¹N. RAJASEKAR AND ² R. KARTHIK

¹ Research Scholar,

Department of Mathematics, Sudharsan College of Arts & Science, Pudukkottai-622 104, Tamil Nadu, India.

² Research Supervisor and Assistant Professor, Department of Mathematics, Sudharsan College of Arts & Science, Pudukkottai-622 104, Tamil Nadu, India.

ABSTRACT. In this paper, we introduce three forms of $(1, 2)^*$ -locally closed sets called $(1, 2)^*$ - ψ -locally closed sets, $(1, 2)^*$ - ψ -lc*-sets and $(1, 2)^*$ - ψ -lc**-sets. Properties of these new concepts are studied as well as their relations to the other classes of $(1, 2)^*$ -locally closed sets will be investigated.

1. Introduction

The first step of locally closedness was done by Bourbaki [2]. He defined a set A to be locally closed if it is the intersection of an open set and a closed set. In literature many general topologists introduced the studies of locally closed sets. Extensive research on locally closedness and generalizing locally closedness were done in recent years. Stone [15] used the term FG for a locally closed set. Ganster and Reilly used

⁰2010 Mathematics Subject Classification: 54A05, 54A10

Key words and phrases. $(1,2)^*$ -sglc set, $(1,2)^*$ -glc set, $(1,2)^*$ - ψ -lc*-set, $(1,2)^*$ - ψ -lc**-set and $(1,2)^*$ -locally closed set.

 $\mathbf{2}$

¹N. RAJASEKAR AND ² R. KARTHIK

locally closed sets in [4] to define LC-continuity and LC-irresoluteness. Balachandran et al [1] introduced the concept of generalized locally closed sets. Veera Kumar [16] (Sheik John [14]) introduced \hat{g} -locally closed sets (= ω -locally closed sets) respectively.

In this paper, we introduce three forms of $(1, 2)^*$ -locally closed sets called $(1, 2)^*$ - ψ locally closed sets, $(1, 2)^*$ - ψ -lc*-sets and $(1, 2)^*$ - ψ -lc**-sets. Properties of these new concepts are studied as well as their relations to the other classes of $(1, 2)^*$ -locally closed sets will be investigated.

2. Preliminaries

Definition 2.1. Let S be a subset of X. Then S is said to be $\tau_{1,2}$ -open [8] if $S = A \cup B$ where $A \in \tau_1$ and $B \in \tau_2$.

The complement of $\tau_{1,2}$ -open set is called $\tau_{1,2}$ -closed. Notice that $\tau_{1,2}$ -open sets need not necessarily form a topology.

Definition 2.2. [8] Let S be a subset of a bitopological space X. Then

- (1) the $\tau_{1,2}$ -closure of S, denoted by $\tau_{1,2}$ -cl(S), is defined as $\cap \{F : S \subseteq F \text{ and } F is \tau_{1,2}$ -closed $\}$.
- (2) the $\tau_{1,2}$ -interior of S, denoted by $\tau_{1,2}$ -int(S), is defined as $\cup \{F : F \subseteq S \text{ and } F \text{ is } \tau_{1,2}\text{-open}\}.$

Definition 2.3. A subset A of a bitopological space X is called

- (1) $(1,2)^*$ -semi-open set [7] if $A \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A));
- (2) $(1,2)^*$ - α -open set [6] if $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)));
- (3) $(1,2)^*$ - β -open set [10] if $A \subseteq \tau_{1,2}$ - $cl(\tau_{1,2}$ - $int(\tau_{1,2}$ -cl(A))).

Definition 2.4. A subset A of a bitopological space (X, τ_1, τ_2) is called

- (1) (1,2)*-g-closed set [11] if τ_{1,2}-cl(A) ⊆ U whenever A ⊆ U and U is τ_{1,2}-open in X. The complement of (1,2)*-g-closed set is called (1,2)*-g-open set;
- (2) (1,2)*-sg-closed set [7] if (1,2)*-scl(A) ⊆ U whenever A ⊆ U and U is (1,2)*-semi-open in X. The complement of (1,2)*-sg-closed set is called (1,2)*-sg-open set;
- (3) (1,2)*-ĝ-closed set [3] or (1,2)*-ω-closed set [5] if τ_{1,2}-cl(A) ⊆ U whenever A ⊆ U and U is (1,2)*-semi-open in X. The complement of (1,2)*-ĝ-closed (resp. (1,2)*-ω-closed) set is called (1,2)*-ĝ-open (resp. (1,2)*-ω-open) set;
- (4) (1,2)*-ψ-closed set [12] if (1,2)*scl(A) ⊆ U whenever A ⊆ U and U is (1,2)*-sg-open in X. The complement of (1,2)*-ψ-closed set is called (1,2)*-ψ-open set.

Definition 2.5. A subset A of a bitopological space X is called

- (1) regular $(1,2)^*$ -open [9] if $A = \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)).
- (2) (1,2)*-regular generalized closed (briefly, (1,2)*-rg-closed) set [5] if τ_{1,2}-cl(A)
 ⊆ U whenever A ⊆ U and U is regular (1,2)*-open in X.
 The complement of (1,2)*-rg-closed set is called (1,2)*-rg-open set.

Remark 2.6. The collection of all $(1,2)^*$ -rg-closed sets in X is denoted by $(1,2)^*$ -RGC(X).

The collection of all $(1,2)^*$ -rg-open sets in X is denoted by $(1,2)^*$ -RGO(X). We denote the power set of X by P(X).

Corollary 2.7. If A is a $(1,2)^*$ - ψ -closed set and F is a $\tau_{1,2}$ -closed set, then $A \cap F$ is a $(1,2)^*$ - ψ -closed set.

Proposition 2.8. [13] Every $\tau_{1,2}$ -closed set is $(1,2)^*$ - ψ -closed.

Proposition 2.9. [13] Every $(1, 2)^*$ - ψ -closed set is $(1, 2)^*$ - \hat{g} -closed.

¹N. RAJASEKAR AND ² R. KARTHIK

Proposition 2.10. [13] Every $(1, 2)^*$ - ψ -closed set is $(1, 2)^*$ -g-closed.

Proposition 2.11. [13] Every $(1, 2)^*$ - ψ -closed set is $(1, 2)^*$ -sg-closed.

3. $(1,2)^*$ - ψ -locally closed sets

We introduce the following definition.

Definition 3.1. A subset S of a bitopological space X is called

- (1) $(1,2)^*$ -locally closed (briefly, $(1,2)^*$ -lc) if $S = U \cap F$, where U is $\tau_{1,2}$ -open and F is $\tau_{1,2}$ -closed in X.
- (2) $(1,2)^*$ -generalized locally closed (briefly, $(1,2)^*$ -glc) if $S = U \cap F$, where U is $(1,2)^*$ -g-open and F is $(1,2)^*$ -g-closed in X.
- (3) (1,2)*-semi-generalized locally closed (briefly, (1,2)*-sglc) if S = U ∩ F, where U is (1,2)*-sg-open and F is (1,2)*-sg-closed in X.
- (4) $(1,2)^*$ -regular-generalized locally closed (briefly, $(1,2)^*$ -rg-lc) if $S = U \cap F$, where U is $(1,2)^*$ -rg-open and F is $(1,2)^*$ -rg-closed in X.
- (5) generalized locally (1,2)*-semi-closed (briefly, (1,2)*-glsc) if S = U ∩ F, where
 U is (1,2)*-g-open and F is (1,2)*-semi-closed in X.
- (6) $(1,2)^*$ -locally semi-closed (briefly, $(1,2)^*$ -lsc) if $S = U \cap F$, where U is $\tau_{1,2}$ open and F is $(1,2)^*$ -semi-closed in X.
- (7) $(1,2)^*$ - α -locally closed (briefly, $(1,2)^*$ - α -lc) if $S = U \cap F$, where U is $(1,2)^*$ - α -open and F is $(1,2)^*$ - α -closed in X.
- (8) $(1,2)^*$ - ω -locally closed (briefly, $(1,2)^*$ - ω -lc) if $S = U \cap F$, where U is $(1,2)^*$ - ω -open and F is $(1,2)^*$ - ω -closed in X.
- (9) $(1,2)^*$ -sglc* if $S = U \cap F$, where U is $(1,2)^*$ -sg-open and F is $\tau_{1,2}$ -closed in X.

The class of all $(1,2)^*$ -locally closed (resp. $(1,2)^*$ -generalized locally closed, $(1,2)^*$ -generalized locally semi-closed, $(1,2)^*$ -locally semi-closed, $(1,2)^*$ - ω -locally closed) sets in X is denoted by $(1,2)^*$ -LC(X) (resp. $(1,2)^*$ -GLC(X), $(1,2)^*$ -GLSC(X), $(1,2)^*$ -LSC(X), $(1,2)^*$ - ω -LC(X)).

Definition 3.2. A subset of a bitopological space X is called $(1, 2)^* - \psi$ -locally closed (briefly, $(1, 2)^* - \psi - lc$) if $A = S \cap G$, where S is $(1, 2)^* - \psi$ -open and G is $(1, 2)^* - \psi$ -closed in X.

The class of all $(1,2)^*$ - ψ -locally closed sets in X is denoted by $(1,2)^*$ - $\psi LC(X)$.

Proposition 3.3. Every $(1,2)^*$ - ψ -closed (resp. $(1,2)^*$ - ψ -open) set is $(1,2)^*$ - ψ -lc set but not conversely.

Proof. It follows from Definition 3.2.

Example 3.4. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{b\}\}$ and $\tau_2 = \{\emptyset, X\}$. Then the sets in $\{\emptyset, X, \{b\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{a, c\}\}$ are called $\tau_{1,2}$ -closed. Then the set $\{b\}$ is $(1,2)^*$ - ψ -lc set but it is not $(1,2)^*$ - ψ -closed and the set $\{a, c\}$ is $(1,2)^*$ - ψ -lc set but it is not $(1,2)^*$ - ψ -closed and the set $\{a, c\}$ is $(1,2)^*$ - ψ -lc set but it is not $(1,2)^*$ - ψ -open in X.

Proposition 3.5. Every $(1, 2)^*$ -lc set is $(1, 2)^*$ - ψ -lc set but not conversely.

Proof. It follows from Proposition 2.8.

Example 3.6. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{b, c\}\}$ and $\tau_2 = \{\emptyset, X\}$. Then the sets in $\{\emptyset, X, \{b, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{a\}\}$ are called $\tau_{1,2}$ -closed. Then the set $\{b\}$ is $(1, 2)^*$ - ψ -lc set but it is not $(1, 2)^*$ -lc set in X.

Proposition 3.7. Every $(1,2)^* - \psi - lc$ set is a (i) $(1,2)^* - \omega - lc$ set, (ii) $(1,2)^* - glc$ set and (iii) $(1,2)^* - sglc$ set. However the separate converses are not true.

¹N. RAJASEKAR AND ² R. KARTHIK

Proof. It follows from Propositions 2.9, 2.10 and 2.11.

Example 3.8. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a\}\}$ and $\tau_2 = \{\emptyset, X, \{b, c\}\}$. Then the sets in $\{\emptyset, X, \{a\}, \{b, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{a\}, \{b, c\}\}$ are called $\tau_{1,2}$ -closed. Then the set $\{b\}$ is $(1,2)^*$ -g-lc set but it is not $(1,2)^*$ - ψ -lc set in X. Moreover, the set $\{c\}$ is $(1,2)^*$ -sg-lc set but it is not $(1,2)^*$ - ψ -lc set in X.

Example 3.9. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{b\}\}$ and $\tau_2 = \{\emptyset, X, \{a, c\}\}$. Then the sets in $\{\emptyset, X, \{b\}, \{a, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{b\}, \{a, c\}\}$ are called $\tau_{1,2}$ -closed. Then the set $\{a\}$ is $(1, 2)^*$ - ω -lc set but it is not $(1, 2)^*$ - ω -lc set in X.

Proposition 3.10. Every $(1,2)^* - \alpha - lc$ set is $(1,2)^* - \psi - lc$ set but not conversely.

Example 3.11. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a, c\}\}$ and $\tau_2 = \{\emptyset, X\}$. Then the sets in $\{\emptyset, X, \{a, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{b\}\}$ are called $\tau_{1,2}$ -closed. Then the set $\{a\}$ is $(1, 2)^*$ - ψ -lc set but it is not $(1, 2)^*$ - α -lc set in X.

Proposition 3.12. Every $(1, 2)^*$ -lsc set is $(1, 2)^*$ - ψ -lc set but not conversely.

Example 3.13. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a, c\}\}$ and $\tau_2 = \{\emptyset, X\}$. Then the sets in $\{\emptyset, X, \{a, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{b\}\}$ are called $\tau_{1,2}$ -closed. Then the set $\{a\}$ is $(1, 2)^*$ - ψ -lc set but it is not $(1, 2)^*$ -lsc set in X.

Proposition 3.14. Every $(1,2)^*$ -glsc set is $(1,2)^*$ - ψ -lc set but not conversely.

Example 3.15. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a, c\}\}$ and $\tau_2 = \{\emptyset, X\}$. Then the sets in $\{\emptyset, X, \{a, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{b\}\}$ are called $\tau_{1,2}$ -closed. Then the set $\{a, b\}$ is $(1, 2)^*$ - ψ -lc set but it is not $(1, 2)^*$ -glsc set in X.

Proposition 3.16. Every $(1, 2)^*$ -sglc* set is $(1, 2)^*$ - ψ -lc set but not conversely.

$$(1,2)^*$$
- ψ -LOCALLY CLOSED SETS

Example 3.17. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a, c\}\}$ and $\tau_2 = \{\emptyset, X\}$. Then the sets in $\{\emptyset, X, \{a, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{b\}\}$ are called $\tau_{1,2}$ -closed. Then the set $\{a, b\}$ is $(1, 2)^*$ - ψ -lc set but it is not $(1, 2)^*$ -sglc* set in X.

Theorem 3.18. For a $T(1,2)^*$ - ψ -space X, the following properties hold:

- (1) $(1,2)^* \psi LC(X) = (1,2)^* LC(X).$
- (2) $(1,2)^* \psi LC(X) \subseteq (1,2)^* GLC(X).$
- (3) $(1,2)^* \psi LC(X) \subseteq (1,2)^* GLSC(X).$
- (4) $(1,2)^* \psi LC(X) \subseteq (1,2)^* \omega LC(X).$

Proof. (1) Since every $(1,2)^*$ - ψ -open set is $\tau_{1,2}$ -open and every $(1,2)^*$ - ψ -closed set is $\tau_{1,2}$ -closed in X, $(1,2)^*$ - ψ LC(X) $\subseteq (1,2)^*$ -LC(X) and hence $(1,2)^*$ - ψ LC(X) = $(1,2)^*$ -LC(X).

(2), (3) and (4) follows from (1), since for any space (X, τ) , $(1, 2)^*$ -LC $(X) \subseteq (1, 2)^*$ -GLC(X), $(1, 2)^*$ -LC $(X) \subseteq (1, 2)^*$ -GLSC(X) and $(1, 2)^*$ -LC $(X) \subseteq (1, 2)^*$ - ω -LC(X).

Corollary 3.19. If $(1,2)^*$ - $GO(X) = (1,2)^*$ -O(X) where $(1,2)^*$ -O(X) is the collection of all $\tau_{1,2}$ -open subsets of X, then $(1,2)^*$ - $\psi LC(X) \subseteq (1,2)^*$ - $LSC(X) \subseteq (1,2)^*$ -LSC(X).

Proof. $(1, 2)^*$ -GO(X) = $(1, 2)^*$ -O(X) implies that X is a T $(1, 2)^*$ - ψ -space and hence by Theorem 3.18, $(1, 2)^*$ - ψ LC(X) $\subseteq (1, 2)^*$ -GLSC(X). Let A $\in (1, 2)^*$ -GLSC(X). Then A = U \cap F, where U is $(1, 2)^*$ -g-open and F is $(1, 2)^*$ -semi-closed. By hypothesis, U is $\tau_{1,2}$ -open and hence A is a $(1, 2)^*$ -lsc set and so A $\in (1, 2)^*$ -LSC(X).

Definition 3.20. A subset A of a bitopological space X is called

(1) $(1,2)^* - \psi - lc^*$ set if $A = S \cap G$, where S is $(1,2)^* - \psi$ -open in X and G is $\tau_{1,2}$ closed in X.

(2) $(1,2)^* - \psi - lc^{**}$ set if $A = S \cap G$, where S is $\tau_{1,2}$ -open in X and G is $(1,2)^* - \psi - closed$ in X.

The class of all $(1,2)^* - \psi - lc^*$ (resp. $(1,2)^* - \psi - lc^{**}$) sets in a bitopological space X is denoted by $(1,2)^* - \psi LC^*(X)$ (resp. $(1,2)^* - \psi LC^{**}(X)$).

Proposition 3.21. Every $(1, 2)^*$ -lc set is $(1, 2)^*$ - ψ -lc* set but not conversely.

Proof. It follows from Definitions 3.1(1) and 3.20(1).

Example 3.22. The set $\{b\}$ in Example 3.6 is $(1, 2)^* \cdot \psi \cdot lc^*$ set but it is not a $(1, 2)^* \cdot lc$ set in X.

Proposition 3.23. Every $(1,2)^*$ -lc set is $(1,2)^*$ - ψ -lc^{**} set but not conversely.

Proof. It follows from Definitions 3.1(1) and 3.20(2).

Example 3.24. The set $\{a, c\}$ in Example 3.6 is $(1,2)^* - \psi - lc^{**}$ set but it is not a $(1,2)^* - lc$ set in X.

Proposition 3.25. Every $(1, 2)^* - \psi - lc^*$ set is $(1, 2)^* - \psi - lc$ set but not conversely.

Proof. It follows from Definitions 3.2 and 3.20 (1).

Example 3.26. The set $\{a, b\}$ in Example 3.6 is $(1,2)^* - \psi$ -lc set but it is not a $(1,2)^* - \psi$ -lc^{*} set in X.

Proposition 3.27. Every $(1, 2)^* - \psi - lc^{**}$ set is $(1, 2)^* - \psi - lc$ set but not conversely.

Proof. It follows from Definitions 3.2 and 3.20 (2).

Remark 3.28. The concepts of $(1, 2)^* - \psi - lc^*$ sets and $(1, 2)^* - lsc$ sets are independent of each other.

8

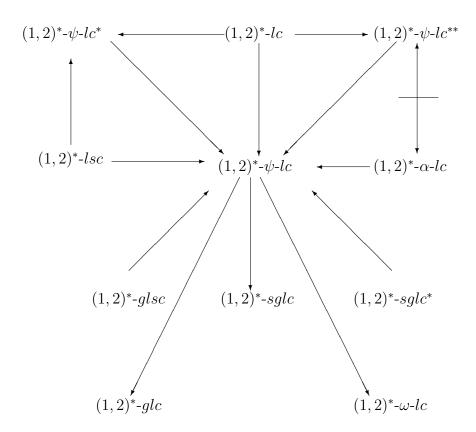
$$(1,2)^*$$
- ψ -LOCALLY CLOSED SETS

Example 3.29. The set $\{c\}$ in Example 3.6 is $(1, 2)^* - \psi - lc^*$ set but it is not a $(1, 2)^* - lsc$ set in X and the set $\{a\}$ in Example 3.4 is $(1, 2)^* - lsc$ set but it is not a $(1, 2)^* - \psi - lc^*$ set in X.

Remark 3.30. The concepts of $(1, 2)^* - \psi - lc^{**}$ sets and $(1, 2)^* - \alpha - lc$ sets are independent of each other.

Example 3.31. The set $\{a, b\}$ in Example 3.6 is $(1, 2)^* - \psi - lc^{**}$ set but it is not a $(1, 2)^* - \alpha - lc$ set in X and the set $\{a, b\}$ in Example 3.4 is $(1, 2)^* - \alpha - lc$ set but it is not a $(1, 2)^* - \psi - lc^*$ set in X.

Remark 3.32. From the above discussions we have the following implications where $A \rightarrow B$ (resp. A B) represents A implies B but not conversely (resp. A and B are independent of each other).



Proposition 3.33. If $(1,2)^* - GO(X) = (1,2)^* - O(X)$, then $(1,2)^* - \psi LC(X) = (1,2)^* - \psi LC^*(X) = (1,2)^* - \psi LC^{**}(X)$.

Proof. Since $(1,2)^*-\psi O(X) \subseteq (1,2)^*-GO(X) = (1,2)^*-O(X)$, therefore by hypothesis, X is a T(1,2)*- ψ -space and hence $(1,2)^*-\psi LC(X) = (1,2)^*-\psi LC^*(X) = (1,2)^*-\psi LC^*(X)$.

Remark 3.34. The converse of Proposition 3.33 need not be true.

For the bitopological space X in Example 3.4, $(1,2)^* - \psi LC(X) = (1,2)^* - \psi LC^*(X)$ = $(1,2)^* - \psi LC^{**}(X)$. However $(1,2)^* - GO(X) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\}$ $\neq (1,2)^* - O(X)$.

$$(1,2)^*$$
- ψ -LOCALLY CLOSED SETS

Proposition 3.35. Let X be a bitopological space. If $(1, 2)^* - GO(X) \subseteq (1, 2)^* - LC(X)$, then $(1, 2)^* - \psi LC(X) = (1, 2)^* - \psi LC^{**}(X)$.

Proof. Let A ∈ $(1,2)^*$ - ψ LC(X). Then A = S ∩ G where S is $(1,2)^*$ - ψ -open and G is $(1,2)^*$ - ψ -closed. Since $(1,2)^*$ -GO(X) ⊆ $(1,2)^*$ -GO(X) and by hypothesis $(1,2)^*$ -GO(X) ⊆ $(1,2)^*$ -LC(X), S is $(1,2)^*$ -locally closed. Then S = P ∩ Q, where P is $\tau_{1,2}$ -open and Q is $\tau_{1,2}$ -closed. Therefore, A = P ∩ (Q ∩ G). By Corollary 2.7, Q ∩ G is $(1,2)^*$ - ψ -closed and hence A ∈ $(1,2)^*$ - ψ LC**(X). That is $(1,2)^*$ - ψ LC(X) ⊆ $(1,2)^*$ - ψ LC**(X). For any bitopological space, $(1,2)^*$ - ψ LC**(X) ⊆ $(1,2)^*$ - ψ LC(X) = $(1,2)^*$ - ψ LC**(X).

Remark 3.36. The converse of Proposition 3.35 need not be true in general. For the bitopological space X in Example 3.4, then $(1,2)^* - \psi LC(X) = (1,2)^* - \psi LC^{**}(X)$ = { \emptyset , {b}, {a, c}, X}. But $(1,2)^* - GO(X) =$ { \emptyset , {a}, {b}, {c}, {a, b}, {b, c}, X} \nsubseteq $(1,2)^* - \psi LC(X) =$ { \emptyset , {b}, {a, c}, X}.

Corollary 3.37. Let X be a bitopological space. If $(1,2)^* - \omega O(X) \subseteq (1,2)^* - LC(X)$, then $(1,2)^* - \psi LC(X) = (1,2)^* - \psi LC^{**}(X)$.

Proof. It follows from the fact that $(1,2)^*-\omega O(X) \subseteq (1,2)^*-GO(X)$ and Proposition 6.3.35.

Remark 3.38. The converse of Corollary 3.37 need not be true in general.

For the bitopological space X in Example 3.6, then $(1,2)^* - \psi LC(X) = (1,2)^* - \psi LC^{**}(X)$

 $= P(X). But (1,2)^* - \omega O(X) = P(X) \nsubseteq (1,2)^* - LC(X) = \{\emptyset, \{a\}, \{b, c\}, X\}.$

The following theorems are exploring the characterizations of $(1, 2)^* - \psi - lc$ sets, $(1, 2)^* - \psi - lc^* + sets$.

Theorem 3.39. For a subset A of X the following statements are equivalent:

- (1) $A \in (1, 2)^* \psi LC(X)$,
- (2) $A = S \cap (1,2)^* \cdot \psi \cdot cl(A)$ for some $(1,2)^* \cdot \psi \cdot open$ set S,
- (3) $(1,2)^* \psi cl(A) A$ is $(1,2)^* \psi closed$,
- (4) $A \cup ((1,2)^* \psi cl(A))^c$ is $(1,2)^* \psi open$,
- (5) $A \subseteq (1,2)^* \psi int(A \cup ((1,2)^* \psi cl(A))^c).$

Proof. (1) \Rightarrow (2). Let $A \in (1,2)^* \cdot \psi LC(X)$. Then $A = S \cap G$ where S is $(1,2)^* \cdot \psi$ -open and G is $(1,2)^* \cdot \psi$ -closed. Since $A \subseteq G$, $(1,2)^* \cdot \psi$ -cl(A) $\subseteq G$ and so $S \cap (1,2)^* \cdot \psi$ cl(A) $\subseteq A$. Also $A \subseteq S$ and $A \subseteq (1,2)^* \cdot \psi$ -cl(A) implies $A \subseteq S \cap (1,2)^* \cdot \psi$ -cl(A) and therefore $A = S \cap (1,2)^* \cdot \psi$ -cl(A).

(2) \Rightarrow (3). A = S \cap (1,2)*- ψ -cl(A) implies (1,2)*- ψ -cl(A) - A = (1,2)*- ψ -cl(A) \cap S^c which is (1,2)*- ψ -closed since S^c is (1,2)*- ψ -closed and (1,2)*- ψ -cl(A) is (1,2)*- ψ -closed.

(3) \Rightarrow (4). A \cup ((1,2)*- ψ -cl(A))^c = ((1,2)*- ψ -cl(A) – A)^c and by assumption, ((1,2)*- ψ -cl(A) – A)^c is (1,2)*- ψ -open and so is A \cup ((1,2)*- ψ -cl(A))^c.

(4) \Rightarrow (5). By assumption, A \cup ((1,2)*- ψ -cl(A))^c = (1,2)*- ψ -int(A \cup ((1,2)*- ψ -cl(A))^c) and hence A \subseteq (1,2)*- ψ -int(A \cup ((1,2)*- ψ -cl(A))^c).

(5) \Rightarrow (1). By assumption and since $A \subseteq (1,2)^* - \psi - cl(A)$, $A = (1,2)^* - \psi - int(A \cup ((1,2)^* - \psi - cl(A))c) \cap (1,2)^* - \psi - cl(A)$. Therefore, $A \in (1,2)^* - \psi LC(X)$.

Theorem 3.40. For a subset A of X, the following statements are equivalent:

- (1) $A \in (1, 2)^* \psi LC^*(X)$,
- (2) $A = S \cap \tau_{1,2}$ -cl(A) for some $(1,2)^*$ - ψ -open set S,
- (3) $\tau_{1,2}$ -cl(A) A is $(1,2)^*$ - ψ -closed,
- (4) $A \cup (\tau_{1,2} cl(A))^c$ is $(1,2)^* \psi$ -open.

Proof. (1) \Rightarrow (2). Let $A \in (1, 2)^* \cdot \psi LC^*(X)$. There exist an $(1, 2)^* \cdot \psi$ -open set S and a $\tau_{1,2}$ -closed set G such that $A = S \cap G$. Since $A \subseteq S$ and $A \subseteq \tau_{1,2}$ -cl(A), $A \subseteq S \cap$

$$(1,2)^\star\text{-}\psi\text{-}\text{LOCALLY}$$
 CLOSED SETS

 $\tau_{1,2}$ -cl(A). Also since $\tau_{1,2}$ -cl(A) \subseteq G, S \cap $\tau_{1,2}$ -cl(A) \subseteq S \cap G = A. Therefore A = S \cap $\tau_{1,2}$ -cl(A).

(2) \Rightarrow (1). Since S is $(1,2)^*$ - ψ -open and $\tau_{1,2}$ -cl(A) is a $\tau_{1,2}$ -closed set, A = S $\cap \tau_{1,2}$ -cl(A) $\in (1,2)^*$ - ψ LC*(X).

(2) \Rightarrow (3). Since $\tau_{1,2}$ -cl(A) $- A = \tau_{1,2}$ -cl(A) $\cap S^c$, $\tau_{1,2}$ -cl(A) - A is $(1,2)^*$ - ψ -closed by Corollary 2.7.

(3) \Rightarrow (2). Let S = $(\tau_{1,2}\text{-cl}(A) - A)^c$. Then by assumption S is $(1,2)^*$ - ψ -open in X and A = S $\cap \tau_{1,2}\text{-cl}(A)$.

(3) \Rightarrow (4). Let G = $\tau_{1,2}$ -cl(A) – A. Then G^c = A \cup ($\tau_{1,2}$ -cl(A))^c and A \cup ($\tau_{1,2}$ -cl(A))^c is $(1,2)^*$ - ψ -open.

 $(4) \Rightarrow (3). \text{ Let } S = A \cup (\tau_{1,2}\text{-}cl(A))^c \text{. Then } S^c \text{ is } (1,2)^* - \psi \text{-}closed \text{ and } S^c = \tau_{1,2}\text{-}cl(A) - A \text{ and so } \tau_{1,2}\text{-}cl(A) - A \text{ is } (1,2)^* - \psi \text{-}closed.$

Theorem 3.41. Let A be a subset of X. Then $A \in (1,2)^* - \psi LC^{**}(X)$ if and only if $A = S \cap (1,2)^* - \psi - cl(A)$ for some $\tau_{1,2}$ - open set S.

Proof. Let $A \in (1,2)^* - \psi LC^{**}(X)$. Then $A = S \cap G$ where S is $\tau_{1,2}$ -open and G is $(1,2)^* - \psi$ -closed. Since $A \subseteq G$, $(1,2)^* - \psi$ -cl $(A) \subseteq G$. We obtain $A = A \cap (1,2)^* - \psi$ -cl $(A) = S \cap G \cap (1,2)^* - \psi$ -cl $(A) = S \cap (1,2)^* - \psi$ -cl(A).

Converse part is trivial.

Corollary 3.42. Let A be a subset of X. If $A \in (1,2)^* - \psi LC^{**}(X)$, then $(1,2)^* - \psi - cl(A) - A$ is $(1,2)^* - \psi - closed$ and $A \cup ((1,2)^* - \psi - cl(A))^c$ is $(1,2)^* - \psi - open$.

Proof. Let $A \in (1,2)^* - \psi LC^{**}(X)$. Then by Theorem 3.41, $A = S \cap (1,2)^* - \psi - cl(A)$ for some $\tau_{1,2}$ -open set S and $(1,2)^* - \psi - cl(A) - A = (1,2)^* - \psi - cl(A) \cap S^c$ is $(1,2)^* - \psi - closed$ in X. If $G = (1,2)^* - \psi - cl(A) - A$, then $G^c = A \cup ((1,2)^* - \psi - cl(A))^c$ and G^c is $(1,2)^* - \psi - open$ and so is $A \cup ((1,2)^* - \psi - cl(A))^c$.

¹N. RAJASEKAR AND ² R. KARTHIK

4. $(1,2)^*-\psi$ -dense sets and $(1,2)^*-\psi$ -submaximal spaces

We introduce the following definition.

Definition 4.1. A subset A of a space X is called $(1,2)^* - \psi$ -dense if $(1,2)^* - \psi$ -cl(A) = X.

Example 4.2. Consider the bitopological space X in Example 3.6. Then the set $A = \{b, c\}$ is $(1, 2)^*$ - ψ -dense in X.

Recall that a subset A of a space X is called $(1,2)^*$ -dense if $\tau_{1,2}$ -cl(A) = X.

Proposition 4.3. Every $(1, 2)^*$ - ψ -dense set is $(1, 2)^*$ -dense.

Proof. Let A be an $(1,2)^*$ - ψ -dense set in X. Then $(1,2)^*$ - ψ -cl(A) = X. Since $(1,2)^*$ - ψ -cl(A) $\subseteq \tau_{1,2}$ -cl(A), we have $\tau_{1,2}$ -cl(A) = X and so A is $(1,2)^*$ -dense.

The converse of Proposition 4.3 need not be true as can be seen from the following example.

Example 4.4. The set $\{a, c\}$ in Example 3.6 is a $(1, 2)^*$ -dense in X but it is not $(1, 2)^*$ - ψ -dense in X.

Definition 4.5. A bitopological space X is called

- (1) $(1,2)^*$ -submaximal if every $(1,2)^*$ -dense subset is $\tau_{1,2}$ -open.
- (2) $(1,2)^* \cdot \hat{g}$ (or $(1,2)^* \cdot \omega$)-submaximal if every $(1,2)^* \cdot dense$ subset is $(1,2)^* \cdot \omega open$.
- (3) $(1,2)^*$ -g-submaximal if every $(1,2)^*$ -dense subset is $(1,2)^*$ -g-open.
- (4) $(1,2)^*$ -rg-submaximal if every $(1,2)^*$ -dense subset is $(1,2)^*$ -rg-open.

Proposition 4.6. Let X be a bitopological space.

(1) If X is $(1,2)^*$ -submaximal, then X is $(1,2)^*$ - \hat{g} -submaximal.

- (2) If X is $(1,2)^*$ - \hat{g} -submaximal, then X is $(1,2)^*$ -g-submaximal.
- (3) If X is $(1,2)^*$ -g-submaximal, then X is $(1,2)^*$ -rg-submaximal.
- (4) The respective converses of the above need not be true in general.

Definition 4.7. A bitopological space X is called $(1, 2)^*$ - ψ -submaximal if every $(1, 2)^*$ dense subset in it is $(1, 2)^*$ - ψ -open in X.

Proposition 4.8. Every $(1, 2)^*$ -submaximal space is $(1, 2)^*$ - ψ -submaximal.

Proof. Let X be a $(1, 2)^*$ -submaximal space and A be a $(1, 2)^*$ -dense subset of X. Then A is $\tau_{1,2}$ -open. But every $\tau_{1,2}$ -open set is $(1, 2)^*$ - ψ -open and so A is $(1, 2)^*$ - ψ -open. Therefore X is $(1, 2)^*$ - ψ -submaximal.

The converse of Proposition 4.8 need not be true as can be seen from the following example.

Example 4.9. For the bitopological space X of Example 3.6, every $(1, 2)^*$ -dense subset is $(1, 2)^*$ - ψ -open and hence X is $(1, 2)^*$ - ψ -submaximal. However, the set $A = \{a, b\}$ is $(1, 2)^*$ -dense in X, but it is not $\tau_{1,2}$ -open in X. Therefore X is not $(1, 2)^*$ -submaximal

Proposition 4.10. Every $(1, 2)^*$ - ψ -submaximal space is $(1, 2)^*$ - ψ -submaximal.

Proof. Let X be an $(1,2)^*$ - ψ -submaximal space and A be a $(1,2)^*$ -dense subset of X. Then A is $(1,2)^*$ - ψ -open. But every $(1,2)^*$ - ψ -open set is $(1,2)^*$ - ω -open and so A is $(1,2)^*$ - ω -open. Therefore is X is $(1,2)^*$ - ω -submaximal.

The converse of Proposition 4.10 need not be true as can be seen from the following example.

Example 4.11. Consider the bitopological space X in Example 3.9. Then X is $(1, 2)^*$ - ω -submaximal but it is not $(1, 2)^*$ - ψ -submaximal, because the set $A = \{b, c\}$ is a $(1, 2)^*$ -dense set in X but it is not $(1, 2)^*$ - ψ -open in X.

¹N. RAJASEKAR AND ² R. KARTHIK

Remark 4.12. From Propositions 3.40, 4.8 and 4.10, we have the following diagram:

 $(1,2)^*$ -submaximal $\longrightarrow (1,2)^*$ - ψ -submaximal $\longrightarrow (1,2)^*$ - ω -submaximal \downarrow $(1,2)^*$ -rg-submaximal $\longleftarrow (1,2)^*$ -g-submaximal

Theorem 4.13. A space (X, t) is $(1, 2)^*$ - ψ -submaximal if and only if $P(X) = (1, 2)^*$ - $\psi LC^*(X)$.

Proof. Necessity. Let $A \in P(X)$ and let $V = A \cup (\tau_{1,2}\text{-cl}(A))^c$. This implies that $\tau_{1,2}\text{-cl}(V) = \tau_{1,2}\text{-cl}(A) \cup (\tau_{1,2}\text{-cl}(A))^c = X$. Hence $\tau_{1,2}\text{-cl}(V) = X$. Therefore V is a $(1,2)^*\text{-dense}$ subset of X. Since X is $(1,2)^*\text{-}\psi\text{-submaximal}$, V is $(1,2)^*\text{-}\psi\text{-open}$. Thus $A \cup (\tau_{1,2}\text{-cl}(A))^c$ is $(1,2)^*\text{-}\psi\text{-open}$ and by Theorem 3.40, we have $A \in (1,2)^*\text{-}\psi\text{LC}^*(X)$. Sufficiency. Let A be a $(1,2)^*\text{-}dense$ subset of X. This implies $A \cup (\tau_{1,2}\text{-cl}(A))^c = A \cup X^c = A \cup \emptyset = A$. Now $A \in (1,2)^*\text{-}\psi\text{LC}^*(X)$ implies that $A = A \cup (\tau_{1,2}\text{-cl}(A))^c$ is $(1,2)^*\text{-}\psi\text{-open}$ by Theorem 3.40. Hence X is $(1,2)^*\text{-}\psi\text{-submaximal}$.

Proposition 4.14. Assume that $(1,2)^* - \psi LC(X)$ forms a topology. For subsets A and B in X, the following are true:

- (1) If $A, B \in (1,2)^* \psi LC(X)$, then $A \cap B \in (1,2)^* \psi LC(X)$.
- (2) If $A, B \in (1,2)^* \psi LC^*(X)$, then $A \cap B \in (1,2)^* \psi LC^*(X)$.
- (3) If $A, B \in (1,2)^* \psi LC^{**}(X)$, then $A \cap B \in (1,2)^* \psi LC^{**}(X)$.
- (4) If $A, B \in (1,2)^* \psi LC^{**}(X)$, then $A \cap B \in (1,2)^* \psi LC^{**}(X)$.
- (5) If $A \in (1,2)^* \psi LC(X)$ and B is $(1,2)^* \psi open$ (resp. $(1,2)^* \psi closed$), then $A \cap B \in (1,2)^* - \psi LC(X).$
- (6) If $A \in (1,2)^* \psi LC^*(X)$ and B is $(1,2)^* \psi open$ (resp. $\tau_{1,2}$ -closed), then $A \cap B \in (1,2)^* \psi LC^*(X)$.

$$(1,2)^*$$
- ψ -LOCALLY CLOSED SETS

- (7) If $A \in (1,2)^* \psi LC^{**}(X)$ and B is $(1,2)^* \psi$ -closed (resp. $\tau_{1,2}$ -open), then $A \cap B \in (1,2)^* \psi LC^{**}(X)$.
- (8) If $A \in (1,2)^* \psi LC^*(X)$ and B is $(1,2)^* \psi closed$, then $A \cap B \in (1,2)^* \psi LC(X)$.
- (9) If $A \in (1,2)^* \psi LC^{**}(X)$ and B is $(1,2)^* \psi open$, then $A \cap B \in (1,2)^* \psi LC(X)$.
- (10) If $A \in (1,2)^* \psi LC^{**}(X)$ and $B \in (1,2)^* \psi LC^*(X)$, then $A \cap B \in (1,2)^* \psi LC(X)$.

Proof. By Corollary 2.7(1) to (8) hold.

(9). Let $A = S \cap G$ where S is $\tau_{1,2}$ -open and G is $(1,2)^*$ - ψ -closed and $B = P \cap Q$ where P is $(1,2)^*$ - ψ -open and Q is $\tau_{1,2}$ -closed. Then $A \cap B = (S \cap P) \cap (G \cap Q)$ where $S \cap P$ is $(1,2)^*$ - ψ -open and $G \cap Q$ is $(1,2)^*$ - ψ -closed, by Corollary 2.7. Therefore $A \cap B \in (1,2)^*$ - ψ LC(X).

Remark 4.15. Union of two $(1,2)^*-\psi$ -lc sets (resp. $(1,2)^*-\psi$ -lc sets, $(1,2)^*-\psi$ -lc^{**} sets) need not be an $(1,2)^*-\psi$ -lc set (resp. $(1,2)^*-\psi$ -lc^{*} set, $(1,2)^*-\psi$ -lc^{**} set) as can be seen from the following examples.

Example 4.16. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a\}\}$ and $\tau_2 = \{\emptyset, X, \{a, b\}\}$. Then the sets in $\{\emptyset, X, \{a\}, \{a, b\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{c\}, \{b, c\}\}$ are called $\tau_{1,2}$ -closed. Then $(1,2)^* - \psi LC(X) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\}$. Then the sets $\{a\}$ and $\{c\}$ are $(1,2)^* - \psi - c$ sets, but their union $\{a, c\} \notin (1,2)^* - \psi LC(X)$.

Example 4.17. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{b\}\}$ and $\tau_2 = \{\emptyset, X, \{a, b\}\}$. Then the sets in $\{\emptyset, X, \{b\}, \{a, b\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{c\}, \{a, c\}\}$ are called $\tau_{1,2}$ -closed. Then $(1,2)^* - \psi LC^*(X) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, b\}, \{a, b\}$.

c}, X}. Then the sets {b} and {c} are $(1,2)^* - \psi - lc^*$ sets, but their union {b, c} $\notin (1,2)^* - \psi LC^*(X)$.

Example 4.18. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{b\}\}$ and $\tau_2 = \{\emptyset, X, \{b, c\}\}$. Then the sets in $\{\emptyset, X, \{b\}, \{b, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{a\}, \{a, c\}\}$ are called $\tau_{1,2}$ -closed. Then $(1, 2)^* - \psi L C^{**}(X) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$. Then the sets $\{a\}$ and $\{b\}$ are $(1, 2)^* - \psi - lc^{**}$ sets, but their union $\{a, b\} \in (1, 2)^* - \psi L C^{**}(X)$.

We introduce the following definition.

Definition 4.19. Let A and B be subsets of X. Then A and B are said to be $(1,2)^*$ - ψ -separated if $A \cap (1,2)^*$ - ψ -cl $(B) = \emptyset$ and $(1,2)^*$ - ψ -cl $(A) \cap B = \emptyset$.

Example 4.20. For the bitopological space X of Example 3.6. Let $A = \{b\}$ and let $B = \{c\}$. Then $(1,2)^* - \psi - cl(A) = \{a, b\}$ and $(1,2)^* - \psi - cl(B) = \{a, c\}$ and so the sets A and B are $(1,2)^* - \psi$ -separated.

Proposition 4.21. For a bitopological space X, the followings are true:

- (1) Let A, $B \in (1,2)^* \psi LC(X)$. If A and B are $(1,2)^* \psi separated$ then $A \cup B \in (1,2)^* \psi LC(X)$.
- (2) Let $A, B \in (1,2)^* \psi LC^*(X)$. If A and B are separated (i.e., $A \cap \tau_{1,2} cl(B) = \emptyset$ and $\tau_{1,2} cl(A) \cap B = \emptyset$), then $A \cup B \in (1,2)^* \psi LC^*(X)$.
- (3) Let $A, B \in (1,2)^* \psi LC^{**}(X)$. If A and B are $(1,2)^* \psi$ -separated then $A \cup B \in (1,2)^* \psi LC^{**}(X)$.

Proof. (1) Since A, $B \in (1,2)^*-\psi LC(X)$, by Theorem 3.39, there exist $(1,2)^*-\psi$ -open sets U and V of X such that $A = U \cap (1,2)^*-\psi$ -cl(A) and $B = V \cap (1,2)^*-\psi$ -cl(B).

Now $G = U \cap (X - (1, 2)^* - \psi - cl(B))$ and $H = V \cap (X - (1, 2)^* - \psi - cl(A))$ are $(1, 2)^* - \psi - cl(B)$ open subsets of X. Since $A \cap (1, 2)^* - \psi - cl(B) = \emptyset$, $A \subseteq ((1, 2)^* - \psi - cl(B))^c$. Now $A = U \cap (1, 2)^* - \psi - cl(A)$ becomes $A \cap ((1, 2)^* - \psi - cl(B))^c = G \cap (1, 2)^* - \psi - cl(A)$. Then $A = G \cap (1, 2)^* - \psi - cl(A)$. Similarly $B = H \cap (1, 2)^* - \psi - cl(B)$. Moreover $G \cap (1, 2)^* - \psi - cl(B)$ = \emptyset and $H \cap (1, 2)^* - \psi - cl(A) = \emptyset$. Since G and H are $(1, 2)^* - \psi - cl(A \cup B)$ and hence $A \cup B = (G \cup H) \cap (1, 2)^* - \psi - cl(A \cup B)$ and hence $A \cup B \in (1, 2)^* - \psi - cl(X)$.

(2) and (3) are similar to (1), using Theorems 3.40 and 3.41.

Remark 4.22. The assumption that A and B are $(1, 2)^*$ - ψ -separated in (1) of Proposition 4.21 cannot be removed. In the bitopological space X in Example 4.16, the sets $\{a\}$ and $\{c\}$ are not $(1, 2)^*$ - ψ -separated and their union $\{a, c\} \notin (1, 2)^*$ - ψ LC(X).

References

- Balachandran, K., Sundaram, P. and Maki, H.: Generalized locally closed sets and GLCcontinuous functions, Indian J. Pure Appl. Math., 27(3) (1996), 235-244.
- [2] Bourbaki, N.: General topology, Part I, Addison-Wesley, Reading, Mass., 1966.
- [3] Duszynski, Z., Ravi, O., Jeyaraman, M., Joseph, M. S and Thivagar, M. L.: A new generalization of closed sets in bitopology, South Asian Journal of Mathematics, 4(5) (2014), 215-224.
- [4] Ganster, M. and Reilly, I. L.: Locally closed sets and LC-continuous functions, Internat J. Math. Math. Sci., 12(3) (1989), 417-424.
- [5] Jafari, S., Lellis Thivagar, M. and Nirmala Mariappan.: On (1,2)*-αĝ-closed sets, J. Adv. Math. Studies, 2(2) (2009), 25-34.
- [6] Lellis Thivagar, M., Ravi, O. and Abd El-Monsef, M. E.: Remarks on bitopological (1,2)*quotient mappings, J. Egypt Math. Soc., 16(1) (2008), 17-25.
- [7] Ravi, O. and Lellis Thivagar, M.: A bitopological (1,2)*-semi-generalized continuous maps, Bull. Malays. Math. Sci. Soc., (2), 29(1) (2006), 79-88.
- [8] Ravi, O. and Lellis Thivagar, M.: On stronger forms of (1,2)*-quotient mappings in bitopological spaces, Internat. J. Math. Game Theory and Algebra., 14(6) (2004), 481-492.

- [9] Ravi, O., Ekici, E. and Lellis Thivagar, M.: On (1, 2)*-sets and decompositions of bitopological (1, 2)*-continuous mappings, Kochi J. Math., 3 (2008), 181-189.
- [10] Ravi, O. and Thivagar, M. L.: Remarks on λ -irresolute functions via $(1, 2)^*$ -sets, Advances in App. Math. Analysis, 5(1) (2010), 1-15.
- [11] Ravi, O., Thivagar, M. L. and Jinjinli.: Remarks on extensions of (1,2)*-g-closed maps, Archimedes J. Math., 1(2) (2011), 177-187.
- [12] Ravi, O., Kamaraj, M., Pandi, A. and Kumaresan, K.: (1,2)*-*ÿ*-closed and (1,2)*-*ÿ*-open maps in bitopological spaces, International Journal of Mathematical Archive, 3(2) (2012), 586-594.
- [13] Saranya, S. Seenivasagan, N. and Ravi, O.: (1,2)*-ψ-closed sets, International Journal of Current Research in Science and Technology, 3(8) (2017), 1-10.
- [14] Sheik John, M.: A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph. D Thesis, Bharathiar University, Coimbatore, September 2002.
- [15] Stone, A. H.: Absolutely FG spaces, Proc. Amer. Math. Soc., 80 (1980), 515-520.
- [16] Zbigniew Duszynski, Rose Mary, S. and Lellis Thivagar, M.: Remarks on αĝ-homeomorphisms, Math. Maced, 7 (2009), 13-20.

20