Some Equivalent Conditions on Quaternion -KNormal Matrices

K. Gunasekaran, R. Kavitha
Ramanujan Research Centre, PG and Research Department of Mathematics, Government Arts College (Autonomous), Kumbakonam-612 002, Tamil Nadu, India.

Abstract

The equivalent conditions of quaternion- \boldsymbol{k}-normal ($q-\boldsymbol{k}$-normal) and q - \boldsymbol{k}-unitary matrices are discussed also the q - k-eigenvalues and the decomposition are given.

AMS Classifications: 15A09, 15A57, 15A24, 15A33, 15A15

Key words: $q-\boldsymbol{k}$-normal matrix, q - \boldsymbol{k}-unitary matrix, $q-\boldsymbol{k}$-eigenvalue and $q-\boldsymbol{k}$-eigenvector.

1. INTRODUCTION

Let $A \in C_{n \times n}$, If $A A^{*}=A^{*} A$ then A is normal [2] K be the permutation matrix associated with the permutation $\boldsymbol{k}(\mathrm{x})$ on the set of positive integers $\mathrm{S}=\{1,2,3, \ldots \ldots \ldots, \mathrm{n}\}$. A complex square matrix A is said to be $\boldsymbol{\kappa}$ symmetric real if $A=K A^{T} K$. If $A=K A^{*} K$ then \boldsymbol{k}-Hermitian [4] with $K^{2}=I, K=K^{-1}=K^{*}=K^{T}$. A matrix is a quaternion matrix if the elements of A belong to quaternion field H [5]. Some equivalent conditions were proved in [1]. In this paper, with the support of [1]. Some equivalent conditions are given for $q-\boldsymbol{k}$-normal matrices and q - \boldsymbol{k}-unitary matrices over quaternion field $\mathrm{H}[5]$ with $q-\boldsymbol{k}$-eigenvalues and decomposition.

2. DEFINITION AND THEOREM

Definition 2.1:[3] $A \in H_{n \times n}$ is said to be $\mathrm{q}-\boldsymbol{\imath}$-normal if $A K A^{*} K=K A^{*} K A$.

Theorem 2.2:[1] Let $A=\left(a_{i j}\right)$ be an $n \times n$ square quaternion matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. The following statements are equivalent:

1. $\quad A$ is $\mathrm{q}-\boldsymbol{\ell}$-normal, that is $A K A^{*} K=K A^{*} K A$.
2. $\quad A$ is $q-\boldsymbol{k}$-unitarily diagonalizable, namely there exists a $q-\boldsymbol{k}$-unitary matrix U of the same size such that $K U^{*} K A U=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$.
3. there exists a polynomial $p(x)$ such that $A^{*}=p(A)$.
4. there exists a set of $\mathrm{q}-\boldsymbol{k}$-eigenvectors of A that form an orthonormal basis for H_{n}.
5. every $\mathrm{q}-\boldsymbol{k}$-eigenvector of A is an $\mathrm{q}-\boldsymbol{k}$-eigenvector of $K A^{*} K$.
6. $\quad A=B+i C$ for some B and $C \mathrm{q}-\boldsymbol{k}$-Hermitian, and $B C=C B$.
7. if U is a q- \boldsymbol{k}-unitary matrix such that $K U^{*} K A U=\left(\begin{array}{ll}B & C \\ O & D\end{array}\right)$ with B and D square, then B and D are $\mathrm{q}-\boldsymbol{k}$-normal and $C=O$.
8. $\operatorname{tr}\left(K A^{*} K A\right)^{2}=\operatorname{tr}\left(\left(K A^{*} K\right)^{2} A^{2}\right)$.
9. $\quad K A^{*} K=A U$ for some $\mathrm{q}-\boldsymbol{\ell}$-unitary U.
10. $K A^{*} K=V A$ for some $\mathrm{q}-\boldsymbol{k}$-unitary V.
11. A commutes with $A+K A^{*} K$.
12. A commutes with $A-K A^{*} K$.
13. $A+K A^{*} K$ and $A-K A^{*} K$ commute.
14. A commutes with $K A^{*} K A$.

Proof:

$(2) \Leftrightarrow(1)$:We show that $(1) \Rightarrow(2)$
Let $A=\left(K U^{*} K\right) T U$ be a Schur decomposition of A with $T\left(K T^{*} K\right)=\left(T K T^{*} K\right) T$. It sufficies to show that the upper-triangular matrix T is diagonal.

$$
\begin{gathered}
A=\left(K U^{*} K\right) T U \\
A^{*}=U^{*} T^{*}(K U K) \\
K A^{*} K=K\left[U^{*} T^{*} K U K\right] K=K U^{*} T^{*} K U K K=K U^{*} T^{*} K U=K U^{*} K K T^{*} K U \\
=\left(K U^{*} K\right)\left(K T^{*} K\right) U \\
\text { Now, } A\left(K A^{*} K\right)=\left[K U^{*} K T U\right]\left(K U^{*} K\right)\left(K T^{*} K\right) U \\
=K U^{*} K T U K U^{*} K K T^{*} K U \\
=
\end{gathered}
$$

By comparing the diagonal entries on both sides of the latter identify, we have $t_{i j}=0$. Whenever $i<j$, Thus T is diagonal.
$(3) \Leftrightarrow(2)$: To show that (2) implies (3) we choose a polynomial $p(x)$ of degree at most $n-1$, by interpolation, such that $p\left(\lambda_{i}\right)=\bar{\lambda}_{i}, i=1,2, \ldots, n$

Thus if $A=\left(K U^{*} K\right) \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) U$ for some $\mathrm{q}-\boldsymbol{k}$-unitary matrix U, then

$$
K A^{*} K=\left(K U^{*} K\right) \operatorname{diag}\left(\overline{\lambda_{1}}, \overline{\lambda_{2}}, \ldots, \overline{\lambda_{n}}\right) U
$$

$$
\begin{aligned}
& =\left(K U^{*} K\right) \operatorname{diag}\left(p\left(\lambda_{1}\right), p\left(\lambda_{2}\right), \ldots p\left(\lambda_{n}\right)\right) U \\
& =\left(K U^{*} K\right) p\left(\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots . \lambda_{n}\right)\right) U \\
& =p\left(\left(K U^{*} K\right) \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots \ldots ., \lambda_{n}\right) U\right) \\
& =p(A)
\end{aligned}
$$

For the other direction, if $K A^{*} K=p(A)$ for some polynomial then

$$
\left(K A^{*} K\right) A=p(A) A=A p(A)=A\left(K A^{*} K\right)
$$

$(4) \Leftrightarrow(2)$: If $K U^{*} K A U=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}\right)$ then pre multiplying by U

$$
A U=U \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}\right)
$$

$\Rightarrow A u_{i}=\lambda_{i} u_{i}, i=1,2, \ldots n$ where u_{i} is the $i^{\text {th }}$ column vectors of U are $\mathrm{q}-\boldsymbol{k}$-eigenvector of A. That is u_{i} is $\mathrm{q}-\boldsymbol{k}$-eigenvector of A corresponding to λ_{i} for $i=1,2, \ldots n$. And also they from an orthonormal basis for H_{n}, Since U is $q-k$-unitary matrix.

Conversely, if A has a set of $\mathrm{q}-\boldsymbol{k}$-eigenvectors that form an orthonormal basis for H_{n}, then the matrix U consisting of these vector as columns is $q-\boldsymbol{k}$-unitary and satisfies.

$$
K U^{*} K A U=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}\right)
$$

$(5) \Leftrightarrow(1)$:Assume that A is $\mathrm{q}-\boldsymbol{k}$-normal and let u be an $\mathrm{q}-\boldsymbol{k}$-eigenvector of A corresponding to $\mathrm{q}-\boldsymbol{k}$ eigenvalue λ. Extend u to a $\mathrm{q}-\boldsymbol{k}$-unitary matrix with u as the first column: then

$$
K U^{*} K A U=\left(\begin{array}{ll}
\lambda & \alpha \\
O & A_{1}
\end{array}\right)
$$

The $\mathrm{q}-\boldsymbol{k}$-normality of A acts $\alpha=0$.
Taking the conjugate transpose and by a simple computation, u is an $\mathrm{q}-\mathfrak{k}$-eigenvector of $K A^{*} K$ corresponding to the $\mathrm{q}-\boldsymbol{k}$-eigenvalue $\bar{\lambda}$ of $K A^{*} K$.

We use induction on n. Note that $A x=\lambda x$

$$
\begin{aligned}
\Leftrightarrow\left(K U^{*} K A U\right)\left(K U^{*} K\right) x & =\left(K U^{*} K\right) A x \\
= & \left(K U^{*} K\right) \lambda x \\
= & \lambda\left(K U^{*} K\right) x
\end{aligned}
$$

for any n -square $\mathrm{q}-\boldsymbol{k}$-unitary matrix U. Thus when considering $A x=\lambda x$, we may assume that A is uppertriangular by Schur decomposition.

Taking $e_{1}=(1,0, \ldots, 0)^{T}$. Then e_{1} is an $\mathrm{q}-\boldsymbol{k}$-eigenvector of A. Hence by assumption, $e_{1}=\bar{e}_{1}$ is an $\mathrm{q}-\boldsymbol{k}$ eigenvector of $K A^{*} K$. A direct computation yields that the first column of $K A^{*} K$ must consist of zeros except the first component. Thus, if we write

$$
A=\left(\begin{array}{cc}
\lambda_{1} & O \\
\bar{O} & B
\end{array}\right) \text {, then } K A^{*} K=\left(\begin{array}{cc}
\overline{\lambda_{1}} & O \\
O & K_{1} B^{*} K_{1}
\end{array}\right)
$$

Since every q- \boldsymbol{k}-eigenvector of A is an q- \boldsymbol{k}-eigenvector of $K A^{*} K$, this property is inherited by B and $K_{1} B^{*} K_{1}$. An induction hypothesis on B shows that A is diagonal. This follows that A is q- \boldsymbol{R}-normal. $[(1) \Leftrightarrow(2)]$
(6) $\Leftrightarrow(1):$ We assume that $A=B+i C$ Where B and C are $q-k$-Hermitian with $B C=C B$ then $K A^{*} K=K B^{*} K-i K C^{*} K$

It is enough to show that $A\left(K A^{*} K\right)=\left(K A^{*} K\right) A$
Now,

$$
\begin{aligned}
A\left(K A^{*} K\right) & =(B+i C) K(B+i C)^{*} K \\
& =(B+i C)\left(K B^{*} K-i K C^{*} K\right) \\
& =B K B^{*} K-i B K C^{*} K+i C K B^{*} K+C K C^{*} K \\
& =K^{*} \mathrm{~KB}-\mathrm{iKC}{ }^{*} \mathrm{~KB}+\mathrm{i} K B^{*} \mathrm{KC}+\mathrm{KC}{ }^{*} \mathrm{KC} \quad[\mathrm{BC}=\mathrm{CB} \text { and } \mathrm{C}, \mathrm{~B} \text { are } \\
& \left.=\left(K B^{*} K-i K C^{*} K\right) B+i\left(K B^{*} K-i K C^{*} K\right) C \quad \text { - } \boldsymbol{\varepsilon} \text {-Hermitian }\right] \\
& =\left(K B^{*} K-i K C^{*} K\right)(B+i C) \\
& =K(B+i C)^{*} K(B+i C) \\
& =K A^{*} K A \\
& =\left(K A^{*} K\right) A
\end{aligned}
$$

Thus A is $q-k$-normal.
Conversely,

$$
\left.\begin{array}{l}
\text { Let } B=\frac{A+K A^{*} K}{2} \text { and } C=\frac{A-K A^{*} K}{2 i} \\
B+i C=\frac{A+K A^{*} K}{2}+i \frac{A-K A^{*} K}{2 i} \\
=\frac{2 A}{2} \\
=A \\
A=B+i C
\end{array}\right\}
$$

$$
\begin{aligned}
& =K\left(\frac{A^{*}+K A K}{2}\right) K \\
& =\frac{K A^{*} K+A}{2} \\
& =B
\end{aligned}
$$

Thus B is $\mathrm{q}-\boldsymbol{k}$-Hermitian.

$$
\begin{array}{rl}
K C^{*} & K=K\left(\frac{A-K A^{*} K}{2 i}\right)^{*} K \\
& =K\left(\frac{A^{*}-K A^{*} K}{2 i}\right) K \\
& =K-\left(\frac{A^{*}-K A K}{2 i}\right) K \\
& =-\left[\frac{K A^{*} K-A}{2 i}\right] \\
& =\frac{A-K A^{*} K}{2 i} \\
& =C
\end{array}
$$

$(7) \Leftrightarrow(1)$: We show that $(1) \Rightarrow(7)$. The other direction is simple upon computation, we have

$A K A^{*} K=K A^{*} K A$

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
B & C \\
O & D
\end{array}\right] \\
& A^{*}=\left[\begin{array}{ll}
B^{*} & O \\
C^{*} & D^{*}
\end{array}\right] \\
& K A^{*} K=\left[\begin{array}{cc}
K B^{*} K & O \\
K C^{*} K & K D^{*} K
\end{array}\right] \\
&\left(K A^{*} K\right) A=\left[\begin{array}{cc}
K B^{*} K & O \\
K C^{*} K & K D^{*} K
\end{array}\right]\left[\begin{array}{ll}
B & C \\
O & D
\end{array}\right] \\
&=\left[\begin{array}{cc}
K B^{*} K B & K B^{*} K C \\
K C^{*} K B & K C^{*} K C+K D^{*} K D
\end{array}\right] \\
& A\left(K A^{*} K\right)=\left[\begin{array}{ll}
B & C \\
O & D
\end{array}\right]\left[\begin{array}{cc}
K B^{*} K & O \\
K C^{*} K & K D^{*} K
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{cc}
B K B^{*} K+C K C^{*} K & C K D^{*} K \\
D K C^{*} K & D K D^{*} K
\end{array}\right]
$$

Thus,

$$
K B^{*} K B=B K B^{*} K+C K C^{*} K \text { and } K C^{*} K C+K D^{*} K D=D K D^{*} K
$$

By taking the trace for both sides of the first identity and noticing that

$$
\operatorname{tr}\left(B K B^{*} K\right)=\operatorname{tr}\left(K B^{*} K B\right), \text { we obtain } \operatorname{tr}\left(C K C^{*} K\right)=0
$$

This forces $C=O$. Thus B is $\mathrm{q}-\boldsymbol{k}$-normal.
Similarly,

$$
\operatorname{tr}\left(D K D^{*} K\right)=\operatorname{tr}\left(K D^{*} K D\right)
$$

Thus

$$
\begin{aligned}
& \operatorname{tr}\left(K C^{*} K C\right)=0 \\
& \Rightarrow D \text { is also } q \text { - } _ \text {-normal and } C=O \\
& \text { So } K U^{*} K A U=\left[\begin{array}{ll}
B & C \\
O & D
\end{array}\right] \text { for } B \text { and } D \text { q- } \kappa \text {-normal and } C=O .
\end{aligned}
$$

Conversely it is easy to prove $(7) \Rightarrow(1)$ by using $(2) \Rightarrow(1)$

$$
(9) \Leftrightarrow(1): \text { If } A^{*}=K A U K, A=K(A U)^{*} K \text { for some q-k-unitary then }
$$

$$
\begin{aligned}
\left(K A^{*} K\right) A & =K(K A U K) K\left[K(A U)^{*} K\right] \\
= & (A U) K(A U)^{*} K \\
= & (A U) K U^{*} A^{*} K \\
= & A U\left(K U^{*} K\right)\left(K A^{*} K\right) \\
= & A\left(K A^{*} K\right) \\
\left(K A^{*} K\right) A= & A\left(K A^{*} K\right)
\end{aligned}
$$

Therefore A is q-k-normal.
For the converse, we show $(2) \Rightarrow(9)$.
Let $A=\left(K V^{*} K\right) \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) V$, where V is $\mathrm{q}-\boldsymbol{R}$-unitary.
Take $K U^{*} K U=\left(K V^{*} K\right)$ diag $\left(l_{1}, l_{2}, \ldots, l_{\mathrm{n}}\right) V$, where $l_{i}=\frac{\bar{\lambda}_{i}}{\lambda_{i}} \quad$ if $\quad \lambda_{1} \neq 0$ and $l_{i}=1$ otherwise for $i=1,2, \ldots, n$ then

$$
\begin{aligned}
& K A^{*} K=\left(K V^{*} K\right) \operatorname{diag}\left(\bar{\lambda}_{1}, \bar{\lambda}_{2}, \ldots, \bar{\lambda}_{n}\right) V \\
& \quad=\left(K V^{*} K\right)\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) V\left(K V^{*} K\right) \operatorname{diag}\left(l_{1}, l_{2}, \ldots, l_{\mathrm{n}}\right) V \\
& =A\left(K U^{*} K U\right)
\end{aligned}
$$

Similarly, (10) is equivalent to (1).
$(11) \Rightarrow(1): A$ commutes with $A+K A^{*} K$

$$
\begin{gathered}
A\left(A+K A^{*} K\right)=\left(A+K A^{*} K\right) A \\
A^{2}+A K A^{*} K=A^{2}+K A^{*} K A \\
A K A^{*} K=A^{2}+K A^{*} K A-A^{2} \\
A K A^{*} K=K A^{*} K A
\end{gathered}
$$

Therefore A is q- \boldsymbol{k}-normal.
$(12) \Rightarrow(1): A$ commutes with $A-K A^{*} K$

$$
\begin{aligned}
A\left(A-K A^{*} K\right) & =\left(A-K A^{*} K\right) A \\
A^{2}-A K A^{*} K & =A^{2}-K A^{*} K A \\
-A K A^{*} K & =-K A^{*} K A \\
A K A^{*} K & =K A^{*} K A
\end{aligned}
$$

Therefore A is $\mathrm{q}-\boldsymbol{k}$-normal.
$(13) \Rightarrow(1): A+K A^{*} K$ and $A-K A^{*} K$ commute

$$
\begin{aligned}
\left(A+K A^{*} K\right)\left(A-K A^{*} K\right) & =\left(A-K A^{*} K\right)\left(A+K A^{*} K\right) \\
A^{2}-A K A^{*} K+K A^{*} K A-\left(A^{*}\right)^{2} & =A^{2}+A K A^{*} K-K A^{*} K A-\left(A^{*}\right)^{2} \\
-A K A^{*} K-K A^{*} K A & =A K A^{*} K-K A^{*} K A \\
-A K A^{*} K-A K A^{*} K & =-K A^{*} K A-K A^{*} K A \\
-2 A\left(K A^{*} K\right) & =-2\left(K A^{*} K\right) A \\
A K A^{*} K & =K A^{*} K A
\end{aligned}
$$

Therefore A is q- \boldsymbol{k}-normal.
$(14) \Rightarrow(8)$: If A commutes with $K A^{*} K A$ then

$$
\begin{gathered}
A\left(K A^{*} K A\right)=\left(K A^{*} K A\right) A \\
A K A^{*} K A=K A^{*} K\left(A^{2}\right)
\end{gathered}
$$

Multiply both sides by $K A^{*} K$ from the left to get

$$
\begin{gathered}
\left(K A^{*} K\right) A\left(K A^{*} K A\right)=\left(K A^{*} K\right)\left(K A^{*} K\right)\left(A^{2}\right) \\
\left(K A^{*} K A\right)^{2}=\left(K A^{*} K\right)^{2}\left(A^{2}\right)
\end{gathered}
$$

Take the trace of both sides $\operatorname{tr}\left(K A^{*} K A\right)^{2}=\operatorname{tr}\left[\left(K A^{*} K\right)^{2}\left(A^{2}\right)\right]$.

REFERENCES

1. Fuzhen Zhang :Matrix Normal theory basic results and Techniques; Springer Publications (1999) 241-249
2. Grone.R and Johnson.CR, E.M.SQ, H.Wolkowicz:Normal Matrices; Lin.Alg.Appl.,87 (1987) 213-225.
3. Gunasekaran. K and Kavitha. R: on Quaternion \boldsymbol{R}-normal matrices; International Journal of Mathematical Archive-7(7), (2016) 93-101
4. Hill.R.D, Water. S.R: on \boldsymbol{k}-symmetric real and \boldsymbol{k}-Hermitian matrices; Lin. Alg. Appl.,Vol 169 (1992) 17-29.
5. Zhang.F: Quaternions and matrices of quaternions; Lin.Alg.Appl., 251 (1997) 21-57.
