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ABSTRACT: Regarding the scheduling problem of 

the trucks which collects municipal solid waste, a 

major concern to the municipal administrators is how 

to effectively distribute collection vehicles and crews 

in the region. Vehicle Routing Problem (VRP) deals 

with the problem of allocating trucks to the waste 

collection sites with minimum cost. There were many 

studies and methods for the determination of the 

optimal vehicle routing for solid waste collection. 

Depending on the complexity of the model, exact and 

heuristic methods have been developed. One of the 

best-known approach to VRP is the "savings" 

algorithm of Clarke and Wright[4]. In this paper, we 

formulate a weighted-graph model of the VRP and 

analyze worst-case algorithmic complexity of the 

Clarke-Wright algorithm to determine optimal routes 

which allow minimizing total distance traversed, total 

rounds duration and financial costs including salary, 

fuel and vehicle operation. Also, some practical 

infeasibility of Clarke-Wright algorithm is pointed out 

and better alternate, simple graph-based algorithm 

for VRP is suggested. 
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1. Introduction 

In the last two decades, several analyses of 

the environment condition conducted showthat one of 

the major ecological problems is the inadequate waste 

management. Due to the complexity of the waste 

management systems, the optimization 

proceduredepends on several factors such as 

theselection of waste handling technology, the 

selection of waste transfer stations, the selection of 

waste collection and transportation routes etc.There 

are many studies and methods for the determination of 

the optimal vehiclerouting for solid waste collection 

[1].  

Depending on the complexity of the models, 

exact and heuristic methods have been developed.The 

application of the exact methods of problem solving is 

limited to some simple models,while more complex 

models are solved either by applying heuristic 

methods or bydividing the problem into several 

phasesand solved by using optimization techniques 

like Linear Programming, Integer Programming, 

Genetic Algorithms, Quadratic Programming, Goal 

Programming, Fuzzy Goal Programming, 

GISTechniques etc. [2,3]. 

One of the best-known approaches to Vehicle 

Routing Problem (VRP) was the "savings" algorithm 

of Clarke and Wright [4]. In this paper, we formulate a 

graph theoretical model of the VRP and analyze the 

worst-case algorithmic complexity and intractability 

of the Clarke-Wright algorithm. Also, some practical 

infeasibility of Clarke-Wright algorithm are pointed 

out and an alternate, efficient graph-based algorithm 

for VRP is suggested. 

 

2. Graph-theory Formulation of Clarke-Wright 

Algorithm 

 In this section, we review the notion of 

„graphs‟ in Mathematics and introduce some basic 

terminology required in this paper. We then discuss 

the Clarke-Wright algorithm and formulate its graph 

theoretical model.  
 

2.1. Graph Preliminaries 

In this section, we review the notion of 

graphs and some basic terms in Graph theory, that are 

used in this paper. For any terms not defined here, the 

reader may refer [8]. 

A graph,G, is a discrete mathematical 

structure consisting of a set,V, of objects (called 

vertices) and a set, E, of unordered pairs of vertices 

(called edges). If each edge has a weight (a number) 

associated to it, the graph is called a weighted graph. 

When we need to mention the vertex set and edge set 

of a graph it is denoted as G=(V, E).  If the edge set of 

a graph is a collection of „ordered pairs‟ of vertices, 

then it is called a „directed graph‟. 

If {i, j} is an edge of a graph G, we say that i 

and j are adjacent to each other. Also i and j are called 

the end-points of that edge. If (i, j) is an edge of a 

directed graph G, we say that i is adjacent to j. If a 

vertex is not adjacent to any other vertex, it is called 

an isolated vertex. 

 Let G=(V, E) be a graph. Then H=(V, E) is 

called a subgraph of G, if 𝑉 𝑉 and 𝐸 𝐸. A sub-

graph of G which contains all the vertices of G (that 

is,𝑉 = 𝑉) is called a spanning subgraph of a graph, G. 

 A path 𝑃 =  𝑣0 , 𝑒1, 𝑣1 , 𝑒2 , … 𝑒𝑛 , 𝑣𝑛  in a 

graph G is a traversal through the graph G, where 

𝑣0 , 𝑣1 , … , 𝑣𝑛are vertices and 𝑒1, 𝑒2, … 𝑒𝑛  are the edges 

such that𝑒1 =  𝑣0, 𝑣1 , 𝑒2 =  𝑣1 , 𝑣2 , , … 𝑒𝑛 =
 𝑣𝑛−1, 𝑣𝑛  . We also say that the path P connects the 

two vertices 𝑣0 and𝑣𝑛 .If𝑣0 = 𝑣𝑛 , then it is called a 

cycle. 

A graph G is said to be connected if every 

pair of vertices of G are connected by a path in G. If a 
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graph G is not connected, it is called a disconnected 

graph, which may look like several connected graphs 

put together. Each of these parts is called a component 

of the disconnected graph, G. Formally, a component 

of a graph G can be defined as the maximal connected 

subgraph of G. A graph G is connected if and only if g 

has exactly one component. 

A connected graph without any cycles is 

called a tree. It is well known in Graph theory [8] that 

the number of edges of a tree is one less than the 

number of vertices of it. A spanning tree of a 

connected graph is defined as a sub-graph which itself 

is a tree. 

Theorem: A connected graph G with p vertices and q 

edges is a tree if and only if p=q+1. 

 Thus, any choice of p-1 edges in a connected 

graph, G with p vertices forms a spanning tree of G 

and hence contains all its vertices. If G is a weighted, 

connected graph, the weight of a spanning tree, T, of 

G is defined as the sum of the weights of the edges of 

T. Among all the spanning trees of G, the spanning 

tree with the maximum weight is called a maximum 

weight spanning tree. 
 

2.2. Clark-Wright Algorithm for Vehicle Routing 

Problem 

Suppose that there is a depot, D and N waste-

collection demand points. Suppose that initially the 

solution to the VRP consists of using N vehicles and 

dispatching one vehicle to each one of the N demand 

points. Now if we use a single vehicle to serve two 

points, i and j, on a single trip, then the distance 

traveled is reduced by an amount, 𝑆 𝑖,𝑗   (Figure. 2.1) 

𝑆 𝑖,𝑗  = 2𝑑 𝐷, 𝑖 + 2𝑑 𝐷, 𝑗 

−  𝑑 𝐷, 𝑖 + 𝑑 𝑖, 𝑗 + 𝑑 𝐷, 𝑗  
= 𝑑 𝐷, 𝑖 + 𝑑 𝐷, 𝑗 − 𝑑(𝑖, 𝑗) 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 2.1.Savings concept in Clarke-Wright 

Algorithm 

The quantity, S(i, j), is known as the 

"savings" resulting from combining two points i and j 

into a single tour. The larger S(i, j) is more desirable 

to combine i and j in a single tour. However, i and j 

cannot be combined if in doing so the resulting tour 

violates any constraints of the VRP.The algorithm can 

now be described as follows. 

Step.1: Suppose that there are N demand points. 

Calculate the savings S(i, j) = d(D, i) + d(D, j) − d(i, 

j) for every pair (i, j) ofdemand points. There will be 

at most N(N-1)/2 such pairs. 

Step.2: Rank the list of savings,S(i, j), in descending 

order of the magnitude. Process this“savings list” 

beginning with the firstentry in the list (the largest S(i, 

j)). 

Step.3:For each of the savings,S(i, j), include the link 

(i, j) in a route if noroute constraints will be violated 

through the inclusion of (i, j) in a route, and  

i) If neither i nor j have already been assigned to a 

route, initiate a new route including the points i,j and 

the link, (i,j). 

ii) If exactly one of the two points (i or j) has already 

been included in an existing route and that point is not 

interior to that route (a point is interiorto a route if it 

is not adjacent to the depot D in the order of traversal 

of points), add the link (i, j) to that same route. 

iii) If both i and j have already been included in two 

different existing routes and neither point is interior to 

its route, merge the two routes into a single 

one.Continue this process with the next entry in the 

list till the savings list S(i, j) is exhausted. 

Step.4: Stop. The solution to the VRP consists of the 

routes created during Step 3. (Any points that have not 

been assigned to a route during Step 3 must each be 

served by a vehicle route that begins at the depot D 

visits the unassigned point and returns to D). 

 

2.3. Graph Model of the Clark-Weight Algorithm 

Suppose that there is a depot, D and N 

demand points for waste collection. Consider a graph 

G with the N demand points as its vertices. Its edges 

are defined as follows: join two vertices, i and j ,to an 

edge, {i, j}, if it does not violate any constraints of the 

VRP for including thatlink in a tour. For each edge, 

{i,j}, assign the savings quantity,S{i, j},as its weight. 

This results in a weighted graph with N vertices.Now, 

the algorithm can now be described as follows. 

Step.1: Calculate the savings S{i, j} = d{D, i} + d{D, 

j}–d{i, j} for eachedge {i, j} of G.[There will be at 

most N(N-1)/2 such pairs] 

Step.2: Rank the list of savings,S(i, j), and arrange 

them in descending order of magnitude.  

Step.3: Process this “savings list” beginning with the 

first entry in the list (the largest S(i, j)). 

For each of the savings, S(i, j), include the respective 

edge (i, j) in a route if no route constraints will be 

violated through the inclusion of (i, j) in a route, and  

i) If neither i nor j have already been assigned to a 

route, initiate a new route including i, j and the edge 

{i, j}. 

Depot 

i j 

d (D, i) d (D, j) 

Depot 

i j 

d (D, i) d (D, j) 

d (i, j) 
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ii)  If exactly one of the two vertices,i or j, has already 

been included in an existing route and that vertex is 

not interior to that route (a vertex is interior to a route 

if it is not adjacent to the depot D in the order of 

traversal of vertices), add the edge{i, j} to that same 

route. 

iii) If both i and j have already been included in 

different existing routes and neither vertexis interior to 

its route, then merge the two routes into a single one 

by including the edge {i, j}. 

Continue with the next entry in the list till the savings 

list S{i, j} is exhausted. 

Step.4: Stop. The solution to the VRP consists of the 

routes created during Step 3. (Any vertex that is not 

assigned to a route during Step 3 must be served by a 

vehicle route that begins at the depot D visits the 

unassigned point and returns to D. Such vertices are 

isolated vertices of the graph, G) 

 

3. Algorithmic Complexity of Clarke-Wright 

Algorithm 

Let G has N vertices (demand points). The 

complexity of the Clarke-Wright Algorithm is 

calculated as follows: In step-1,we calculate the 

savings, S{i, j}, for every pair {i, j} of demand points 

and since there are at most N(N-1)/2 such pairs and 2 

operations (one addition & one subtraction) is needed 

for the computation of S{i, j} = d{D, i} + d{D, j} – 

d{i, j}, the worst-case number of operations in this 

step is N(N-1). 

In Step-2, we need to rank the savings, S(i, j), 

by listing them in descending order of magnitude. For 

this, we need to use some sorting algorithm. With 

Bubble sort, we need to compare each entry with all 

the remaining entries and interchange the two savings, 

if there is any mismatch. The number of operations 

(comparisons and exchanges for mismatches) required 

in this step is 
2𝑁 𝑁−1 

2
= 𝑁(𝑁 − 1)/2. 

In Step-3, for each of the edges, we inspect 

the end points of the edge and take some decisions 

like including the edgein a route, starting a new route 

or merging two existing routes.  This may take a 

maximum of 2 
𝑁 𝑁−1 

2
= 𝑁(𝑁 − 1)operations. 

 Hence the total number of operations (worst 

case) of the algorithm is 3N(N-1). Although this 

algorithm is an efficient one, in the sense that it 

requires only a polynomial time, 3N
2
-3N3𝑁2 − 3𝑁 =

𝑂(𝑁2), for its completion, this can be significant and 

sometimes unaffordable in the case of cities with large 

number of waste collection points. For example, a 

computer, which can perform a huge128 ~ 2
7
 

operations per second can do only 0.9 × 213  

operations per minute, can do only 0.9 × 219 

operations per hour and can do only 1.3 × 223  

operations per day.So, for cities with moderate size of 

500 ~ 28collection demand points, the algorithm will 

take more than 216operations and even a computer, 

which can perform a huge 128 operations per second 

will take about one hour to produce the solution 

forproblems involving demand points of even such 

sizes. 

4. A Graph-based Algorithm for VRP 

 In this section, we present a graph-based 

algorithm with only at most 2N(N-1) operations. 

Suppose that there is a depot, D and N demand points. 

Suppose that initially the solution to the VRP consists 

of using N vehicles and dispatching one vehicle to 

each one of the N demand points. Now if we use a 

single vehicle to serve two points, say i and j, on a 

single trip, the total distance traveled is reduced by the 

amount, 𝑆 𝑖,𝑗  , where   

𝑆 𝑖,𝑗  = 2𝑑 𝐷, 𝑖 + 2𝑑 𝐷, 𝑗 

−  𝑑 𝐷, 𝑖 + 𝑑 𝑖, 𝑗 + 𝑑 𝐷, 𝑗  
= 𝑑 𝐷, 𝑖 + 𝑑 𝐷, 𝑗 − 𝑑(𝑖, 𝑗) 

Consider a graph G with the N demand 

points as its vertices. Its edges are defined as follows: 

join two vertices, i and j, into an edge, {i, j}, if it do 

not violate any constraints of the VRP for including 

that link in a tour. For each edge, {i, j}, assign the 

savings quantity, S{i, j}, as its weight. This will give 

us a weighted graph, G, with N vertices. 

Without loss of generality, we assume that G 

is a connected graph with no isolated vertices, because 

if G has isolated vertices, any such vertex may be 

served by a vehicle route that begins at the depot D 

visits that vertex and returns to D. If G is not 

connected, we may apply the algorithm to each 

component of G. 

Now, the algorithm can now be described as 

follows. 

Step.1: Calculate the savings S{i, j} = d{D, i} + d{D, 

j} – d{i, j} for every pair {i, j} of (demand point) of 

the graph,G. There will be at most N(N-1)/2 such 

pairs.  

Step.2: Find the edge with the largest savings in G 

and include it in a route. Remove this edge from G to 

obtain a graph G‟or avoid this edge for consideration 

in future. 

Step.3:If N-1 edges are selected for the tour, Stop. 

Otherwise, find the edge with the largest savings in 

the remaining graph, G‟. Include it in the route and 

remove thatedge from G‟. Continue this process of 

selecting edges and removing them from G‟ until N-1 

edges are selected. 

The solution to the VRP consists of the N-1 

edges selected during Step 3.Thus, the solution of the 

VRP reduces to the graph-theoretic problem of finding 

the maximum weight spanning tree of a weighted, 

connected graph.  

This graph based algorithm finds the solution 

by just finding the N-1 edges with the larger savings, 

while Clarke-Wright algorithm requires one torank all 

the edges in the descending order of magnitude and 

then inspecting all of them for possible inclusion in a 

route. Step-1 requires at most 2N(N-1) operations to 

find all the weights (savings) of the graph. Steps 2 and 

3 require to find only the largest N-1 savings, which 

(in worst case) may require at most N(N-1) 

operations. Thus this algorithm finds the solution in at 
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most 2N(N-1) operations only. Although the 

computational complexity remains the same 𝑂 𝑁2 , it 

matters in the municipal cities like Bangalore and 

Mumbai, which have large number of waste  

collection points. 
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