Some cycle and path related strongly*-graphs

I. I. Jadav ${ }^{1}$, G. V. Ghodasara ${ }^{2}$
${ }^{1}$ Research Scholar, R. K. University, Rajkot-360020, India.
${ }^{2}$ H. \& H. B. Kotak Institute of Science,Rajkot-360001, India.

Abstract

Abstact -A graph with n vertices is said to be strongly*-graph if its vertices can be assigned the values $\{1,2, \ldots, n\}$ in such a way that when an edge whose end vertices are labeled i and j, is labeled with the value $i+j+i j$ such that all edges have distinct labels. Here we derive different strongly*-graphs in context of some graph operations.

Key words : Strongly*-labeling, Strongly*graph.
Subject classification number: 05C78.

I. Introduction

By a graph G, we mean a simple, finite, undirected graph.

Definition I.1. [7] A graph G with n vertices is said to be strongly*-graph if there is a bijection $f: V(G) \longrightarrow\{1,2, \ldots, n\}$ such that the induced edge function f^{*} : $E(G) \longrightarrow \mathbb{N}$ defined as $f^{*}(e=u v)=$ $f(u)+f(v)+f(u) \cdot f(v)$ is injective. Here f is called strongly*-labeling of graph G.
Definition I.2. [2] A chord of cycle C_{n}, $n \geq 4$, is an edge joining two non-adjacent vertices of C_{n}.

Definition I.3. [I] Two chords of cycle C_{n}, $n \geq 5$, are said to be twin chords if they form a triangle with an edge of C_{n}.

For positive integers n and p with $3 \leq$ $p \leq(n-2), C_{n, p}$ is the graph consisting of a cycle C_{n} with twin chords where the chords form the cycles C_{p}, C_{3} and C_{n+1-p} without chords with the edges of C_{n}.

Definition I.4. [7] The cycle with triangle is a cycle with three chords which by themselves form a triangle.

For positive integers p, q, r and $n \geq 6$ with $p+q+r+3=n, C_{n}(p, q, r)$ denotes the cycle with triangle whose edges form the edges of cycles C_{p+2}, C_{q+2} and C_{r+2} without chords.

Definition I.5. [I] The crown $\left(C_{n} \odot K_{1}\right)$ is obtained by joining a pendant vertex to each vertex of cycle C_{n} by an edge.

Definition I.6. [l] Tadpole, $T(l, r)$ is the graph in which path of length r is attached to any one vertex of cycle C_{l} by a bridge. $T(l, r)$ has $l+r$ vertices and $l+r$ edges.

Definition I.7. [1] The middle graph of a graph G (with two or more vertices), denoted by $M(G)$, is the graph whose vertex set is $V(G) \cup E(G)$ in which two vertices are adjacent if and only if either they are adjacent edges of G or one is a vertex of G and the other is an edge incident on it.

Definition I.8. [1] The total graph of a graph G (with two or more vertices), denoted by $T(G)$, is the graph whose vertex set is $V(G) \cup E(G)$ and two vertices are adjacent whenever they are adjacent vertices or adjacent edges in G or one is a vertex of G and the other is an edge incident on it.

Definition I.9. [7] The split graph of a graph G, denoted by $\operatorname{spl}(G)$, is the graph obtained by adding a new vertex v^{\prime} to each vertex v such that v^{\prime} is adjacent to every vertex that is adjacent to v in G.

Definition I.10. []]The shadow graph $D_{2}(G)$ of a connected graph G is constructed by taking two copies of G^{\prime} and $G^{\prime \prime}$ of graph G. Join each vertex u^{\prime} of G^{\prime} to the neighbours of the corresponding vertex $u^{\prime \prime}$ of $G^{\prime \prime}$.

Adiga and Somashekara[3] proved that all trees, cycles and grids are strongly*graphs. In the same paper they considered the problem of determining the maximum number of edges in any strongly*-graph of given order and relates it to the corresponding problem for strongly multiplicative graphs.
For all others standard terminology and notations we follow Harary[2].

II. Main Results

Theorem II.1. Cycle C_{n} with one chord is strongly*-graph for all $n \in \mathbb{N}$, where chord forms a triangle with two edges of C_{n}.

Proof. Let G be the cycle C_{n} with one chord. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ denote the successive vertices of C_{n}, where v_{1} is adjacent to v_{n} and v_{i} is adjacent to v_{i+1}, $1 \leq i \leq n-1$. Let $e=v_{1} v_{3}$ be the chord of C_{n}. Note that $d\left(v_{1}\right)=d\left(v_{3}\right)=3$ and $d\left(v_{i}\right)=2,2 \leq i \leq n, i \neq 3$.
We define vertex labeling function $f: V(G) \rightarrow\{1,2, \ldots, n\}$ as follows.
$f\left(v_{i}\right)$
$\left\{\begin{array}{l}2 i-1 ; 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil . \\ 2(n-i+1) ;\left(\left\lceil\frac{n}{2}\right\rceil+1\right) \leq i \leq n .\end{array}\right.$
Hence the vertex labels on one half of C_{n} are monotonically increasing (consecutive) odd numbers, whereas vertex labels on the other half of C_{n} are
monotonically increasing (consecutive) even numbers. Hence the produced edge labels must be different. Further the chord has $(1,5)=11$ label which is unique with respect to labeling f of the graph. Hence above defined labeling pattern satisfies the conditions of strongly*-labeling. i.e. Cycle C_{n} with one chord is strongly*-graph.

Example 1. Strongly*-labeling of cycle C_{8} with one chord is shown in Figure 1.

Fig. 1

Corollary 1. Cycle C_{n} with twin chords $C_{n, 3}$ is strongly*-graph for all $n \in \mathbb{N}$.

Proof. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ denote the successive vertices of the $C_{n, 3}$ where v_{1} is adjacent to v_{n} and v_{i} is adjacent to v_{i+1}, $1 \leq i \leq n-1$. Let $e_{1}=v_{1} v_{3}$ and $e_{2}=v_{1} v_{5}$ be two chords of $C_{n, 3}$. Note that $d\left(v_{1}\right)=4, d\left(v_{3}\right)=d\left(v_{5}\right)=3$ and $d\left(v_{i}\right)=2,2 \leq i \leq n, i \neq 3, i \neq 5$. We define vertex labeling function f : $V\left(C_{n, 3}\right) \rightarrow\{1,2, \ldots, n\}$ same as per the labeling defined in Theorem 1 .
Here vertex labels on one half of the $C_{n, 3}$ are monotonically increasing (consecutive) odd numbers, whereas vertex labels on the other half of the $C_{n, 3}$ are monotonically increasing (consecutive) even numbers. Hence the produced edge labels must be different. Further the vertex with label 1 is adjacent to the vertices with label 5 , 3 and 8 which are unique with respect to the labeling f of the given graph. Hence above defined labeling pattern satisfies the
conditions of strongly*-labeling. i.e. $C_{n, 3}$ with twin chords is strongly ${ }^{*}$-graph.

Example 2. Strongly*-labeling of cycle C_{8} with twin chords is shown in Figure 2.

Fig. 2

Corollary 2. Cycle with triangle $C_{n}(1,1, n-5)$ is strongly*-graph for all $n \in \mathbb{N}$.

Proof. Let G be the cycle with triangle $C_{n}(1,1, n-5)$. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ denote the successive vertices of the G such that v_{1} is adjacent to v_{n} and v_{i} is adjacent to $v_{i+1}, 1 \leq i \leq n-1$. Let $e_{1}=v_{1} v_{3}$, $e_{2}=v_{1} v_{5}$ and $e_{3}=v_{3} v_{5}$ be three chords of C_{n}. Note that $d\left(v_{1}\right)=d\left(v_{3}\right)=d\left(v_{5}\right)=4$ and $d\left(v_{i}\right)=2,2 \leq i \leq n, i \neq 3, i \neq 5$.
We define vertex labeling function f : $V(G) \rightarrow\{1,2, \ldots, n\}$ same as per the labeling defined in Theorem 1.
Here vertex labels on one half of the $C_{n}(1,1, n-5)$ are monotonically increasing (consecutive) odd numbers, whereas vertex labels on the other half of the $C_{n}(1,1, n-5)$ are monotonically increasing (consecutive) even numbers. Hence the produced edge labels must be different. Further the chords have $(1,5)=11$, $(1,6)=13$ and $(5,6)=41$ labels which are unique with respect to labeling f of the graph G. Hence above defined labeling pattern satisfies the conditions of strongly*-labeling. i.e. C_{n} with triangle is strongly*-graph.

Example 3. Strongly*-labeling of cycle C_{7}
with triangle is strongly*-graph shown in Figure 3.

Fig. 3

Theorem II.2. The crown $C_{n} \odot K_{1}$ is strongly*-graph for all $n \in \mathbb{N}$.
Proof. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ be the vertices of the crown $C_{n} \odot K_{1}$, where $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are the vertices corresponding to cycle C_{n} and $\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ are the pendant vertices. Here v_{i}^{\prime} is adjacent to $v_{i}, i=1,2, \ldots, n$. To define vertex labeling function $f: V\left(C_{n} \odot K_{1}\right) \rightarrow\{1,2,3, \ldots, 2 n\}$ we consider the following cases.
Case 1: n is odd.
$f\left(v_{i}\right)=2 i ; 1 \leq i \leq n$.
$f\left(v_{i}^{\prime}\right)=2 i-1 ; 1 \leq i \leq n$.
When n is odd, the labels for the vertices v_{i} are consecutive odd numbers, whereas the labels for the vertices v_{i}^{\prime} are consecutive even numbers. Therefore the labels produced for the edges $v_{i} v_{i}^{\prime}$ are odd and in increasing order. Further the edges $v_{i} v_{i+1}, 1 \leq i \leq n$ are labeled with even labels in increasing order. Hence all edges will have different labels.
Case 2: n is even.
$f\left(v_{i}\right) \quad=$
$\left\{\begin{array}{l}4 i-1 ; 1 \leq i \leq \frac{n}{2} . \\ 4(n-i+1) ;\left(\frac{n}{2}+1\right) \leq i \leq n .\end{array}\right.$
$f\left(v_{i}^{\prime}\right)$
$=$
$\left\{\begin{array}{l}4 i-3 ; 1 \leq i \leq \frac{n}{2} . \\ 4(n-i)+2 ;\left(\frac{n}{2}+1\right) \leq i \leq n .\end{array}\right.$
When n is even, for any two edge labels produced in the graph,
$\{(4 j-3)+(4 j-1)+(4 j-3) \cdot(4 j-1)\} \neq$
$\{(4 j-1)+(4 j+3)+(4 j-1) \cdot(4 j+3)\} \neq$ $\{2 n+(2 n-1)+2 n \cdot(2 n-1)\} \neq$ $\{4 j+(4 j-2)+4 j \cdot(4 j-2)\} \neq$ $\{4 j+4(j+1)+4 j \cdot 4(j+1)\} \neq 19$, $1 \leq j \leq \frac{n}{2}$.
Hence above defined labeling pattern satisfies the conditions of strongly*labeling. i.e. Crown $C_{n} \odot K_{1}$ is strongly*graph for all n.

Example 4. Strongly*-labeling of crown $C_{6} \odot K_{1}$ is shown in Figure 4.

Fig. 4

Theorem II.3. Tadpoles $T(l, r)$ are strongly*-graph for all $l, r \in \mathbb{N}$.
Proof. Let $\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$ be the vertices of the cycle C_{l} and $\left\{v_{l+1}, v_{l+2}, \ldots, v_{l+r}\right\}$ be the vertices of path P_{r} attached to vertex v_{l} of C_{l} in the $T(l, r)$. Let $e=$ $v_{l} v_{l+1}$ be the bridge joining vertex v_{l} of C_{l} and vertex v_{l+1} of the P_{r}. Note that $|V(T(l, r))|=|E(T(l, r))|=l+r$.
To define vertex labeling function f : $V(T(l, r)) \rightarrow\{1,2,3, \ldots, l+r\}$, We consider the following cases.
Case 1: $l \neq 2+\sum_{i=3}^{m} i$, where $m \in$ $\mathbb{N}-\{1,2\}$.
$f\left(v_{i}\right)=i, 1 \leq i \leq l+r$.
Case 2: $l=2+\sum_{i=3}^{m} i$, where $m \in$ $\mathbb{N}-\{1,2\}$.
$f\left(v_{l}\right)=l+1, f\left(v_{l+1}\right)=l$. $f\left(v_{i}\right)=i, 1 \leq i \leq l+r, i \neq l, l+1$.
Since the labeling f defined above is strictly increasing, for any two edges with
end vertices labeled by vertex labels (i, j) and (s, t) respectively, $(i \neq j \neq s \neq t)$ we have $(i+j+i j) \neq(s+t+s t)$. Hence above defined labeling pattern satisfies the conditions of strongly*-labeling. i.e. $T(l, r)$ is strongly*-graph.
Example 5. Strongly*-labeling of Tadpole $T(5,3)$ is shown in Figure 5.

Fig. 5

Theorem II.4. Middle graph of cycle $\left(C_{n}\right)$ is strongly*-graph for all $n \in \mathbb{N}$.
Proof. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ be the vertices of the graph $M\left(C_{n}\right)$, where $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertices corresponding to the cycle C_{n} and $\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ be the vertices corresponding to the edges of C_{n}.
We define vertex labeling function $f: V\left(M\left(C_{n}\right)\right) \rightarrow\{1,2,3, \ldots, 2 n\}$ as follows.
$\begin{array}{ll}f\left(v_{i}\right) & = \\ \left\{\begin{array}{l}4 i-3 ; 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil . \\ 4(n-i+1) ;\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n .\end{array}\right. \\ f\left(v_{i}^{\prime}\right) & =\end{array}$ $\left\{\begin{array}{l}4 i-1 ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor . \\ 4(n-i)+2 ;\left\lfloor\frac{n}{2}\right\rfloor+1 \leq i \leq n .\end{array}\right.$
Here vertex labels in one half of the $M\left(C_{n}\right)$ are consecutive even numbers in increasing order, whereas the vertex labels in other half of the $M\left(C_{n}\right)$ are consecutive odd numbers in increasing order.

When n is even, for any even edge label produced in graph, $\{(4 k)+(4 k+2)+(4 k) \cdot(4 k+2)\} \neq\{(4 k+$ $2)+(4(k+1))+(4 k+2) \cdot(4(k+1))\} \neq$ $\{(4(k+1))+(4 k)+(4(k+1)) \cdot(4 k)\} \neq$ $\{(2)+(4)+(2) \cdot(4)\}$ and for any odd edge label produced in the graph, $\{(4 k-3)+(4 k-1)+(4 k-3) \cdot(4 k-1)\} \neq$ $\{(4 k-1)+(4 k+1)+(4 k-1) \cdot(4 k+1)\} \neq$ $\{(4 k+1)+(4 k-3)+(4 k+1) \cdot(4 k-3)\} \neq$ $\{(2 n-3)+(2 n-1)+(2 n-3) \cdot(2 n-1)\} \neq$ $\{(2 n-1)+(2 n)+(2 n-1) \cdot(2 n)\} \neq$ $\{(2 n-3)+(2 n)+(2 n-3) \cdot(2 n)\} \neq$ $\{(1)+(2)+(1) \cdot(2)\} \neq\{(1)+(4)+(1) \cdot(4)\}$. where $1 \leq k \leq \frac{n}{2}-1$

When n is odd, for any even edge label produced in the graph $\{(4(k)+(4 k+2)+(4 k) \cdot(4 k+2)\} \neq\{(4 k+$ $2)+(4(k+1))+(4 k+2) \cdot(4(k+1))\} \neq$ $(4(k+1))+(4 k)+(4(k+1)) \cdot(4 k)\} \neq$ $\{(2 n-2)+(2 n)+(2 n-2) \cdot(2 n)\} \neq$ $\{(2)+(4)+(2) \cdot(4)\}$, where $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor-1$ and for any odd edge label produced in graph $\{(4 k-3)+(4 k-1)+(4 k-3) \cdot(4 k-1)\} \neq$ $\{(4 k-1)+(4 k+1)+(4 k-1) \cdot(4 k+1)\} \neq$ $\{(4 k+1)+(4 k-3)+(4 k+1) \cdot(4 k-3)\} \neq$ $\{(2 n-2)+(2 n-1)+(2 n-2) \cdot(2 n-1)\} \neq$ $\{(2 n-1)+(2 n)+(2 n-1) \cdot(2 n)\} \neq$ $\{(1)+(2)+(1) \cdot(2)\} \neq\{(1)+(4)+(1) \cdot(4)\}$, where $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$

Hence above defined labeling pattern satisfies the conditions of strongly*labeling. i.e. $M\left(C_{n}\right)$ is strongly*graph.

Example 6. Strongly*-labeling of $M\left(C_{4}\right)$ is shown in Figure 6.

Theorem II.5. Middle graph of path P_{n} is strongly*-graph for all $n \in \mathbb{N}$.

Proof. Let

$\left\{v_{1}, v_{2}, \ldots, v_{n}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n-1}^{\prime}\right\}$
be the vertices of the $M\left(P_{n}\right)$, where $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the

Fig. 6
vertices corresponding to path P_{n} and $\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n-1}^{\prime}\right\}$ be the vertices corresponding to the edges $\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}$ of P_{n}.
We define vertex labeling $f: V\left(M\left(P_{n}\right)\right) \rightarrow\{1,2,3, \ldots, 2 n-1\}$ as follows.
$f\left(v_{i}\right)=2 i-1,1 \leq i \leq n$.
$f\left(v_{i}^{\prime}\right)=2 i, 1 \leq i \leq n-1$.
The labels for the vertices v_{i} are consecutive odd numbers, whereas the labels for the vertices v_{i}^{\prime} are consecutive even numbers. Therefore the labels produced for the edges $v_{i} v_{i}^{\prime}$ are odd and in increasing order. Further the edges $v_{i}^{\prime} v_{i+1}^{\prime}$ and $(1 \leq i \leq n-2)$ are labeled with even label in increasing order. Hence all edges will have different label. So, labeling pattern defined above satisfies the conditions of strongly*-labeling. i.e. $M\left(P_{n}\right)$ is strongly*-graph.

Example 7. Strongly*-labeling of $M\left(P_{7}\right)$ is shown in Figure 7.

Fig. 7

Theorem II.6. The total graph of P_{n} is strongly*-graph for all $n \in \mathbb{N}$.

Proof. Let
$\left\{v_{1}, v_{2}, \ldots, v_{n}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n-1}^{\prime}\right\}$
be the vertices of $T\left(P_{n}\right)$, where $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertices of path P_{n} and $\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n-1}^{\prime}\right\}$ be the vertices corresponding to the edges $\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}$ of P_{n}.
We define vertex labeling function $f: V\left(T\left(P_{n}\right)\right) \rightarrow\{1,2,3, \ldots, 2 n-1\}$ as follows.
$f\left(v_{i}\right)=2 i-1,1 \leq i \leq n$.
$f\left(v_{i}^{\prime}\right)=2 i, 1 \leq i \leq n-1$.
The labels for the vertices v_{i} are consecutive odd numbers, whereas the labels for the vertices v_{i}^{\prime} are consecutive even numbers. Therefore the labels produced for the edges $v_{i} v_{i}^{\prime}$ and $v_{i} v_{i+1}$ are odd and in increasing order. For the label of any of the remarking edges with common end vertices, we have $\{(2 i-1)+(2 i+1)+(2 i-1) \cdot(2 i+1)\} \neq$ $\{(2 i)+(2 i+1)+(2 i) \cdot(2 i+1)\} \neq$ $\{(2 i)+(2 i-1)+(2 i) \cdot(2 i-1)\}$, $1 \leq i \leq n-1$. Further the edges incident with v_{i}^{\prime} and $v_{i+1}^{\prime}(1 \leq i \leq n-2)$ are labeled with even labels in increasing order. Hence all edges will have different labels. So, labeling pattern defined above satisfies the conditions of strongly*-labeling. i.e. $M\left(P_{n}\right)$ is strongly*-graph.

Example 8. Strongly*-labeling of $T\left(P_{5}\right)$ is shown in Figure 8 as an illustration for Theorem 6.

Fig. 8

Theorem II.7. The split graph of P_{n} is
strongly*-graph for all $n \in \mathbb{N}$.
Proof. Let $\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertices of the $\operatorname{spl}\left(P_{n}\right)$, where $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are the vertices of the path P_{n} and $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ are newly added vertices corresponding to the vertices of P_{n} to obtain $\operatorname{spl}\left(P_{n}\right)$.
We define vertex labeling function f : $V\left(\operatorname{spl}\left(P_{n}\right)\right) \rightarrow\{1,2,3, \ldots, 2 n\}$ as follows.
$f\left(v_{i}\right)=2 i-1,1 \leq i \leq n$.
$f\left(u_{i}\right)=2 i, 1 \leq i \leq n$.
Here for the label of any two edges with common vertex, we have $\{(2 i-1)+(2 i+$ 1) $+(2 i-1) \cdot(2 i+1)\} \neq\{(2 i-1)+$ $(2 i+2)+(2 i-1) \cdot(2 i+2)\} \neq\{2 i+(2 i+$ 1) $+2 i \cdot(2 i+1)\}$. Therefor above defined labeling pattern satisfies the conditions of strongly*-graph. i.e. $\operatorname{spl}\left(P_{n}\right)$ is strongly*graph.

Example 9. Strongly*-labeling of $\operatorname{spl}\left(P_{7}\right)$ is shown in Figure 9 as an illustration for Theorem 7.

Fig. 9

Theorem II.8. The shadow graph $D_{2}\left(P_{n}\right)$ is strongly*-graph for all $n \in \mathbb{N}$.

Proof. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ be the verties of the $D_{2}\left(P_{n}\right)$, where $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are the vertices of path P_{n} and $\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ are the vertices added corresponding to the vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ in order to obtain $D_{2}\left(P_{n}\right)$.
We define vertex labeling $f: V\left(D_{2}\left(P_{n}\right)\right) \rightarrow\{1,2,3, \ldots, 2 n\}$ as follows.
$f\left(v_{i}\right)=2 i-1,1 \leq i \leq n$.
$f\left(v_{i}^{\prime}\right)=2 i, 1 \leq i \leq n$.

The labels for the vertices v_{i} are consecutive odd numbers, whereas the labels for the vertices v_{i}^{\prime} are consecutive even numbers. Therefore the labels produced for the edges $v_{i}^{\prime} v_{i+1}^{\prime}$ are even labels in increasing order the labels for edges $v_{i} v_{i+1}, v_{i} v_{i+1}^{\prime}$ and $v_{i}^{\prime} v_{i+1}$ are odd labels in increasing order. Also for any two edge labels produce in the graph, $\{(2 i-1)+(2 i+1)+(2 i-1) \cdot(2 i+1)\} \neq$ $\{(2 i-1)+(2 i+2)+(2 i-1) \cdot(2 i+2)\} \neq$ $\{2 i+(2 i+1)+2 i \cdot(2 i+1)\}$ for any i. So, the labeling pattern defined above satisfies the conditions of strongly*-graph. i.e. $D_{2}\left(P_{n}\right)$ is strongly*-graph.

Example 10. Strongly*-labeling of $D_{2}\left(P_{6}\right)$ is shown in Figure 10 as an illustration for Theorem 8.

Fig. 10

REFERENCES

[1] J. A. Gallian, A dynemic survey of graph labeling, The Electronics Journal of Combinatorics, (2015), $\sharp D S 61-389$
[2] F. Harary, Graph theory, Addison-Wesley, Reading, Massachusetts, (1969).
[3] C. Adiga and D. Somnashekara, Strongly*-graphs, Math. Forum, 13(1999), 31-36.
[4] M. A. Seoud and A. E. A. Mahran, Some notes on strongly*-graphs, preprint
[5] M. A. Seoud and A. E. A. Mahran, Necessary conditions for strongly*-graphs, AKCE Int. J. Graphs Comb., 9, No. 2(2012), 115 - 122.

