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Abstract 

In this paper, a theoretical analysis is carried out to 

study the visco-elastic effects on hydromagnetic heat 

and mass transfer in a vertical channel. The two 

vertical plates are in porous medium and non- 

uniform wall temperatures. A magnetic field of 

uniform strength is applied in the direction 

perpendicular to the plates. The visco-elastic fluid 

flow is characterized by second order fluid. The  

analytical solution to the coupled non-liear equations 

governing the motion are obtained by regular 

perturbation technique. The effects of different flow 

parameters on skin friction are analyzed and 

illustrated graphically. 

Key words: oscillatory flow, visco-elastic, heat and 

mass transfer, skin-friction.  

1. Introduction 

The phenomenon of oscillatory flow along with heat 

and mass transfer of a conducting fluid has attracted 

the attention of many researchers due to its importance 

in many areas such as biological and industrial 

processes. Also some fluids can emit and absorb 

thermal radiations, it is of interest to study the effect 

of magnetic field on the temperature distribution and 

heat transfer when the fluid is not only an electrical 

conductor but also when it is capable of emitting and 

absorbing thermal radiations. This is of interest 

because heat transfer by thermal radiations is 

becoming of greater importance when we are 

concerned with space application and higher operating 

temperature. A list of key references in the vast 

literature concerning this field are given in[3-14 ].  

The various industries for example, chemical and 

hydrometallurgical industries require the study of heat 

and mass transfer along with chemical reaction. The 

effect of chemical reaction on heat and mass transfer 

has been studied under different conditions by  several 

authors [see 15-23 ]. 

In this study, an attempt has been made to 

extend the problem studied by Kumari et al..[23] to 

the case of visco-elastic fluid characterized by second-

order fluid. 

 

The constitutive equation for the incompressible 

Second-order fluid is of the form 
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132211 AAApI    Where σ is 

the stress tensor,  3,2,1nAn are the kinematic 

Rivlin-Ericksen tensors; 321 ,,  are the material 

coefficients describing the viscosity, elasticity and 

cross-viscosity respectively. The material coefficients 

321 ,,   are taken constants with 
1 and 

3  as 

positive and 2  as negative [Coleman and Markovitz 

(1964)] [1].The equation (1) was derived by Coleman 

and Noll[2] from that of simple fluids by assuming 

that the stress is more sensitive to the recent 

deformation than to the deformation that occurred in 

the distant past. 

2. FORMULATION OF THE PROBLEM  
We consider the unsteady oscillatory MHD flow of an 

electrically conducting incompressible visco-elastic 

fluid between two infinite vertical parallel plates. The 

fluid is assumed to be a radiating, optically thin and 

heat absorbing. The x
*
- axis is taken along the vertical 

plates in upward direction, the y
*
- axis is 

perpendicular to the wall of the channel. A strong 

transverse magnetic field of uniform strength is 

applied in a direction parallel to the y
*
- axis. The plate 

at y
*
=0 is oscillating in its own plane, while the other 

plate at y
*
=h is moving with a constant velocity in the 

direction. It is assumed that the temperature and the 

concentration at the wall y
*
=0, while and 

*

1T and 
*

1C  

are constant temperature and concentration at y
*
=h. 

Under these assumptions, the unsteady flow is 

governed by the following system of equations  

Equation of motion: 
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Concentration equation: 
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The relevant boundary conditions in non-dimensional 

form are given b 
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Where ε is the scalar constants and ε<<1. As the fluid 

is optically thin with a relatively low density and 

according to [10] radiative heat flux is given by 
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Introducing the following non-dimensional quantities:
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Using (6),  and the above non-dimensional quantities 

in (7), the equations  (2)-(5),becomes, 
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The corresponding boundary conditions are 
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3. Solution of the Problem 

In order to solve the equations (8) -(10), we assume 

that the unsteady flow is superimposed on the mean 

steady flow  so we have, 
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Substituting equations(12) in to equation(8)-(10), 

neglecting the higher order terms of o(ε
2
), the 

following equations are obtained;
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4.Results and Discussions 

The expression for the skin friction at the plate y=0 is 

2

0

2

2

1

2

02

1

2

2

0

2

))((
dy

ud

dy

ud
eiD

dy

ud
e

dy

ud
C titi

f

  
 

The purpose of this study is to bring out the 

effects of visco-elastic parameter on  hydro-magnetic, 

heat and mass transfer characteristics as the effects of 

other parameter have been discussed by Kumari 

etal.[23]. The non-Newtonian effect is exhibited 

through the parameter α. The corresponding results for 

Newtonian fluid is obtained by setting D0=0 and it is 

worth mentioning that these results show conformity 

with earlier results. 

In order to understand the physics of the problem, 

analytical results are discussed with the help of 

graphical illustrations. The parameters  

Up=.5,ε=.001,ω=0.5are kept fixed throughout the 

discussions.  

Figures 1-7 portray the nature of viscous drag formed 

during the motion of Newtonian and non-Newtonian 

fluids against time. Figure 1-4, depict that the profile 

of shearing stress with the variation of magnetic 

parameter(M),Schmidt number(Sc),heat source 

parameter(S) and radiation parameter(R). From these 

figures it is observed that the profile of shearing stress 

follow an diminishing trend with the increasing values 

of those parameters.But a complete reverse trend is 

observed in Figures 5-7. Figures 5,6 and 7 represent 

the viscous drag against various values of Grashof 

number for heat and mass transfer(Gr and Gm), 

radiation parameter(R), and permeability 

parameter(K).In all the cases it is pragmatic that 

shearing stress profile shows an increasing trend with 

the increasing values of those parameters. 

It is also observed from the expression of 

temaperatue(θ) and concentration© that the 

temperature field and concentration field are not 

significantly affected by the visco-elastic parameters. 

 

5. Conclusion 

The visco-elastic effects on hydromagnetic heat and 

mass transfer on oscillatory flow of visco-elastic fluid 

in a vertical channel are studied in this paper. Some of 

the important conclusions this paper are as follows 

i) The  shearing stress is prominently affected by the 

visco-elastic parameter 

 

ii)The effect of flow parameters  on shearing stress are 

prominent throughout the flow .  

 

iii) The temperature field and concentration field are 

not significantly affected by the visco-elastic 

parameters. 
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Nomenclature 

 B0  Strength of applied magnetic field, kg/s
2
  

C Dimensionless concentration  

 Cp Specific heat at constant pressure, J/kgK   

 D  Chemical molecular diffusivity, m
2
/s   

D1 Rate of chemical reaction   

Ec  Eckert number 

Sc Schmidt number 

T Fluid temperature,K 

t  Time,s 

Gc Solutal Grashof number 

Gr Thermal Grashof number  

g Acceleration due to gravity, m/s
2
  

h Distance between the plates, m  

K Permeability of porous medium 

Kr Chemical reaction parameter 

κ Thermal conductivity, W/mK 

M magnetic parameter 

Pr Prandtl number 

Q0 Heat absorption parameter 

q Heat flux,W/m
2
 

R radiation parameter 

S Heat source parameter 

U0 Mean flow velocity,m/s 

u Dimensionless velocity.m/s 

up Wall dimensionless velocity 

α Mean radiation absorption coefficient  

β Thermal expansion coefficient, K
-1

 

β
*
 Solutal expansion coefficient, K

-1
 

θ Dimensionless temperature 

σ Stefan-Boltzmann constant 

ρ Density,kg/m
3
 

ν Kinematic viscosity,m
2
/s 

ω Frequency of the oscillation 

D0 visco-elastic parameter 
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Figure 1:Variation of shearing stress (Cf) against 

time(t) for 

Gr=5,Gm=2,Pr=.71,R=1,Sc=.3,Kr=2,R=.5,S=2,K=1.5,

Up=.5,ε=.001,ω=0.5. 

 

Figure 2:Variation of shearing stress (Cf)  

against time(t) for 

M=4,Gr=5,Gm=2,Pr=.71,R=1,Kr=2,R=.5, 

S=2,K=1.5,Up=.5,ε=.001,ω=0.5. 

 

 

Figure 3:Variation of shearing stress (Cf) against 

time(t) for 

M=4,Gr=5,Gm=2,Pr=.71,R=1,Sc=.3,Kr=2,R=.5,K=1.

5,Up=.5,ε=.001,ω=0.5. 

 

 

Figure 4:Variation of shearing stress (Cf) against 

time(t) for M=4, 

Gr=5,Gm=2,Pr=.71,R=1,Sc=.3,Kr=2,S=2,K=1.5,Up=.

5,ε=.001,ω=0.5. 

 

 

 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
-5

0

5

10

15

20

25
S

h
e
a
r
in

g
 
s
t
r
e
s
s

Time(t)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
10

15

20

25

Time(t)

S
h
e
a
r
i
n
g
 
s
t
r
e
s
s

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
10

15

20

25

Time(t)

S
h
e
a
ri
n
g
 s

tr
e
s
s

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
10

15

20

25

Time(t)

S
h
e
a
r
i
n
g
 
s
t
r
e
s
s

M=3,D0=0 

M=3,D0=-.03 

 

M=5,D0=0 

 

M=5,D0=-.03 

 

Sc=.7,D0=0 

Sc=.7,D0=-.03 

 

Sc=.3,D0=0 

 
Sc=.3,D0=-.03 

 

S=4,D0=0 

 
S=4,D0=-.03 

 

S=2,D0=0 

 

S=2,D0=-.03 

 

R=1.5,D0=0 

 

R=.5,D0=-.03 

 

R=.5,D0=0 

 

R=1.5,D0=-.03 

 

S=2,D0=-.03 

 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 51 Number 5 November 2017 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                   Page 316 

 

Figure5: Variation of shearing stress (Cf) against 

time(t) for 

M=4,Gm=2,Pr=.71,R=1,Sc=.3,Kr=2,R=.5,S=2,K=1.5,

Up=.5,ε=.001,ω=0.5. 

 

Figure 6: Variation of shearing stress (Cf) against 

time(t) for M=4,Gr=5,Pr=.71,R=1,Sc=.3,Kr=2,R=.5, 

S=2,K=1.5,Up=.5,ε=.001,ω=0.5. 

 

Figure 7: Variation of shearing stress (Cf) against 

time(t) for 

Gr=5,Gm=2,Pr=.71,R=1,Sc=.3,Kr=2,R=.5,S=2,Up=.5,

ε=.001,ω=0.5. 
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