Some Results on Positive Elements in the Tensor Product of C*-algebras

Anamika Sarma¹, Nilakshi Goswami²

¹Research Scholar, ²Assistant Professor, Department of Mathematics, Gauhati University, Assam, India

Abstract —In this paper, we discuss different properties of positive elements in the tensor product of two C*-algebras. Considering the cone of positive elements in a C*-algebra A, we define a cone norm on the set of Hermitian elements of A. Some results regarding positive forms in the tensor product are also derived here.

AMS Subject Classification—47L40, 22D25.

Keywords— *C**-algebra, positive element, tensor product, cone norm, positive form.

1 INTRODUCTION

In 1943, Gelfand and Naimark introduced the notion of a C*-algebra, which is a Banach algebra with an involution * satisfying $|| a^* || = || a ||$ and $|| a^*a || =$ $|| a ||^2$. The term C*-algebra was introduced by I.E.Segal in 1947 to describe norm-closed subalgebras of $\beta(\mathcal{H})$, space of bounded linear operatorson some Hilbert space \mathcal{H} (C stands for closed). In 1969, A.Guichardet [7] discussed about C*-tensor norms and the tensor product of C*algebras. Kaijserand Sinclair [10] studied about the projective tensor product of C*-algebras in1984. Blecher in his paper [1], investigated the geometrical properties of algebra norms on the tensor product of C*- algebras. Keith Conard in his paper[3] discussed about the tensor products of linear maps.

In this paper, we derive some results on positive elements in the tensorproduct of two C*algebras. We also define a cone norm on the set of Hermitianelements of a C*-algebra. Some results regarding positive forms in the tensorproduct of two C*-algebras are also discussed here.

Definition 1.1. [11]:Let \mathcal{A} and \mathcal{B} be two C*algebras, $\mathcal{A} \otimes \mathcal{B}$ denote the algebraic tensor product of \mathcal{A} and \mathcal{B} . Then $\mathcal{A} \otimes \mathcal{B}$ is a C*-algebra under the natural definitions:

 $(a \otimes b)(a^{'} \otimes b^{'}) = aa^{'} \otimes bb^{'}$

and involution $(\sum_{i} a_{i} \otimes b_{i})^{*} = \sum_{i} a_{i}^{*} \otimes b_{i}^{*}$ where $a, a', a_{i} \in \mathcal{A}$ and $b, b', b_{i} \in \mathcal{B}$.

Definition 1.2. [1]: If α is a norm on $\mathcal{A} \otimes \mathcal{B}$ then α is called a crossnorm if $|| a \otimes b ||_{\alpha} = || a || ||$ $b || \text{for } a \in \mathcal{A} \text{ and } b \in \mathcal{B}.$ **Definition 1.3.** [11]: A norm on a *-algebra \mathcal{A} that satisfies $|| a^*a || = || a ||^2$ for all a in \mathcal{A} is called a C*-norm.

If α is an algebra norm defined on an algebra \mathcal{A} , we call α a C*-*norm* on \mathcal{A} if there is an involution on the α -completion of \mathcal{A} making it into a C*-algebra. If \mathcal{A} and \mathcal{B} are C*-algebras, then there are several norms α that turn $\mathcal{A} \otimes_{\alpha} \mathcal{B}$ (completion of $\mathcal{A} \otimes \mathcal{B}$ with respect to α) into a C*-algebra.

Definition 1.4. [13]: Let \mathcal{A} be a C*-algebra. An element $a \in \mathcal{A}$ is called

i) self adjoint or hermitian if $a = a^*$

ii) normal if $a^*a = aa^*$

iii) a projection if $a = a^2 = a^*$

iv) unitary if $a^*a = e = aa^*$ (*e* being the unit element of \mathcal{A})

Definition 1.5. [14]: Let \mathcal{A} be a C*-algebra. An element $a \in \mathcal{A}$ is called positive if $a = a^*$ and $\sigma(a) \subseteq \mathbb{R}^+$. It is denoted by $a \ge 0$.

The set of all positive elements of \mathcal{A} is denoted by \mathcal{A}^+ . For a unital C*-algebra \mathcal{A} with $a, b \in \mathcal{A}$, we write $a \ge b$ when a and b are self adjoint and $(a - b) \ge 0$. Then \ge is a partial order on the set of self adjoint elements of \mathcal{A} .

Definition 1.6.[4]:Let \mathcal{A} be a C*-algebra. A linear form (or functional) f on \mathcal{A} is said to be positive if $f(x^*x) \ge 0$ for each $x \in \mathcal{A}$. A state on \mathcal{A} is a continuous positive linear form f on \mathcal{A} such that $\| f \| = 1$.

Definition 1.7. [13]: A trace on \mathcal{A} is a positive linear form f with f(e) = 1 satisfying f(ab) = f(ba) for all $a, b \in \mathcal{A}$. This condition is usually called the trace property. The trace is said to be faithful if $f(a^*a) = 0$ occurs only for a = 0.

If \mathcal{A} is commutative, every positive linear form is a trace.

Definition 1.8. [2] A positive linear form f on \mathcal{A} is called pure if for any positive linear form g on \mathcal{A} satisfying $g \leq f$, we have $g = \alpha f$ for some $\alpha \geq 0$. We call a positive form f (which is also a homomorphism) pure (uptohomomorphism), if for any positive linear form (also homomorphism)g on

 \mathcal{A} satisfying $g \leq f$, we have $g = \alpha f$ for some $\alpha \geq 0$.

2 MAIN RESULTS

First, we discuss some properties of positive elements in the tensor product of two concrete C*-algebras. For a Hilbert space \mathcal{H} , a sub-algebra of $\beta(\mathcal{H})$ which is closed under norm and under adjoint operation is called a concreteC*-algebra. If \mathcal{A} is a concrete C*-algebra, it can be represented by $\mathcal{A} \hookrightarrow \beta(\mathcal{H})$. From the GNS theorem [14], we have, every C*-algebra is isometrically * isomorphic to a concrete C*-algebra. Here, we take two concrete C*-algebras \mathcal{A} and \mathcal{B} and a C*- norm α (which is also a cross norm) on $\mathcal{A} \otimes \mathcal{B}$.

Lemma2.1[14]: Let \mathcal{A} be a C*-algebra and $a \in \mathcal{A}$. Then the following are equivalent:

- i) $a \ge 0$.
- ii) $a = b^*b$ for some $b \in \mathcal{A}$.
- iii) $a = b^2$ for some self adjoint element $b \in \mathcal{A}$.

Lemma 2.2([14], [15]): Let \mathcal{A} be a C*-algebra and $a, b \in \mathcal{A}$.

- i) If $a \ge 0$ and $-a \ge 0$, then a = 0.
- ii) If $a, b \ge 0$ and ab = ba, then $ab \ge 0$ and $a + b \ge 0$.
- iii) If \mathcal{A} is a unital C*-algebra, $a = a^*$ and $\| a \| \le 2$, then $a \ge 0$ if and only if $\| a - e \| \le 1$
- iv) If *a* is positive and $a^n = a^m$ for some integers $0 \le m \le n$, then *a* is a projection.
- v) Every projection is a positive element.
- vi) Let *a* be a positive element in \mathcal{A} . Then for a given arbitrary positive integer*n*, there exists a unique positive element $b \in \mathcal{A}$ such that $b^n = a$.
- vii) Let $t \in \mathbb{R}^+$ and $a, b \in \mathcal{A}^+$. Then $ta + b \in \mathcal{A}^+$.
- viii) If $0 \le a \le b$ then $||a|| \le ||b||$. ix) If $a, b \in \mathcal{A}^+$ then
 - $\|a b\| \le \max \|a\|, \|b\|$

Regarding positive elements in $\mathcal{A} \bigotimes_{\alpha} \mathcal{B}$ we derive the following result:

Theorem 2.3 For $a \in \mathcal{A}$ and $b \in \mathcal{B}$,

- i) If $a \ge 0, b \ge 0$ then $a \otimes b \ge 0$ and the converse holds if $a \otimes b \ne 0$.
- ii) If a and b are projections, then $a \otimes b$ is also a projection.
- iii) If a and b are two normal elements, then $a \otimes b$ is also a normal element.
- iv) Let $a, c \in \mathcal{A}$ and $b, d \in \mathcal{B}$ be positive elements such that $b \ge a$ and $d \ge c$. Then

 $\parallel a \otimes b - c \otimes d \parallel \leq (\parallel b \parallel + \parallel d \parallel)^2.$

v) For unital C*-algebras
$$\mathcal{A}$$
 and \mathcal{B} , if
 $a \otimes b \in \mathcal{A} \otimes_{\alpha} \mathcal{B}$ is such that $\max \mathbb{A}$
 $a \parallel, \parallel b \parallel) \leq 2$, then
 $\parallel e_1 \otimes e_2 - a \otimes b \parallel$
 $\leq \begin{cases} 1+2 \parallel b \parallel, \text{ if } a \text{ is positive} \\ 1+2 \parallel a \parallel, \text{ if } b \text{ is positive} \end{cases}$

(where e_1 and e_2 are unit elements of \mathcal{A} and \mathcal{B} respectively)

Proof:

As $a \ge 0$ and $b \ge 0$ so, $a = c^*c, b =$ i) d^*d for some $c \in \mathcal{A}, d \in \mathcal{B}$. So, $a \otimes b = c^* c \otimes d^* d$ $= (c \otimes d)^* (c \otimes d)$ for $c \otimes d \in \mathcal{A} \otimes_{\alpha} \mathcal{B}$ which implies $a \otimes b \ge 0$. Conversely, let $a \otimes b \ge 0$ and $a \ge 0$ but $b \le 0 \Rightarrow$ $-b \geq 0.$ Therefore, $a \otimes (-b) \ge 0 \Rightarrow -a \otimes b \ge 0 \Rightarrow a \otimes$ $b \leq 0.$ So, $a \otimes b = 0$, a contradiction. Thus $a \otimes b \ge 0 \Rightarrow a \ge 0, b \ge 0$. a and b are projections implies a =ii) a2=a* and $b = b^2 = b^*$. Now, $a \otimes b = a^* \otimes b^* = (a \otimes b)^*$ $a \otimes b = a^2 \otimes b^2 = (a \otimes b)^2$, showing that $a \otimes b$ is a projection. iii) As a and b are normal elements, $a^*a = aa^*$ and $b^*b = bb^*$. Now. $(a \otimes b)(a \otimes b)^* = aa^* \otimes bb^*$ $= a^*a \otimes b^*b$ $= (a \otimes b)^* (a \otimes b)$ Thus, $(a \otimes b)$ is also normal. iv) $|| a \otimes b - c \otimes d || \leq || a \otimes b || + || c \otimes$ d || = || a || || b || + || c || $\parallel d \parallel$ $\leq \| b \| \| b \| + \| d \|$ || d || (by Lemma 2.2(viii)) $= \| b \|^{2} + \| d \|^{2}$ $\leq (\|b\| + \|d\|)^2$ Let $a \in \mathcal{A}$ be positive and $b \in \mathcal{B}$ be v) arbitrary. Then , $|| e_1 \otimes e_2 - a \otimes b ||$ $= \parallel (e_1 - a) \otimes b + e_1 \otimes (e_2 - b) \parallel$ $\leq || e_1 - a || || b || + || e_1 || || e_2 - b ||$ $\leq 1. \| b \| + \| e_2 - b \|$ [by Lemma 2.2 (iii)] $\leq 1 + 2 \parallel b \parallel$ Similarly if $b \in \mathcal{B}$ is positive, then

 $\parallel e_1 \otimes e_2 - a \otimes b \parallel \leq 1 + 2 \parallel a \parallel \Box$

Next, we consider the set of Hermitian elements H (which is avector space over \mathbb{R}) on a commutative realC*-algebra \mathcal{A} . With the help of positive elements we show that it is a cone Banach space over \mathcal{A} . As a genealization of normed spaces, cone normedspaces play a very important role in different branches of functionalanalysis. In 2009, .M.E.Gordji et al introduced the notion of conenormed spaces.

Definition 2.4 [5]For a vector space E, a subset P (of E) is

called a cone whenever

- i) P is a closed, non empty set and $P \neq \{0\}$,
- ii) $ax + by \in P$ for all $x, y \in P$ and $a, b \ge 0$,

iii) $P \cap (-P) = \{0\}.$

With respect to *P* a partial ordering \leq can be defined on *E* by $x \leq y$ if and only if $(y - x) \in P$. The cone *P* is normal if there is a number $K \geq 1$ such that for all $x, y \in E, 0 \leq x \leq y \Rightarrow || x || \leq K || y ||$.

Definition 2.5 [5]Let *X* be a real vector space. If the mapping $\|.\|_P: X \to E$ satisfies:

a) $||x||_p \ge 0 \forall x \in X$ and $||x||_p = 0$ iff x = 0,

b) $\| \alpha x \|_{P} = |\alpha| \| x \|_{P}, \forall x \in X \text{ and } \alpha \in \mathbb{R},$

c) $|| x + y ||_P \le || x ||_P + || y ||_P, \forall x, y \in X,$

then $\|.\|_p$ is called a cone norm on X and $(X, \|.\|_p)$ is called a cone normed space over *E*.

Here, we define a map: $\|.\|_P \colon H \to \mathcal{A}$ such that

$$\| x \|_{P} = \begin{cases} x, \text{ if } x \text{ is positive} \\ 0, \text{ if } x = 0 \\ -x, \text{ if } x \text{ is not positive} \end{cases}$$

Theorem 2.6: With respect to $||g||_P$, H is a cone Banach

space over \mathcal{A} .

Proof: Let $x \in$ Hbe arbitrary and α be a scalar. Then i) $\|x\|_{p} \ge 0 \forall x \in$ Hand $\|x\|_{p} =$ 0 iff x = 0 (by definition) ii) Case I: Let $x \ge 0$ For $\alpha \ge 0$, $\|\alpha x\|_{p} = \alpha x = |\alpha| \|x\|_{p}$ For $\alpha \le 0$, $\|\alpha x\|_{p} = -\alpha x = |\alpha| \|x\|_{p}$ Case II: Let $x \le 0$ For $\alpha \ge 0$, $\|\alpha x\|_{p} = -\alpha x = \alpha(-x) = |\alpha| \|x\|_{p}$ For $\alpha \le 0$, $\|\alpha x\|_{p} = \alpha x = (-\alpha)(-x) = |\alpha| \|x\|_{p}$ iii) Let $x, y \in$ H be arbitrary. Case I: Let $x \ge 0$

For $y \ge 0$, $|| x + y ||_P = x + y = || x ||_P + || y ||_P$ For $y \le 0$ and $x \ge -y$ i. e., $x + y \ge 0$, $|| x ||_P + || y ||_P = x - y \ge x + y = || x + y ||_P$ $\begin{aligned} (-y \ge 0 \Rightarrow -2y \ge 0 \Rightarrow (x-y) - (x+y) \ge 0 \Rightarrow \\ x-y \ge x+y) \end{aligned}$ For $-y \ge 0$ and $-y \ge x$ *i.e.*, $-(x+y) \ge 0$, $\parallel x \parallel_P + \parallel y \parallel_P = x-y \ge -(x+y) = \parallel x+y \parallel_P \end{aligned}$

 $(x \ge 0 \Rightarrow 2x \ge 0 \Rightarrow (x - y) + (x + y) \ge 0)$ Case II: If $-x \ge 0, -y \ge 0$, $||x||_{P} + ||y||_{P} = (-x) + (-y) = -(x + y)$ $= ||x + y||_{P}$

Thus $\|.\|_P$ is a cone norm on H.

To show that $(H, \|.\|_p)$ is complete: Let $\{x_n\}$ be a Cauchy sequence in H.As $H \subseteq \mathcal{A}$ and \mathcal{A} is complete, so $\{x_n\}$ converges to some x as $n \to \infty$ i.e., $\lim_{n\to\infty} (x_n - x) = 0 \Rightarrow \lim_{n\to\infty} \|(x_n - x)\|_p = 0$ (by definition of the cone norm).

Thus H is complete with respect to $\|.\|_p$, i.e., it is a cone BanachSpace.

In [8], H.L.Guang and Z.Xian, proved the following fixed pointtheorem in cone Banach spaces.

Theorem 2.7: Let $(X, \|.\|_P)$ be a complete cone normed space, *P* be a normal cone with normal constant K. Suppose the mapping: $T: X \to X$ satisfies the contractive condition : $\|Tx - Ty\|_P \le k \|x - y\|_P, \forall x, y \in X$, where $k \in [0,1)$ is a constant. Then *T* has a unique fixed point in *X*.

Example 2.8 For the cone Banach space $(H, \|.\|_P)$, we define $Tx = \frac{x}{\alpha} (\alpha \ge 1), x \in H$. Then

$$\|Tx - Ty\|_{P} = Tx - Ty, \text{ if } Tx - Ty \text{ is positive}$$

$$= \frac{x}{\alpha} - \frac{y}{\alpha} = \frac{x - y}{\alpha} = \frac{1}{\alpha} \|x - y\|_{P} \text{ (as } x - y)$$

$$\|Tx - Ty\|_{P} = 0, \quad \text{if } Tx - Ty = 0$$

$$= \frac{1}{\alpha} \|x - y\|_{P} \text{ (as } x - y)$$

$$= 0$$

 $|| Tx - Ty ||_P = -(Tx - Ty), \text{ if } Tx - Ty \text{ is not}$ positive

$$= -\left(\frac{x}{\alpha} - \frac{y}{\alpha}\right) = -\frac{1}{\alpha}(x - y)$$
$$= \frac{1}{\alpha} || x - y ||_{P} (as - (x - y))$$
$$\ge 0)$$

Thus k $|| Tx - Ty ||_P \le \frac{1}{\alpha} || x - y ||_P$. So by the above theorem *T* has a unique fixed point in H.

Next we discuss some properties of positive linear forms on C*-algebras. From [12] we have,

Lemma 2.9: Let \mathcal{A} be a C*-algebra. Then

i) Every positive linear form f on \mathcal{A} is bounded

and has norm f(e) (if \mathcal{A} is unital with unit e).

ii) If f is a positive linear form on \mathcal{A} , then

 $f(a^*) = \overline{f(a)}, |f(a)|^2 \le ||f|| f(a^*a) \forall a \in \mathcal{A}$ and $|f(b^*a)|^2 \le f(b^*b)f(a^*a).$

- iii) If f is a bounded linear form on a unital
- C*-algebra \mathcal{A} then *f* is positive iff f(e) = 1.
- iv) If f_1 and f_2 are positive linear forms on a

unital C*-algebra, then $|| f_1 + f_2 || = || f_1 || + || f_2 ||$.

Lemma 2.10:[12] Let \mathcal{B} be a C*-subalgebra of a C*algebra \mathcal{A} and suppose that f_0 is a positive linear form on \mathcal{B} . Then there is positive linear form f on \mathcal{A} extending f_0 such that $|| f || = || f_0 ||$. For two unital C*-algebras \mathcal{A} and \mathcal{B} , let $\mathcal{F}(\mathcal{A} \otimes_{\alpha} \mathcal{B}), \mathcal{F}(\mathcal{A})$ and $\mathcal{F}(\mathcal{B})$ be the sets of all positive linear forms on $\mathcal{A} \otimes_{\alpha} \mathcal{B}, \mathcal{A}$ and Brespectively. Here we find a relation between $\mathcal{F}(\mathcal{A} \otimes_{\alpha} \mathcal{B})$ and $\mathcal{F}(\mathcal{A})$ and $\mathcal{F}(\mathcal{B})$.

Theorem 2.11: Corresponding to a positive linearform $f \in \mathcal{F}(\mathcal{A} \otimes_{\alpha} \mathcal{B})$, there exist two positive linear forms \tilde{f}_1 and \tilde{f}_2 on \mathcal{A} and \mathcal{B} respectively. **Proof**: We consider the set

$$I = \{ x \in \mathcal{A} \bigotimes_{\alpha} \mathcal{B} : f(x^*y) + f(y^*x) = 0 \forall y \\ \in \mathcal{A} \bigotimes_{\alpha} \mathcal{B} \}$$

Then *I* is a subspace of $\mathcal{A} \otimes_{\alpha} \mathcal{B}$, as for $x_1, x_2 \in I$, $\alpha, \beta \in \mathbb{K}$ and $y \in \mathcal{A} \otimes_{\alpha} \mathcal{B}$ arbitrary,

$$f((\alpha x_{1} + \beta x_{2})^{*}y + y^{*}(\alpha x_{1} + \beta x_{2}))$$

= $f(\bar{\alpha}x_{1}^{*}y) + f(\bar{\beta}x_{2}^{*}y) + f(y^{*}\alpha x_{1})$
+ $f(y^{*}\beta x_{2})$
= $f(x_{1}^{*}(\bar{\alpha}y)) + f((\bar{\alpha}y)^{*}x_{1}) + f(x_{2}^{*}(\bar{\beta}y))$
+ $f((\bar{\beta}y)^{*}x_{2})$
= 0 (using the definition of I)

Again, for $x \in I$ and $y, z \in \mathcal{A} \otimes_{\alpha} \mathcal{B}$ arbitrary,

$$f((zx)^*y + y^*(zx)) = f(x^*z^*y + y^*zx)$$

= f(x^*(z^*y) + (z^*y)^*x)
= 0,

showing that *I* is also an ideal. Let $g_1 \in \mathcal{A}^*$ and $g_2 \in \mathcal{B}^*$ (the dual spaces) be two homomorphisms. We define $h_1: I \to \mathcal{A}$ by

$$h_1(\sum_i p_i \otimes q_i) = \sum_i g_2(q_i) p_i$$

Clearly h_1 is linear.

For x =

$$\sum_{i} p_{i} \otimes q_{i}, y = \sum_{j} a_{j} \otimes b_{j} \in I,$$

$$h_{1}(xy) = h_{1}\left(\sum_{i,j} p_{i}a_{j} \otimes q_{i}b_{j}\right)$$

$$= \sum_{i,j} g_{2}(q_{i}b_{j})p_{i}a_{j}$$

$$= \sum_{i,j} g_{2}(q_{i})g_{2}(b_{j})p_{i}a_{j}$$

$$= \left(\sum_{i} g_{2}(q_{i}) p_{i}\right) \left(\sum_{j} g_{2}(b_{j}) a_{j}\right)$$
$$= h_{1}\left(\sum_{i} p_{i} \otimes q_{i}\right) h_{1}\left(\sum_{j} a_{j} \otimes b_{j}\right) = h_{1}(x)h_{1}(y),$$

showing that h_1 is also a homomorphism. Similarly, we can define (using g_1) a homomorphism

 $h_2: I \rightarrow \mathcal{B}$. Let $I_1 = h_1(I), I_2 = h_2(I)$. Then, I_1 and I_2 are also ideals of \mathcal{A} and \mathcal{B} respectively.

We define $f_1: I_1 \to \mathbb{K}$ by $f_1(a_1) = f(a_1 \otimes e_2), a_1 \in I_1(e_2)$ being the unitelement of \mathcal{B}). Then, f_1 is linear.

$$f_1(a_1^*a_1) = f(a_1^*a_1 \otimes e_2)$$

= $f((a_1 \otimes e_2)^*(a_1 \otimes e_2))$
 ≥ 0 (since f is a positive for

 $\geq 0 \text{ (since } f \text{ is a positive form),}$ which shows that f_1 is a positive linear form on I_1 . Now, using Lemma 2.10, f_1 can be extended to a positive linearform $\tilde{f_1}: \mathcal{A} \to \mathbb{K}$, where $\tilde{f_1}|_{I_1} = f_1$, i.e. $\tilde{f_1} \in \mathcal{F}(\mathcal{A})$ with $\| \tilde{f_1} \| = \| f_1 \|$. Similarly, defining $f_2: I_2 \to \mathbb{K}$ by $f_2(b_1) =$ $f(a, \Theta, b)$, $b \in I_1(a$ being the unitalement of \mathcal{A} .

 $f(e_1 \otimes b_1), b_1 \in I_2(e_1 \text{ being the unitelement of } \mathcal{A},$ we can find $\tilde{f}_2 \in \mathcal{F}(\mathcal{B})$ with $\tilde{f}_2|_{I_2} = f_2$ and $|| \tilde{f}_2 || = ||$ $f_2 ||.$ \Box

Theorem 2.12: If *I* contains the unit element, the following properties of *f* are inherited by f_1 and f_2 :

- (i) If f is a trace so are f_1 and f_2 .
- (i) If f is faithful so are f_1 and f_2 . (ii) If f is faithful so are f_1 and f_2 .
- (ii) If f is state, f_1 and f_2 are also states.

(iv) If f is pure so are f_1 and f_2 .

(If *f* is such that $Re f(x) = 0 \forall x \in \mathcal{A} \bigotimes_{\alpha} \mathcal{B}$, then $f(x + x^*) = 0$ so, I contains the unit element, i.e. $I = \mathcal{A} \bigotimes_{\alpha} \mathcal{B}$ and accordingly I_1 and I_2 also contain the unit elements.)

Proof: i)
$$f_1(e_1) = f(e_1 \otimes e_2) = 1$$

 $f_1(a_1a_2) = f(a_1a_2 \otimes e_2)$
 $= f((a_1 \otimes e_2)(a_2 \otimes e_2))$
 $= f((a_2 \otimes e_2)(a_1 \otimes e_2)) = f(a_2a_1 \otimes e_2)$
 $= f_1(a_2a_1),$

showing that f_1 is a trace. Similarly f_2 is also a trace.

ii)
$$f_1(a_1^*a_1) = 0 \Rightarrow f(a_1^*a_1 \otimes e_2) = 0$$

= $f((a_1 \otimes e_2)^*(a_1 \otimes e_2)) = 0$
 $\Rightarrow a_1 \otimes e_2 = 0 \Rightarrow || a_1 \otimes e_2 || = 0$
 $\Rightarrow || a_1 || || e_2 || = 0 \Rightarrow || a_1 || = 0 \Rightarrow a_1 = 0$

which implies f_1 is faithful. Similarly, f_2 is also faithful.

(iii) Clearly if *f* is continuous, f_1 and f_2 are also continuous. Also || f || = 1. Now, $|| f_1 || = f_1(e_1) = f(e_1 \otimes e_2) = || f || = 1$. Similarly, $|| f_2 || = 1$, which shows that f_1 and f_2 are states.

iv) If g is a positive linear form dominated by f, i.e, $g \le f$ then $g = \alpha f$ for some $\alpha \ge 0$. Let $g_1 \le f_1$. We define $h : \mathcal{A} \bigotimes_{\alpha} \mathcal{B} \to \mathbb{K}$ by

$$h\left(\sum_{i} p_i \otimes q_i\right) = \sum_{i} g_1(p_i) f(e_1 \otimes q_i)$$

Then *h* is a positive linear form on $\mathcal{A} \bigotimes_{\alpha} \mathcal{B}.\text{Also}, h((\sum_{i} p_{i} \otimes q_{i})^{*}(\sum_{i} p_{i} \otimes q_{i})) = h(\sum_{i,j} p_{i}^{*}p_{j} \otimes q_{i}^{*}q_{j})$

$$= h\left(\sum_{i} p_{i}^{*}p_{i} \otimes q_{i}^{*}q_{i}\right) \\ + \frac{1}{2}h(\sum_{i,j,i\neq j} (p_{i}^{*}p_{j} \otimes q_{i}^{*}q_{j} \\ + p_{j}^{*}p_{i} \otimes q_{j}^{*}q_{i})) \\ = \sum_{i} g_{1}(p_{i}^{*}p_{i})f(e_{1} \otimes q_{i}^{*}q_{i}) \\ + \frac{1}{2}\sum_{i,j,i\neq j} (g_{1}(p_{i}^{*}p_{j})f(e_{1} \\ \otimes q_{i}^{*}q_{j}) \\ \otimes q_{i}^{*}q_{i})) + g_{1}(p_{j}^{*}p_{i})f(e_{1} \\ \otimes q_{j}^{*}q_{i}))$$

$$\leq \sum_{i} f_{1}(p_{i}^{*}p_{i})f(e_{1} \otimes q_{i}^{*}q_{i}) \\ + \frac{1}{2} \sum_{i,j,i\neq j} \bar{\alpha}_{i,j}f(e_{1} \otimes q_{i}^{*}q_{j}) \\ + \alpha_{i,j}f(e_{1} \otimes q_{j}^{*}q_{i}), \\ \text{taking}\alpha_{i,j} = g_{1}(p_{j}^{*}p_{i}) \\ = \sum_{i} f_{1}(p_{i}^{*}p_{i})f(e_{1} \otimes q_{i}^{*}q_{i}) + \frac{1}{2} \sum_{i,j,i\neq j} f((\alpha_{i,j} e_{1} \otimes q_{i})^{*})$$

 $(e_1 \otimes q_j) + (e_1 \otimes q_j)^* (\alpha_{i,j} e_1 \otimes q_i))$ = $\sum_i f_1(p_i^* p_i) f(e_1 \otimes q_i^* q_i) + \frac{1}{2} \cdot 0$ (by definition of *I*)

$$= \sum_{i} f(p_i^* p_i \otimes e_2) f(e_1 \otimes q_i^* q_i) + A,$$

(where $A = \frac{1}{2} \sum_{i,j,i \neq j} (f_1(p_i^* p_j) f(e_1 \otimes q_i^* q_j) + A)$

 $f_1(p_j * p_i) f(e_1 \otimes q_j * q_i),$ which is also 0 by definition of *I* and as in the above argument, taking $\alpha_{i,j} = f_1(p_j * p_i).$

$$= \sum_{i} f((p_i^* \otimes q_i^*)(p_i \otimes q_i)) \\ + \frac{1}{2} \sum_{i,j,i \neq j} (f((p_i^* \otimes q_i^*)(p_j \otimes q_j)) \\ + f((p_j^* \otimes q_j^*)(p_i \otimes q_i))$$

$$= f\left(\left(\sum_{i} p_{i} \otimes q_{i}\right)^{*}\left(\sum_{i} p_{i} \otimes q_{i}\right)\right)$$

Showing that $h \le f$. So, $h = \alpha f$ for some $\alpha \ge 0$. Then,

$$h\left(\sum_{i} p_{i} \otimes q_{i}\right) = \alpha f\left(\sum_{i} p_{i} \otimes q_{i}\right)$$
$$= \alpha \sum_{i} f_{1}(p_{i}) f(e_{1} \otimes q_{i})$$
$$\Rightarrow \sum_{i} g_{1}(p_{i}) f(e_{1} \otimes q_{i}) = \alpha \sum_{i} f_{1}(p_{i}) f(e_{1} \otimes q_{i})$$
$$\Rightarrow \sum_{i} (g_{1}(p_{i}) - \alpha f_{1}(p_{i})) f(e_{1} \otimes q_{i})) = 0 \quad \text{for any}$$

$$\begin{split} \sum_{i} p_{i} \otimes q_{i} \in \mathcal{A} \otimes_{\alpha} \mathcal{B}. \\ \text{So, in particular, for } a \otimes e_{2} \in I_{1} \otimes \mathcal{B} \subseteq \mathcal{A} \otimes_{\alpha} \mathcal{B}; \\ & (g_{1}(a) - \alpha f_{1}(a)) f(e_{1} \otimes e_{2}) \\ & = 0 \\ \Rightarrow (g_{1}(a) - \alpha f_{1}(a)) \parallel f \parallel = 0 \\ & \Rightarrow g_{1}(a) = \alpha f_{1}(a), \end{split}$$

 $a \in \mathcal{A}$ being arbitrary, we have, $g_1 = \alpha f_1$. Thus, f_1 is a pure positive form.

Similarly, we can show that f_2 is also pure. Now we proceed for the converse part of Theorem 2.11.

Theorem 2.13Corresponding to two positive linear forms $f_1 \in \mathcal{F}(\mathcal{A})$ and $f_2 \in \mathcal{F}(\mathcal{B})$ there exists a positive form \tilde{f} on $\mathcal{A} \otimes_{\alpha} \mathcal{B}$. **Proof**: For $f_1 \in \mathcal{F}(\mathcal{A})$, we construct the set

$$I_1 = \{a_1 \in \mathcal{A}: f_1(a_1^*a + a^*a_1) = 0 \forall a \in \mathcal{A} \}$$

Then, I_1 is a subspace of \mathcal{A} , as for $x_1, x_2 \in I_1, \alpha, \beta \in \mathbb{K}$ and $y \in \mathcal{A}$ arbitrary, $f_1((\alpha x_1 + \beta x_2)^* y + y^*(\alpha x_1 + \beta x_2)) = 0$ (as in linear Theorem 2.11),

Again, for $x \in I_1$ and arbitrary $y, z \in \mathcal{A}$; $f_1((zx)^*y + y^*(zx)) = 0$, showing that I_1 is an ideal of \mathcal{A} .

Similarly, for
$$f_2 \in \mathcal{F}(\mathcal{B})$$
 we take
 $I_2 = \{b_1 \in \mathcal{B}: f_2(b_1^*b + b^*b_1) = 0 \forall b \in \mathcal{B}\},\$
which will be an ideal of \mathcal{B} . Let
 $I = \{\sum_i x_i \otimes y_i \in I_1 \otimes I_2: \sum_{\substack{i,j,i \neq j \\ i \neq j}} f_1(x_i^*) f_2(y_j^*) = \sum_{\substack{i,j,i \neq j \\ i \neq j}} f_1(x_i) f_2(y_j^*) = \sum_{\substack{i,j,i \neq j \\ i \neq j}} f_1(x_i) f_2(y_j^*)$

0}

Clearly, for $p, q \in I$, and $\alpha, \beta \in \mathbb{K}, \alpha p + \beta q \in I$. Also, for $p \in I$, $x \in \mathcal{A} \bigotimes_{\alpha} \mathcal{B}$,

$$px = \left(\sum_{i} p_{i} \otimes q_{i}\right) \left(\sum_{j} x_{j} \otimes y_{j}\right)$$
$$= \sum_{i,j} p_{i} x_{j} \otimes q_{i} y_{j}$$

Now, each $p_i x_j \in I_1, q_i y_j \in I_2$. So $f_1((p_i x_j)^* a + a^*(p_i x_j)) = 0 \forall a \in \mathcal{A} \text{ and } \forall i, j$ $f_2((q_i y_j)^* b + b^*(q_i y_j)) = 0 \forall b \in \mathcal{B} \text{ and } \forall i, j$ In particular, for $a = f_2(q_i y_j)e_1$, we get

$$f_1\left(\left(p_i x_j\right)^* f_2(q_i y_j) + (f_2(q_i y_j))^*(p_i x_j)\right) = 0$$

$$\Rightarrow f_1\left(\left(p_i x_j\right)^*\right) f_2(q_i y_j) + f_1(p_i x_j) f_2((q_i y_j)^*) = 0$$

This will hold for any pair (i, j). Hence $px \in I$, showing that I is an ideal. We define $f: I \to \mathbb{K}$ by $f(\sum_i a_i \otimes b_i) = \sum_i f_1(a_i) f_2(b_i)$ Clearly, f is linear and

$$f\left(\left(\sum_{i} a_{i} \otimes b_{i}\right)^{*}\left(\sum_{i} a_{i} \otimes b_{i}\right)\right)$$

$$= f\left(\sum_{i,j} a_{i}^{*} a_{j} \otimes b_{i}^{*} b_{j}\right)$$

$$= \sum_{i,j} f_{1}(a_{i}^{*} a_{j})f_{2}(b_{i}^{*} b_{j})$$

$$= \sum_{i} f_{1}(a_{i}^{*} a_{i})f_{2}(b_{i}^{*} b_{i})$$

$$+ \frac{1}{2}\left(\sum_{i,j,i\neq j} f_{1}((a_{j}^{*} a_{i})^{*})f_{2}(b_{i}^{*} b_{j})\right)$$

$$+ f_{1}(a_{j}^{*} a_{i})f_{2}((b_{i}^{*} b_{j})^{*})\right)$$

$$\sum_{i} f_{1}(a_{i}^{*} a_{i})f_{2}(b_{i}^{*} b_{i}) + 0$$

$$\geq 0,$$

which implies that *f* is a positive linear form on *I*. Now, using Lemma 2.10 we get a positive linearform \sim \sim

 \tilde{f} on $\mathcal{A} \otimes_{\alpha} \mathcal{B}$ so that $\tilde{f} \mid_{I} = f$ and $\parallel \tilde{f} \parallel = \parallel f \parallel$.

Theorem 2.14 If I_1 and I_2 contain the unit elements, (i.e, $I_1 = \mathcal{A}$ and $I_2 = \mathcal{B}$) the positive linear form *f* defined in the above theorem satisfies the following properties:

i) If f_1 and f_2 are traces then f is also a trace. ii) If f_1 and f_2 are faithful so is f. iii) If f_1 and f_2 are states then f is also a state.

iv) If f_1 and f_2 are pure then f is also pure.

Proof:

=

i)

$$f(e_1 \otimes e_2) = f_1(e_1)f_2(e_2) = 1$$

$$f\left(\left(\sum_i a_i \otimes b_i\right)\left(\sum_j c_j \otimes d_j\right)\right)$$

$$= \sum_{i,j} f_1(a_i c_j)f_2(b_i d_j)$$

$$= \sum_{i,j} f_1(c_j a_i)f_2(d_j b_i) = f((\sum_j c_j \otimes d_j)(\sum_i a_i \otimes b_i),$$

Which shows that f is a trace.

ii)
$$f\left((\sum_{i} a_{i} \otimes b_{i})^{*}(\sum_{i} a_{i} \otimes b_{i})\right) = 0$$

$$\Rightarrow \sum_{i,j} f_{1}(a_{i}^{*}a_{j})f_{2}(b_{i}^{*}b_{j})$$

$$= 0$$

$$\Rightarrow \sum_{i} f_{1}(a_{i}^{*}a_{i})f_{2}(b_{i}^{*}b_{i}) = 0 \text{ (by the definition of f in theorem 2.13)}$$

$$\Rightarrow f_{1}(a_{i}^{*}a_{i})f_{2}(b_{i}^{*}b_{i})$$

$$= 0 \forall i$$

$$\Rightarrow f_{1}(a_{i}^{*}a_{i}) = 0 \text{ or } f_{2}(b_{i}^{*}b_{i})$$

$$= 0 \forall i$$

$$\Rightarrow a_{i} = 0 \text{ or } b_{i}$$

$$= 0 \forall i$$

$$\Rightarrow \sum_{i} a_{i} \otimes b_{i}$$

$$= 0,$$

showing that f is faithful.
ii) f is continuous if f_{1} and f_{2} are continuous. Also,

$$\| f \|_{=} f(e_{1} \otimes e_{2}) = f_{1}(e_{1})f_{2}(e_{2})$$

$$= \| f_{1} \| \| f_{2} \|$$

$$= 1,$$

which implies f is also a state.

iv) Let
$$g \leq f$$
, we define $h_1: \mathcal{A} \to \mathbb{K}$ by
 $h_1(a) = g(a \otimes e_2)$
 $h_1(a^*a) = g(a^*a \otimes e_2)$
 $= g((a \otimes e_2)^*(a \otimes e_2))$
 $\leq f((a \otimes e_2)^*(a \otimes e_2))$
 $= f(a^*a \otimes e_2)$
 $= f_1(a^*a)f_2(e_2)$
 $= f_1(a^*a)$
 $\Rightarrow h_1 \leq f_1.$
So, $h_1 = \alpha f_1$ for some $\alpha \geq 0$.
Therefore, $h_1(a) = \alpha f_1(a)$
 $\Rightarrow g(a \otimes e_2) = \alpha f_1(a)f_2(e_2)$

 $\forall a \in \mathcal{A}.$ Now, let $h_2: \mathcal{B} \to \mathbb{K}$ be defined by $h_2(b) = g(e_1 \otimes b)$ As above we can show that $h_2 \leq f_2$. So, $h_2 = \beta f_2$ for some $\beta \geq 0$. Therefore, $h_2(b) = \beta f_2(b)$. Now, for $a \otimes b \in I$, $g(a \otimes b) = g((a \otimes e_2)(e_1 \otimes b) = h_1(a)h_2(b) = \alpha f_1(a)\beta f_2(b) = \alpha \beta f(a \otimes b)$, showing that f is pure (unto homemorphism)

showing that f is pure (upto homomorphism).

Concluding Remark: We have derived different results regarding positive elements and positive forms in the tensor product of C*-algebras. In 2014, S.H.Jah and M.S.Ahmed [9] derived some results on

 $= \alpha f(a \otimes e_2)$

positive-normal operators in semi-Hilbertian spaces. Considering this aspect, the following problem can be raised:

Using a positive-normal element and a positive form on each of the two C*-algebras \mathcal{A} and \mathcal{B} , can we obtain a class of positive forms on their tensor product?

References

- D.P. Blecher, Geometry of the tensor product of C*algebras, Math.Proc.CambridgePhilos.Soc., 104 (1988), 119-127.
- [2] C.H. Chu, C*-algebras, Queen Mary, University of London.
- [3] K. Conard, Tensor product II. [www.math.uconn.edu]
- [4] J.Dixmier, *C*-algebras*, North-Holland Publishing Company, (1977).
- [5] M.E.Gordji, M.Ramezani, H.Khodaei and H.Baghani, cone normed spacesarXiv:0912.0960v1 [math.FA] 4 Dec, 2009
- [6] N.Goswami, A Type of Positive form on Involutive Measure Algebras, Antarctica J.Math., 8(2) (2011), 159-166.
- [7] A.Guichardet, *Tensor products of C*-algebras*, Arhus Universitet, Matematisk Institute, (1969).
- [8] H.L.Guang and Z.Xian, Cone metric spaces and fixed point theorems of contractive mappings, J. Math.Anal. Appl., 332 (2007)1468-1476.
- [9] S.H.Jah and M.S.Ahmed, *Positive-Normal Operators in Semi-HilbertinSpaces*, Int. Math. Forum, vol.9, (2014) no. 11, 533-559
- [10] S.Kaijser and A.M.Sinclair, Projective tensor products of C*-algebras, Math. Scand 65 (1984), 161-187.
- [11] A.S.Kavruk, *Complete positivity in opeartor algebras*, M.Sc. thesis, Bilkent University (2006).
- [12] G.J.Murphy, *C*-algebras and operatortheory*, Harcourt Brace Javnovich,(1990)
- [13] Ian F.Putnam, Lecture Notes on C*-algebras, 23 Sept, (2015)
- [14] M Rieffel, 208 C*-algebras, Notes by Qiaochu Yuan, Spring (2013)
- [15] V.Shirbisheh, *Lectures on C*-algebra*, arXiv:1211.3404v1[math.OA]Nov 14, (2012)