𝑖 ,𝑗
𝑖,𝑗 ,𝑖≠𝑗

𝑒1

⊗𝑞𝑖)
∗ 

(𝑒1 ⊗𝑞𝑗 ) + (𝑒1 ⊗𝑞𝑗 )∗(𝛼𝑖,𝑗𝑒1 ⊗𝑞𝑖)) 

=  𝑓1 𝑝𝑖
∗𝑝𝑖 𝑓 𝑒1 ⊗𝑞𝑖

∗𝑞𝑖 +𝑖
1

2
. 0 (by definition 

of I) 

=  𝑓 𝑝𝑖
∗𝑝𝑖 ⊗ 𝑒2 𝑓 𝑒1 ⊗ 𝑞𝑖

∗𝑞𝑖 +
𝑖

𝐴, 

(where 𝐴 =
1

2
 (𝑓1(𝑝𝑖

∗𝑝𝑗 )𝑓(𝑒1 ⊗ 𝑞𝑖
∗𝑞𝑗𝑖,𝑗 ,𝑖≠𝑗 ) +

                                      𝑓1 𝑝𝑗
∗𝑝𝑖 𝑓(𝑒1 ⊗ 𝑞𝑗

∗𝑞𝑖), 

which is also 0 by definition of I and as in the above 

argument, taking𝛼𝑖,𝑗 = 𝑓1 𝑝𝑗
∗𝑝𝑖 .) 

 

 

=  𝑓((𝑝𝑖
∗⊗ 𝑞𝑖

∗)(𝑝𝑖 ⊗𝑞𝑖
𝑖

))

+
1

2
 (𝑓   𝑝𝑖

∗⊗𝑞𝑖
∗  𝑝𝑗

𝑖,𝑗 ,𝑖≠𝑗

⊗ 𝑞𝑗    

                  +𝑓   𝑝𝑗
∗⊗𝑞𝑗

∗  𝑝𝑖 ⊗𝑞𝑖   

= 𝑓   𝑝𝑖 ⊗ 𝑞𝑖
𝑖

 

∗

  𝑝𝑖 ⊗𝑞𝑖
𝑖

   

Showing that 𝑕 ≤ 𝑓. So, 𝑕 = 𝛼𝑓 for some 𝛼 ≥ 0. 

Then , 

 

 𝑕   𝑝𝑖 ⊗ 𝑞𝑖
𝑖

 = 𝛼𝑓   𝑝𝑖 ⊗𝑞𝑖
𝑖

 

= 𝛼 𝑓1(𝑝𝑖)𝑓(𝑒1 ⊗𝑞𝑖
𝑖

)     

⇒ 𝑔1(𝑝𝑖)𝑓(𝑒1 ⊗ 𝑞𝑖
𝑖

) = 𝛼 𝑓1(𝑝𝑖)𝑓(𝑒1 ⊗ 𝑞𝑖
𝑖

) 

    ⇒   𝑔1(𝑝𝑖 − 𝛼𝑓1(𝑝𝑖))𝑓(𝑒1 ⊗ 𝑞𝑖𝑖 )) = 0  for 

any  

 

 𝑝𝑖 ⊗𝑞𝑖𝑖 ∈ 𝒜 ⊗𝛼 ℬ. 

So, in particular, for  𝑎 ⊗ 𝑒2 ∈ 𝐼1 ⊗ℬ ⊆ 𝒜 ⊗𝛼 ℬ; 

           (𝑔1 𝑎 − 𝛼𝑓1 𝑎 ) 𝑓(𝑒1 ⊗𝑒2)
= 0                                   

⇒  𝑔1 𝑎 − 𝛼𝑓1 𝑎  ∥ 𝑓 ∥= 0                 

                   ⇒ 𝑔1 𝑎 = 𝛼𝑓1 𝑎 ,  
𝑎 ∈ 𝒜 being arbitrary, we have, 𝑔1 = 𝛼𝑓1.Thus, 𝑓1 

is a pure positive form. 

Similarly, we can show that 𝑓2 is also pure. 

Now we proceed for the converse part of 

Theorem2.11. 

 
Theorem 2.13Corresponding to two positive linear 

forms 𝑓1 ∈ ℱ(𝒜) and𝑓2 ∈ ℱ(ℬ) there exists a 

positive form 𝑓   on 𝒜⊗𝛼 ℬ. 

Proof: For 𝑓1 ∈ ℱ(𝒜) , we construct the set 

 

𝐼1 = {𝑎1 ∈ 𝒜: 𝑓1 𝑎1
∗𝑎 + 𝑎∗𝑎1 = 0 ∀𝑎 ∈ 𝒜 } 

 

Then, 𝐼1 is a subspace of 𝒜, as for 𝑥1 , 𝑥2 ∈
𝐼1 , 𝛼, 𝛽 ∈ 𝕂 and 𝑦 ∈ 𝒜 arbitrary, 

𝑓1  𝛼𝑥1 + 𝛽𝑥2 
∗𝑦 + 𝑦∗ 𝛼𝑥1 + 𝛽𝑥2  = 0 

(as in linear Theorem 2.11), 

Again, for𝑥 ∈ 𝐼1 and arbitrary 𝑦, 𝑧 ∈ 𝒜; 

𝑓1  𝑧𝑥 
∗𝑦 + 𝑦∗ 𝑧𝑥  = 0, showing that𝐼1 is an ideal 

of 𝒜. 

Similarly, for 𝑓2 ∈ ℱ(ℬ)wetake  
𝐼2 =  𝑏1 ∈ ℬ: 𝑓2 𝑏1

∗𝑏 + 𝑏∗𝑏1 = 0 ∀𝑏 ∈ ℬ  , 
which will be an ideal of ℬ. Let 

𝐼 = { 𝑥𝑖 ⊗ 𝑦𝑖 ∈

𝑖

𝐼1 ⊗ 𝐼2 :  𝑓1 𝑥𝑖
∗ 

𝑖,𝑗 ,𝑖≠𝑗

𝑓2 𝑦𝑗   

                                         +  𝑓1 𝑥𝑖 𝑖,𝑗 ,𝑖≠𝑗 𝑓2 𝑦𝑗
∗ =

0} 

Clearly, for 𝑝, 𝑞 ∈ 𝐼, and 𝛼, 𝛽 ∈ 𝕂, 𝛼𝑝 + 𝛽𝑞 ∈ 𝐼. 
Also, for 𝑝 ∈ 𝐼, 𝑥 ∈ 𝒜 ⊗𝛼 ℬ, 

𝑝𝑥 =   𝑝𝑖 ⊗𝑞𝑖
𝑖

   𝑥𝑗 ⊗ 𝑦𝑗
𝑗

  

=  𝑝𝑖𝑥𝑗 ⊗𝑞𝑖
𝑖 ,𝑗

𝑦𝑗  
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Now, each 𝑝𝑖𝑥𝑗 ∈ 𝐼1 , 𝑞𝑖𝑦𝑗 ∈ 𝐼2. So  

𝑓1   𝑝𝑖𝑥𝑗  
∗
𝑎 + 𝑎∗ 𝑝𝑖𝑥𝑗   = 0 ∀ 𝑎 ∈ 𝒜 and ∀ 𝑖, 𝑗 

𝑓2   𝑞𝑖𝑦𝑗  
∗
𝑏 + 𝑏∗ 𝑞𝑖𝑦𝑗   = 0 ∀ 𝑏 ∈ ℬ and ∀ 𝑖, 𝑗 

In  particular,  for 𝑎 = 𝑓2(𝑞𝑖𝑦𝑗 )𝑒1, we get 

 

𝑓1   𝑝𝑖𝑥𝑗  
∗
𝑓2(𝑞𝑖𝑦𝑗 ) + (𝑓2(𝑞𝑖𝑦𝑗 ))∗ 𝑝𝑖𝑥𝑗   = 0  

⇒ 𝑓1  𝑝𝑖𝑥𝑗  
∗
)𝑓2(𝑞𝑖𝑦𝑗 ) + 𝑓1 𝑝𝑖𝑥𝑗  𝑓2((𝑞𝑖𝑦𝑗 )∗ = 0  

 

This will hold for any pair (i, j). Hence 𝑝𝑥 ∈ 𝐼, 
showing that I is an ideal. 
We define 𝑓: 𝐼 → 𝕂 by 𝑓  𝑎𝑖 ⊗𝑏𝑖𝑖  =
 𝑓1(𝑎𝑖)𝑓2(𝑏𝑖)𝑖  
Clearly, f is linear and  

𝑓    𝑎𝑖 ⊗𝑏𝑖
𝑖

 

∗

  𝑎𝑖 ⊗ 𝑏𝑖
𝑖

   

= 𝑓   𝑎𝑖
∗𝑎𝑗

𝑖,𝑗
⊗𝑏𝑖

∗𝑏𝑗  

=  𝑓1 𝑎𝑖
∗𝑎𝑗  𝑓2 𝑏𝑖

∗𝑏𝑗  
𝑖 ,𝑗

 

=  𝑓1 𝑎𝑖
∗𝑎𝑖 𝑓2 𝑏𝑖

∗𝑏𝑖 
𝑖

+
1

2
  𝑓1  𝑎𝑗

∗𝑎𝑖 
∗
 𝑓2 𝑏𝑖

∗𝑏𝑗  
𝑖,𝑗 ,𝑖≠𝑗

+ 𝑓1 𝑎𝑗
∗𝑎𝑖 𝑓2  𝑏𝑖

∗𝑏𝑗  
∗
   

=  𝑓1 𝑎𝑖
∗𝑎𝑖 𝑓2 𝑏𝑖

∗𝑏𝑖 + 0
𝑖

≥ 0,                                             
which implies that fis a positive linear form on I. 

Now, using Lemma 2.10 we get a positive 

linearform  

𝑓  on 𝒜 ⊗𝛼 ℬ so that 𝑓  |𝐼 = 𝑓 and  ∥ 𝑓  ∥=∥ 𝑓 ∥. 
     

 □ 

Theorem 2.14 If 𝐼1 and 𝐼2 contain the unit elements, 

(i.e,𝐼1 = 𝒜 and 𝐼2 = ℬ) the positive linear form f 

defined in the above theorem satisfies the following 

properties: 
i) If 𝑓1 and 𝑓2 are traces then f is also a trace. 

ii)If 𝑓1 and 𝑓2 are faithful so is f. 

iii)If 𝑓1 and 𝑓2are states then f is also a state. 

iv)If 𝑓1 and 𝑓2are pure then f is also pure. 

 

Proof: 

i) 𝑓 𝑒1 ⊗𝑒2 = 𝑓1 𝑒1 𝑓2 𝑒2 = 1 

 

𝑓    𝑎𝑖 ⊗𝑏𝑖
𝑖

   𝑐𝑗 ⊗𝑑𝑗
𝑗

  

=  𝑓1 𝑎𝑖𝑐𝑗  𝑓2 𝑏𝑖𝑑𝑗  

𝑖 ,𝑗

 

=  𝑓1 𝑐𝑗𝑎𝑖 𝑓2 𝑑𝑗𝑏𝑖 𝑖 ,𝑗 = 𝑓(  𝑐𝑗 ⊗𝑑𝑗𝑗    𝑎𝑖 ⊗𝑖

𝑏𝑖), 

Which shows that f is a trace. 

 

ii) 𝑓   𝑎𝑖 ⊗𝑏𝑖𝑖  ∗  𝑎𝑖 ⊗ 𝑏𝑖𝑖   = 0 

⇒ 𝑓1 𝑎𝑖
∗𝑎𝑗  𝑓2 𝑏𝑖

∗𝑏𝑗  
𝑖 ,𝑗

= 0                                
⇒  𝑓1 𝑎𝑖

∗𝑎𝑖 𝑓2 𝑏𝑖
∗𝑏𝑖 𝑖 = 0  (by the 

definition of f in theorem 2.13) 

⇒ 𝑓1 𝑎𝑖
∗𝑎𝑖 𝑓2 𝑏𝑖

∗𝑏𝑖 
= 0  ∀ 𝑖                                  

⇒ 𝑓1 𝑎𝑖
∗𝑎𝑖 = 0  or 𝑓2 𝑏𝑖

∗𝑏𝑖 
= 0  ∀ 𝑖                 

⇒ 𝑎𝑖 = 0 or𝑏𝑖
= 0 ∀ 𝑖                                          

⇒ 𝑎𝑖 ⊗𝑏𝑖
𝑖

= 0,                                                
showing that 𝑓 𝑖s faithful. 

iii) f  is continuous if 𝑓1 and 𝑓2are 

continuous. Also, 

∥ 𝑓 ∥= 𝑓 𝑒1 ⊗ 𝑒2 = 𝑓1 𝑒1 𝑓2 𝑒2  
                                        =∥ 𝑓1 ∥∥ 𝑓2 ∥

= 1, 
 

 which implies f is also a state. 

iv) Let 𝑔 ≤ 𝑓, we define 𝑕1:𝒜 → 𝕂by 

𝑕1 𝑎 = 𝑔 𝑎 ⊗ 𝑒2  
                𝑕1 𝑎

∗𝑎 = 𝑔 𝑎∗𝑎 ⊗ 𝑒2          

= 𝑔  𝑎 ⊗ 𝑒2 
∗ 𝑎

⊗ 𝑒2  

≤ 𝑓  𝑎 ⊗ 𝑒2 
∗ 𝑎

⊗ 𝑒2  

= 𝑓 𝑎∗𝑎 ⊗ 𝑒2  
               = 𝑓1 𝑎

∗𝑎 𝑓2 𝑒2  
     =  𝑓1 𝑎

∗𝑎  
⇒ 𝑕1 ≤ 𝑓1. 

So, 𝑕1 = 𝛼𝑓1 for some 𝛼 ≥ 0. 

Therefore, 𝑕1 𝑎 = 𝛼𝑓1 𝑎  
⇒  𝑔 𝑎 ⊗ 𝑒2 = 𝛼𝑓1 𝑎 𝑓2 𝑒2 

= 𝛼𝑓 𝑎 ⊗ 𝑒2  
∀ 𝑎 ∈ 𝒜. 

Now, let 𝑕2: ℬ → 𝕂be definedby𝑕2 𝑏 =
𝑔 𝑒1 ⊗𝑏  
As above we can show that 𝑕2 ≤ 𝑓2. So,  

𝑕2 = 𝛽𝑓2 for some 𝛽 ≥ 0. 

Therefore, 𝑕2 𝑏 = 𝛽𝑓2 𝑏 . 
Now, for 𝑎 ⊗ 𝑏 ∈ 𝐼, 

𝑔 𝑎 ⊗ 𝑏 = 𝑔( 𝑎 ⊗ 𝑒2  𝑒1 ⊗𝑏 
= 𝑕1 𝑎 𝑕2 𝑏 
= 𝛼𝑓1 𝑎 𝛽𝑓2 𝑏 
= 𝛼𝛽𝑓 𝑎 ⊗ 𝑏 , 

showing that f is pure (upto homomorphism).

 □ 

 

Concluding Remark: We have derived different 

results regarding positive elements and positive 

forms in the tensor product of C*-algebras. In 2014, 

S.H.Jah and M.S.Ahmed [9] derived some results on 
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positive-normal operators in semi-Hilbertian spaces. 

Considering this aspect, the following problem can 

be raised: 

Using a positive-normal element and a 

positive form on each of the two C*-algebras𝒜 and 

ℬ, can we obtain a class of positive forms on their 

tensor product? 
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