Generalized Sasakian-Space-Forms admitting Quarter-Symmetric Metric Connection

S.K. Pandey ${ }^{1}$, R. L. Patel ${ }^{2}$ and R. N. Singh ${ }^{3}$

Abstract

The object of the present paper is to study generalized Sasakian-space-forms admitting quartersymmetric metric connection. The relation between the curvature tensors of quarter-symmetric metric connection and linear connection has been obtained. Also, the properties of projective and conformal curvature tensors of quarter-symmetric metric connection on a generalized Sasakian-space-form have been studied.

Key-Words: generalized Sasakian-space-form, quarter-symmetric metric connection, projective curvature tensor and conformal curvature tensor, η-Einstein manifold.

AMS Subject Classification (2010): 53C15, 53C25.

1. Introduction: In 1975, Golab[14] defined and studied quarter-symmetric connection in a differentiable manifold.A linear connection $\bar{\nabla}$ on an n-dimensional Riemannian manifold $\left(M^{n}, g\right)$ is said to be a quarter-symmetricsymmetric connection if its torsion tensor $\bar{\nabla}$ defined by
$\mathrm{T}(\mathrm{X}, \mathrm{Y})=\bar{\nabla}_{X} Y-\bar{\nabla}_{Y} X-[\mathrm{X}, \mathrm{Y}]$
is of the form
$\bar{\nabla}(X, Y)=\eta(Y) \phi X-\eta(X) \phi Y$,
where η is 1 -form and ϕ is a tensor of type (1,1).In addition, a quarter-symmetric linear connection $\bar{\nabla}$ satisfies the condition.
$\left(\bar{\nabla}_{X} \mathrm{~g}\right)(\mathrm{Y}, \mathrm{Z})=0, \quad(1.2)$
for all $\mathrm{X}, \mathrm{Y}, \mathrm{Z} \in \mathrm{TM}$, where TM is the Lie algebra of vector fields of the manifoldM, then $\bar{\nabla}$ is said to be quartersymmetric metric connection. In particular, $\mathrm{if} \varphi \mathrm{X}=\mathrm{Xand} \varphi \mathrm{Y}=\mathrm{Y}$, then the quarter-symmetric connection reduces to asemi-symmetric connection [14].Quarter-symmetric metric connection are also studied by Biswas and De [7], De and De [9] De and Mondal [10], Singh, Pandey and Tiwari [17], Yano and Imai [22] and manyothers.

On the other hand, a generalized Sasakian-space-form was defined by Alegreeet al. [1] as the almost contact manifold ($M^{2 n+1}, \phi, \xi, \eta, g$) whose curvature tensor is given by

$$
\begin{equation*}
\mathrm{R}=f_{1} R_{1}+f_{2} R_{2}+f_{3} R_{3} \tag{1.3}
\end{equation*}
$$

where f_{1}, f_{2}, f_{3} are some differential function on $\mathrm{M}^{2 \mathrm{n}+1}$ and
$R_{1}(X, Y) Z=\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}$,
$R_{2}(X, Y) Z=g(X, \phi Y)-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z$,

$$
R_{3}(X, Y) Z=\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi
$$

for any vector fields $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ on $M^{2 n+1}$. In such a case we denote the manifold as $\mathrm{M}\left(f_{1}, f_{2}, f_{3}\right)$. This kind of manifold appears as a generalization of the well-known Sasakian-space-forms by taking $f_{1}=(c-1) / 4$.It is known that any three-dimensional (α, β)-trans-Sasakian manifold with α, β depending on ξ is a generalized Sasakian-space-
form [2].Alegre et al. give results in [4] about B. Y. Chen's inequality on submanifolds of generalized complex space-forms and generalized Sasakian-space-forms. Al-Ghefari et al. analyse the CR submanifolds of generalized Sasakian-space-forms ([5],[6]). In [15], Kim studied conformally flat generalized Sasakian-space-forms and locally symmetric generalized Sasakian-space-forms. De and Sarkar [11] have studied generalized Sasakian-space-forms regarding conharmonic curvature tensor.Conharmoniccurvature tensor of generalized Sasakian-Space-forms have also been studied by De, Singh and Pandey [12]. Singh and Pandey ([16], [18]) have studied generalized Sasakian-space-forms and many others.

2. Generalised Sasakian-Space-Form:

In an almost contact metric manifold, we have [8]
$\phi^{2} X=-X+\eta(X) \xi, \phi \xi=0$,
$\eta(\xi)=1, \mathrm{~g}(\mathrm{X}, \xi)=\eta(X), \quad \eta(\phi X)=0$,
$\mathrm{g}(\phi X, \phi Y)=\mathrm{g}(\mathrm{X}, \mathrm{Y})-\eta(X) \eta(Y)$,
$\mathrm{g}(\phi X, Y)=-\mathrm{g}(\mathrm{X}, \phi Y), \mathrm{g}(\phi X, X)=0$,
$\left(\nabla_{X} \eta\right)(Y)=\mathrm{g}\left(\nabla_{X} \xi, Y\right)$,
where ϕ is a $(1,1)$ tensor, ξ is a vector field, η is a 1 -form and g is a Riemannian metric. The metric g induces an inner product on the tangent space of the manifold. Again, we know that [1] in a generalized Sasakian-space-form

$$
\begin{align*}
\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=f_{1}[\mathrm{~g}(\mathrm{Y}, \mathrm{Z}) \mathrm{X} & -\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}] \\
& +f_{2}[g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z] \\
& +f_{3}[\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi] \tag{2.6}
\end{align*}
$$

for any vector fields $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ on M , where R denotes the curvature tensor of M and f_{1}, f_{2}, f_{3} are smooth functions on the manifold. The Ricci operator Q, Ricci tensor S and the scalar curvature r of the manifold of dimension ($2 \mathrm{n}+1$) are respectively given by [15]
$\mathrm{QX}=\left(2 \mathrm{n} f_{1}+3 f_{2}-f_{3}\right) \mathrm{X}-\left(3 f_{2}+(2 n-1) f_{3}\right) \eta(X) \xi,(2.7)$

$$
\begin{gathered}
\mathrm{S}(\mathrm{X}, \mathrm{Y})=\left(2 \mathrm{n} f_{1}+3 f_{2}-f_{3}\right) \mathrm{g}(\mathrm{X}, \mathrm{Y})-\left(3 f_{2}+(2 n-1) f_{3}\right) \eta(X) \eta(Y),(2.8) \\
\mathrm{r}=2 \mathrm{n}(2 \mathrm{n}+1) f_{1}+6 n f_{2}-4 \mathrm{n} f_{3} .(2.9)
\end{gathered}
$$

In view of equations (2.6), (2.7) and (2.8), we have
$\mathrm{R}(\mathrm{X}, \mathrm{Y}) \xi=\left(f_{1}-f_{3}\right)[\eta(Y) X-\eta(X) Y],(2.10)$
$\mathrm{R}(\xi, X) \mathrm{Y}=\left(f_{1}-f_{3}\right)[\mathrm{g}(\mathrm{X}, \mathrm{Y}) \xi-\eta(Y) X]$,
$\eta(R(X, Y) Z)=\left(f_{1}-f_{3}\right)[\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \eta(X)-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \eta(Y)],(2.12)$
$\mathrm{S}(\mathrm{X}, \xi)=2 \mathrm{n}\left(f_{1}-f_{3}\right) \eta(X) .(2.13)$

3. Quarter-Symmetric Metric Connection

Let $\bar{\nabla}$ be the linear connection and ∇ be the Levi-Civita connection of a generalized Sasakian space-form M^{n} such that
$\bar{\nabla}_{X} Y=\nabla_{X} Y+H(X, Y)$,
where H is a tensor field of type $(1,1)$. For $\bar{\nabla}$ to be a quarter-symmetric metric connection in M^{n}, we have
$\mathrm{H}(\mathrm{X}, \mathrm{Y})=\frac{1}{2}\left[\bar{T}(X, Y)+\bar{T}^{\prime}(X, Y)+\bar{T} \cdot(\mathrm{Y}, \mathrm{X})\right]$
and
$\mathrm{g}\left(\mathrm{T}^{\prime}(\mathrm{X}, \mathrm{Y}), \mathrm{Z}\right)=\mathrm{g}\left(\bar{T}^{\prime}(Z, X), Y\right)$.
In view of equation (1.1) and (3.3), we get
$\bar{T}^{\prime}(X, Y)=\eta(X) \phi Y-g(\phi X, Y) \xi$,

Now, using equations (1.1) and (3.4) in equation (3.2), we get
$\mathrm{H}(\mathrm{X}, \mathrm{Y})=\eta(Y) \phi X-g(\phi X, Y) \xi .(3.5)$

Hence a quarter- symmetric metric connection $\bar{\nabla}$ in a generalized Sasakian space form M^{n} given by
$\bar{\nabla}_{X} Y=\nabla_{X} Y+\eta(Y) \phi X-g(\phi X, Y) \xi .(3.6)$
Thus, the above equation is the relation between quarter-symmetric metric connection and
the Levi-Civita connection. The curvature tensor \bar{R} of M^{n} with respect to quarter-symmetric metric connection $\bar{\nabla}$ is defined by
$\bar{R}(X, Y) Z=\bar{\nabla}_{X} \bar{\nabla}_{Y} Z-\bar{\nabla}_{Y} \bar{\nabla}_{X} Z-\bar{\nabla}_{[X, Y]} Z$.
In view of equation (3.6), above equation takes the form

$$
\begin{array}{r}
\bar{R}(X, Y) Z=R(X, Y) Z+g(\phi X, Z) \phi Y-g(\phi Y, Z) \phi X \\
+\left(f_{1}-f_{3}\right)[\{\eta(X) Y-\eta(Y) X\} \eta(Z)+\{g(X, Z) \eta(Y)-g(Y, Z) \eta(X)\} \xi] . \tag{3.8}
\end{array}
$$

where \bar{R} and R are the curvature tensors of M^{n} with respect to $\bar{\nabla}$ and ∇ respectively.
From equation (3.8),it follows that

$$
\begin{align*}
& \bar{R}(X, Y, Z, U)=R(X, Y, Z, U)+g(\phi X, Z) g(\phi Y, U)-g(\phi Y, Z) g(\phi X, U) \\
& \quad+\left(f_{1}-f_{3}\right)[\{\eta(X) g(U, Y)-\eta(Y) g(U, X)\} \eta(Z) \\
& +\{g(X, Z) \eta(Y)-g(Y, Z) \eta(X)\} \eta(U) \tag{3.9}
\end{align*}
$$

Let $\left\{e_{i}\right\}_{i=1}^{n}$ be an orthonormal basis of the tangent space at each point of the manifold.Putting $\mathrm{X}=\mathrm{U}=e_{i}$ in equation (3.9) and summing over $\mathrm{i}, 1 \leq i \leq n$, we get
$\bar{S}(Y, Z)=S(Y, Z)-\left(1+f_{1}-f_{3}\right) g(Y, Z)+\left(1-f_{1}+f_{3}\right) \eta(Y) \eta(Z)$,
which gives
$\bar{Q} Y=Q Y-\left(1+f_{1}-f_{3}\right) Y+\left(1-f_{1}+f_{3}\right) \eta(Y) \xi$.
where \bar{Q} and Q are the Ricci operators of type (1.1),i.e. $\mathrm{S}(\mathrm{Y}, \mathrm{Z})=\mathrm{g}(\bar{Q} Y, Z)$ and $\mathrm{S}(\mathrm{Y}, \mathrm{Z})=\mathrm{g}(\mathrm{QY}, \mathrm{Z})$ with respect to $\bar{\nabla}$ and ∇ respectively.

Again, putting $\mathrm{Y}=\mathrm{Z}=e_{i}$ in equation (3.10), we get
$\bar{r}=\mathrm{r}-(\mathrm{n}-1)-(\mathrm{n}+1)\left(f_{1}-f_{3}\right),(3.12)$
where \bar{r} and r are the scalar curvature with respect to $\bar{\nabla}$ and ∇ respectively.
Now, writing two more equations by the cyclic permutations of X, Y and Z , from equation (3.8), we get

$$
\begin{array}{r}
\bar{R}(Y, Z) X=R(Y, Z) X+g(\phi Y, X) \phi Z-g(\phi Z, X) \phi Y \\
+\left(f_{1}-f_{3}\right)[\{\eta(Y) Z-\eta(Z) Y\} \eta(X)+\{g(Y, X) \eta(Z)-g(Z, X) \eta(Y)\} \xi] . \tag{3.13}
\end{array}
$$

and

$$
\begin{array}{r}
\bar{R}(Z, X) Y=R(Z, X) Y+g(\phi Z, Y) \phi X-g(\phi X, Y) \phi Z \\
+\left(f_{1}-f_{3}\right)[\{\eta(Z) X-\eta(X) Z\} \eta(Y)+\{g(Z, Y) \eta(X)-g(X, Y) \eta(Z)\} \xi] .
\end{array}
$$

Adding all these three equations (3.8), (3.13) and (3.14)and using the fact that
$R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0$, we get

$$
\begin{align*}
\bar{R}(X, Y) Z+ & \bar{R}(Y, Z) X+\bar{R}(Z, X) Y=2[g(\phi X, Y) \phi Z+g(\phi Y, X) \phi Z \\
& +g(\phi Z, Y) \phi X)] . \tag{3.15}
\end{align*}
$$

Thus, we can state as follows-
Theorem (3.1):Generalized Sasakian-space- form admitting quarter symmetric metric connection satisfies equation (3.15).

Now, interchanging X and Y in equation (3.9), we get

$$
\begin{array}{r}
\bar{R}(Y, X, Z, U)=R(Y, X, Z, U)+g(\phi Y, Z) g(\phi X, U)-g(\phi X, Z) g(\phi Y, U) \\
+\left(f_{1}-f_{3}\right)[\{\eta(X) g(U, X)-\eta(X) g(U, X)\} \eta(Z)
\end{array}
$$

$$
\begin{equation*}
+\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\} \eta(U)] . \tag{3.16}
\end{equation*}
$$

Adding above equation with equation (3.9) with the fact that $R(X, Y, Z, U)+R(Y, X, Z, U)=0$, we get
$\bar{R}(X, Y, Z, U)+\bar{R}(Y, X, Z, U)=0$.

Again interchanging Z and U in equation (3.9) and addingto equation (3.9) with fact that $R(X, Y, Z, U)+$ $R(X, Y, U, Z)=0$, we get
$\bar{R}(X, Y, Z, U)+\bar{R}(X, Y, U, Z)=0$.

Now, interchanging pair of slots in equation (3.9) and subtracting these equations (3.9) with fact that $R(X, Y, Z, U)=$ $R(Z, U, X, Y)$, we get
$\bar{R}(X, Y, Z, U)=\bar{R}(Z, U, X, Y) \cdot(3.19)$

Thus, in view of equations (3.17), (3.18) and (3.19), we can state as follows.

Theorem (3.2):In a generalized Sasakian space-form admitting quarter-symmetric metric connection, we have
(i) $\bar{R}(X, Y, Z, U)+\bar{R}(Y, X, Z, U)=0$.
(ii) $\bar{R}(X, Y, Z, U)+\bar{R}(X, Y, U, Z)=0$.
(iii) $\bar{R}(X, Y, Z, U)-\bar{R}(Z, U, X, Y)=0$.

Now, putting $\mathrm{Z}=\xi$ in equation (3.8) and using equations (2.2) and (2.4), we get
$\bar{R}(\mathrm{X}, \mathrm{Y}) \xi=0 .(3.20)$

Taking the inner product of equation (3.8) with ξ and using equations(2.2) and(2.13), we get
$\eta(\bar{R}(X, Y) Z)=0$.

Putting $X=\xi$, in equation (3.8) and using equations (2.1),(2.13), we get
$\bar{R}(\xi, Y) Z=0$.
Again
$\bar{R}(\xi, Y) Z=-\bar{R}(Y, \xi) Z=0$.

By putting $\mathrm{Y}=\xi$ in equation (3.10) and use of equation (2.13), we obtain
$\bar{S}(\xi, \mathrm{Z})=(2 \mathrm{n}-2)\left(f_{1}-f_{3}\right) \eta(Z) .(3.24)$
Thus, by virtue of equations (3.20), (3.21), (3.22), (3.23) and (3.24) we can state follows.
Theorem (3.3): In ageneralized Sasakian-space-form admitting quarter-symmetric metric connection, we have
(i) $\bar{R}(\mathrm{X}, \mathrm{Y}) \xi=0$,
(ii) $\eta(\bar{R}(X, Y) Z)=0$,

$$
(i i i) \bar{R}(\xi, Y) Z=0,
$$

$$
(\text { iv }) \bar{R}(\xi, Y) Z=-\bar{R}(Y, \xi) Z=0,
$$

$$
(v) \bar{S}(\xi, Z)=(2 \mathrm{n}-2)\left(f_{1}-f_{3}\right) \eta(Z)
$$

Now, consider

$$
\begin{equation*}
(\mathrm{R}(\xi, X) \cdot \bar{R})(\mathrm{Y}, \mathrm{Z}) \mathrm{U}=0, \tag{3.25}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\mathrm{R}(\xi, X) \cdot \bar{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{U}-\bar{R}(\mathrm{R}(\xi, X) \mathrm{Y}, \mathrm{Z}) \mathrm{U}-\bar{R}(Y, \mathrm{R}(\xi, X) \mathrm{Z}) \mathrm{U}-\bar{R}(Y, Z) R(\xi, X) U=0 . \tag{3.26}
\end{equation*}
$$

In view of equations (2.11),(3.20) and (3.21),above equation takes the form

$$
\begin{aligned}
& \left(f_{1}-f_{3}\right)[\mathrm{g}(\mathrm{X}, \bar{R}(Y, \xi) \mathrm{U})+\eta(Y) \bar{R}(X, Z) U+\eta(Z) \bar{R}(Y, X) U \\
& -g(X, U) \bar{R}(Y, Z) \xi+\eta(U) \bar{R}(Y, Z) X]=0 .
\end{aligned}
$$

By virtue of equation (3.8), above equation reduces to

$$
\begin{aligned}
& \left(f_{1}-f_{3}\right)[\mathrm{g}(\mathrm{X}, \mathrm{R}(\mathrm{Y}, \mathrm{Z}, \mathrm{U}) \xi+\eta(\mathrm{Y}) \mathrm{R}(\mathrm{X}, \mathrm{Z}) \mathrm{U}+\eta(\mathrm{Z}) \mathrm{R}(\mathrm{Y}, \mathrm{X})-\mathrm{g}(\mathrm{X}, \mathrm{U}) \mathrm{R}(\mathrm{Y}, \mathrm{Z}) \xi \\
& +\eta(U) R(Y, Z) X+\mathrm{g}(\phi Y, U) \mathrm{g}(\mathrm{X}, \phi Z) \xi-\mathrm{g}(\phi Z, U) \mathrm{g}(\mathrm{X}, \phi Y) \xi \\
& +\mathrm{g}(\phi X, U) \eta(\mathrm{Y}) \phi \mathrm{Z}-\mathrm{g}(\phi Z, U) \eta(\mathrm{Y}) \phi \mathrm{X}+\mathrm{g}(\phi Y, U) \eta(Z) \phi X \\
& \quad-\mathrm{g}(\phi X, U) \eta(\mathrm{Z}) \phi \mathrm{Y}-\mathrm{g}(\mathrm{X}, U) \eta(\phi \mathrm{Y}) \phi \mathrm{Z}+\mathrm{g}(X, U) \eta(\phi \mathrm{Z}) \phi Y
\end{aligned}
$$

```
+g(\phiY,X)\eta(U)\phiZ - g(\phiZ,X)\eta(U)\phiY
```

$$
\begin{aligned}
& \quad+\left(f_{1}-f_{3}\right)[2 g(Y, U) \eta(X) \eta(Z) \xi-g(Z, U) \eta(X) \eta(Y) \xi \\
& \quad+2 \eta(X) \eta(Y) \eta(U) Z-2 \eta(X) \eta(Y) \eta(Z) Y-2 g(X, U) \eta(Y) \eta(Z) \xi \\
& -g(X, U) \eta(Y) Z+g(X, U) \eta(Z) Y-g(X, U) \eta(Y) \eta(Z) \xi]=0 .(3.28)
\end{aligned}
$$

Taking the inner product of above equation with ξ and using equations (2.2) and (2.12), we get

$$
\begin{align*}
& \left(f_{1}-f_{3}\right)\left[\mathrm{R}(\mathrm{Y}, \mathrm{Z}, \mathrm{U}) \mathrm{X}+\left(f_{1}-f_{3}\right)\{g(Z, X) \eta(U) \eta(Y)+g(Y, U) \eta(X) \eta(Z)\right. \\
& \quad-3 g(X, U) \eta(Y) \eta(Z)+g(\phi Y, U) g(X, \phi Z)-g(\phi Z, U) g(X, \phi Y)]=0 . \tag{3.29}
\end{align*}
$$

Putting $\mathrm{Y}=\mathrm{X}=e_{i}$ in above equation and taking summation over $\mathrm{i}, 1 \leq i \leq n$, we get

$$
\begin{equation*}
\mathrm{S}(\mathrm{Z}, U)=\mathrm{g}(\mathrm{U}, \mathrm{Z})+\left[\left(f_{1}-f_{3}\right)(\mathrm{n}+1)-1\right] \eta(U) \eta(Z) . \tag{3.30}
\end{equation*}
$$

Thus, we can state as follows-

Theorem (3.4): A generalized Sasakian space-form with quarter-symmetric metric connection satisfying $(\mathrm{R}(\xi, X) \cdot \bar{R})(Y, Z) U=0$, is an η-Einstein manifold.

4. Projective Curvature Tensor of Generalized Sasakian-Space Forms admitting Quarter-Symmetric Metric Connection:

Projective curvature tensor of quarter-symmetric metric connection $\bar{\nabla}$ in M^{n} is defined as
$\bar{P}(X, Y) Z=\bar{R}(X, Y) Z-\frac{1}{(n-1)}[\bar{S}(Y, Z) X-\bar{S}(X, Z) Y]$,
which on using equations (3.8) and (3.10), gives

$$
\begin{aligned}
& \qquad \bar{P}(X, Y) Z=R(X, Y) Z-\frac{1}{n-1}[S(Y, Z) X-S(X, Z) Y]+g(\phi X, Z) \phi Y-g(\phi Y, Z) \phi X \\
& -\left[\frac{\left.(n-1)\left(f_{1}-f_{3}\right)+1\right)}{(n-1)}\right][\eta(X) Y-\eta(Y) X] \eta(Z) \\
& +\left[\frac{\left(1+3 f_{1}-f_{3}\right)}{(n-1)}\right][\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}],
\end{aligned}
$$

which gives

$$
\begin{align*}
& \qquad \stackrel{\rightharpoonup}{P}(X, Y) Z=P(X, Y) Z+g(\phi X, Z) \phi Y-g(\phi Y, Z) \phi X \\
& -\left[\frac{\left.(n-1)\left(f_{1}-f_{3}\right)+1\right)}{(n-1)}\right][\eta(X) Y-\eta(Y) X] \eta(Z) \\
& +\left[\frac{\left(1+3 f_{1}-f_{3}\right)}{(n-1)}\right][\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}], \tag{4.3}
\end{align*}
$$

where $\mathrm{P}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}$ is the projective curvature tensor [11] of connection ∇ defined as
$P(X, Y) Z=R(X, Y) Z-\frac{1}{n-1}[S(Y, Z) X-S(X, Z) Y]$.
Putting $X=\xi$ in equation (4.2) and using equations (2.1), (2.2), (2.6), (2.11) and (2.13), we get

$$
\begin{gathered}
\bar{P}(\xi, Y) Z=\left[\frac{\left.(n-2)\left(f_{1}-f_{3}\right)-1\right)}{n-1}\right][\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \xi-\eta(\mathrm{Z}) \mathrm{Y}]+\left[\frac{\left.(3 n-2)\left(f_{1}-f_{3}\right)+1\right)}{n-1}\right] \eta(\mathrm{Z}) \mathrm{Y} \\
+\left[\frac{\left.\left(3 f_{2}+(3 n-3) f_{3}-(n-2) f_{1}\right)-1\right)}{(n-1)}\right] \eta(Y) \eta(Z) \xi \\
-\left[\frac{\left(2 n f_{1}+3 f_{2}-f_{3}\right)}{n-1}\right] \mathrm{g}(\mathrm{Y}, \mathrm{Z}) \xi .(4.5)
\end{gathered}
$$

Againputting $\mathrm{Z}=\xi$, in equation (4.2) and using (2.1), (2.2), (2.10) and (2.13), we get
$\bar{P}(X, Y) \xi=-\left[\frac{2 n\left(f_{1}-f_{3}\right)+2}{n-1}\right][\eta(Y) X-\eta(X) Y]$.
Now, taking the inner product of equation (4.1) with ξ and using equations (2.1), (2.2),
(2.4),(2.8),(3.10) and (3.21), we get
$\eta(\bar{P}(X, Y) Z)=-\frac{1}{(n-1)}[S(Y, Z) \eta(X)-S(X, Z) \eta(Y)]$
$-\left[\frac{\left(1-f_{1}+f_{3}\right)}{n-1}\right][g(X, Z) \eta(Y)-g(Y, Z) \eta(X)],(4.7)$
which gives
$\eta(\bar{P}(X, Y) Z)=\left[\frac{(2 n+1) f_{1}-3 f_{2}-2 f_{3}-1}{(n-1)}\right][g(X, Z) \eta(Y)-g(Y, Z) \eta(X)]$.
Thus in view of equations (4.5),(4.6) and (4.7), we can state the follows-
Theorem (4.1): In a generalized Sasakian-space-form with quarter-symmetric metric connection, we have
(i) $\bar{P}(\xi, Y) Z=\left[\frac{\left.(n-2)\left(f_{1}-f_{3}\right)-1\right)}{n-1}\right][\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \xi-\eta(\mathrm{Z}) \mathrm{Y}]+\left[\frac{\left.(3 n-2)\left(f_{1}-f_{3}\right)+1\right)}{n-1}\right] \eta(\mathrm{Z}) \mathrm{Y}$
$+\left[\frac{\left.\left(3 f_{2}+(3 n-3) f_{3}-(n-2) f_{1}\right)-1\right)}{(n-1)}\right] \eta(Y) \eta(Z) \xi$
$-\left[\frac{\left(2 n f_{1}+3 f_{2}-f_{3}\right)}{n-1}\right] g(\mathrm{Y}, \mathrm{Z}) \xi$.
(ii) $\bar{P}(X, Y) \xi=-\left[\frac{2 n\left(f_{1}-f_{3}\right)+2}{n-1}\right][\eta(Y) X-\eta(X) Y]$. .
(iii) $\eta(\bar{P}(X, Y) Z)=-\frac{1}{(n-1)}[S(Y, Z) \eta(X)-S(X, Z) \eta(Y)]$

$$
-\left[\frac{\left(1-f_{1}+f_{3}\right)}{n-1}\right][g(X, Z) \eta(Y)-g(Y, Z) \eta(X)]
$$

Now, interchanging X and Y in equation (4.2) and adding these equation to equation (4.2) with the fact that $R(X, Y) Z+R(Y, Z) X=0$, we get
$\bar{P}(X, Y) Z+\bar{P}(Y, X) Z=0$.
Again from equation (4.2) writing two more equations by the cyclic permutations of X, Y and Z and adding all these three equations with the fact that $R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0$, we get

$$
\begin{equation*}
\bar{P}(X, Y) Z+\bar{P}(Y, Z) X+\bar{P}(Z, X) Y=0 \tag{4.10}
\end{equation*}
$$

Theorem (3.2): In a generalized Sasakian space-form admitting quarter-symmetric metric connection, we have

$$
\text { (i) } \bar{P}(X, Y) Z+\bar{P}(Y, X) Z=0
$$

(ii) $\bar{P}(X, Y) Z+\bar{P}(Y, Z) X+\bar{P}(Z, X) Y=0$.

Now, suppose

$$
\begin{equation*}
(\mathrm{R}(\xi, X) \cdot \bar{P})(\mathrm{Y}, \mathrm{Z}) \mathrm{U}=0 \tag{4.11}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\mathrm{R}(\xi, X) \cdot \bar{P}(\mathrm{Y}, \mathrm{Z}) \mathrm{U}-\bar{P}(\mathrm{R}(\xi, X) \mathrm{Y}, \mathrm{Z}) \mathrm{U}-\bar{P}(Y, \mathrm{R}(\xi, X) \mathrm{Z}) \mathrm{U}-\bar{P}(Y, Z) R(\xi, X) U=0 \tag{4.12}
\end{equation*}
$$

By virtue of equations (2.11) above equation takes the form

$$
\begin{align*}
& \left(f_{1}-f_{3}\right)[\mathrm{g}(\mathrm{X}, \bar{P}(Y, \xi) \mathrm{U}) \xi-\eta(\bar{P}(Y, Z) U) X-\mathrm{g}(\mathrm{X}, \mathrm{Y}) \bar{P}(\xi, Z) U+\eta(Y) \bar{P}(X, Z) U \\
& -g(X, Z) \bar{P}(Y, \xi) U+\eta(Z) \bar{P}(Y, X) U \\
& -g(X, U) \bar{P}(Y, Z) \xi+\eta(U) \bar{P}(Y, Z) X]=0 . \tag{4.13}
\end{align*}
$$

Taking the inner product of above equation with ξ and using equation (2.2), we get

$$
\begin{gathered}
\left(f_{1}-f_{3}\right)[\mathrm{g}(\mathrm{X}, \bar{P}(Y, \xi) \mathrm{U})-\eta(\bar{P}(Y, Z) U) \eta(X)-\mathrm{g}(\mathrm{X}, \mathrm{Y}) \eta(\bar{P}(\xi, Z) U)+\eta(Y) \eta(\bar{P}(X, Z) U) \\
-g(X, Z) \eta(\bar{P}(Y, \xi) U)+\eta(Z) \eta(\bar{P}(Y, X) U) \\
-g(X, U) \eta(\bar{P}(Y, Z) \xi)+\eta(U) \eta(\bar{P}(Y, Z) X)]=0 .(4.14)
\end{gathered}
$$

In view of equations (4.2), (4.2), (4.5), (4.6) and (4.7) above equation takes the form
$\left(f_{1}-f_{3}\right)\left[\mathrm{g}\left(\mathrm{X}, \mathrm{R}(\mathrm{Y}, \mathrm{Z}, \mathrm{U})-\frac{1}{n-1}\{\mathrm{~S}(\mathrm{Z}, \mathrm{U}) \mathrm{g}(\mathrm{X}, \mathrm{Y})-\mathrm{S}(\mathrm{Y}, \mathrm{Z})\}+\mathrm{g}(\phi Y, U) \mathrm{g}(\mathrm{X}, \phi Z)\right.\right.$

$$
-\mathrm{g}(\phi Z, U) \mathrm{g}(\mathrm{X}, \phi Y)+\left[\frac{(n-2)\left(f_{1}-f_{3}\right)-1}{n-1}\right][g(X, Z) \eta(Y)-g(X, U) \eta(Z)]
$$

$-\left[\frac{\left(1+f_{1}-f_{3}\right)}{n-1}\right][g(Z, U) g(X, Y)-g(Y, U) g(X, Z)]+\left[\frac{(2 n+1) f_{1}+3 f_{2}-2 f_{3}-1}{n-1}\right][g(Z, U) g(X, U)$

$$
+\mathrm{g}(\mathrm{X}, \mathrm{U}) \eta(Y) \eta(Z)+g(X, Z) g(Y, U)-g(X, Y) \eta(U) \eta(Z)]]=0 .(4.15)
$$

Putting $\mathrm{Y}=\mathrm{X}=e_{i}$ in above equation and taking summation over $\mathrm{i}, 1 \leq i \leq n$, we get

$$
\begin{align*}
& \mathrm{S}(\mathrm{Z}, U)=\left[\frac{2(n-1)+\left(4 n-2 n^{2}\right) f_{1}+3(n+1) f_{2}-(3 n+1) f_{3}}{n-1}\right] \mathrm{g}(\mathrm{U}, \mathrm{Z}) \\
& \left.\quad-\left[(2 \mathrm{n}+1) f_{1}+3 f_{2}-2 f_{3}-1\right)(n+1)-2\right] \eta(U) \eta(Z) . \tag{4.16}
\end{align*}
$$

Thus, we can state as follows-

Theorem (3.4): Ageneralized Sasakian space-forms with quarter-symmetric metric connection satisfying $(\mathrm{R}(\xi, X) \cdot \bar{R})(Y, Z) U=0$, is an η-Einstein manifold.

5. Conformal Curvature Tensor of Generalized Sasakian-Space -Form admitting Quarter-Symmetric Metric Connection:

Conformal curvature tensor \bar{C} of quarter-symmetric metric connection $\bar{\nabla}$ in M^{n} is defined as

$$
\bar{C}(X, Y) Z=\bar{R}(X, Y) Z-\frac{1}{n-2}[\bar{S}(Y, Z) X-\bar{S}(X, Z) Y+g(Y, Z) \overline{Q X}-g(X, Z) \overline{Q Y}]
$$

$+\frac{\bar{r}}{(n-1)(n-2)}[\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}]$.
Using equations (3.8),(3.10),(3.11) and (3.12), we get

$$
\begin{gather*}
\bar{C}(X, Y) Z=R(X, Y) Z-\left[\frac{1}{n-2}\right][S(Y, Z) X-S(X, Z) Y+g(Y, Z) Q X-g(X, Z) Q Y] \\
+\frac{r}{(n-1)(n-2)}[\mathrm{g}(\mathrm{Y}, Z) \mathrm{X}-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}]
\end{gathered}+\mathrm{g}(\phi X, Z) \phi Y-g(\phi Y, Z) \phi X \quad \begin{gathered}
+\left[\left(f_{1}-f_{3}\right)+\frac{\left(1-f_{1}+f_{3}\right)}{(n-2)}\right]\{\eta(Y) X-\eta(X) Y\} \eta(Z) \\
+\left[\left(f_{1}-f_{3}\right)+\frac{\left(1-f_{1}+f_{3}\right)}{(n-2)}\right][g(X, Z) \eta(X)-g(Y, Z) \eta(Y)] \xi \\
+\left[\frac{\left(1-f_{1}+f_{3}\right)-n\left(1+f_{1}-f_{3}\right)}{(n-1)(n-2)}\right][g(Y, Z) X-g(X, Z) Y],(5.2)
\end{gather*}
$$

which yields

$$
\begin{align*}
& \bar{C}(X, Y) Z=C(X, Y) Z+\mathrm{g}(\phi X, Z) \phi Y-g(\phi Y, Z) \phi X \\
&+\left[\frac{\left(1-f_{1}+f_{3}\right)-(n-2)\left(f_{1}-f_{3}\right)}{(n-2)}\right][\eta(Y) X-\eta(X) Y] \eta(Z) \\
&+\left[\frac{\left(f_{1}-f_{3}\right)(n-2)-\left(1-f_{1}+f_{3}\right)}{(n-2)}\right][g(X, Z) \eta(X)-g(Y, Z) \eta(Y)] \xi \\
&+\left[\frac{\left(1-f_{1}+f_{3}\right)-n\left(1+f_{1}-f_{3}\right)}{(n-1)(n-2)}\right][g(Y, Z) X-g(X, Z) Y] \tag{5.3}
\end{align*}
$$

where $\mathrm{C}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}$ is the conformal curvature tensor of connection ∇ in M^{n} [8] defined as

$$
C(X, Y) Z=R(X, Y) Z-\frac{1}{n-2}[S(Y, Z) X-S(X, Z) Y+g(Y, Z) Q X-g(X, Z) Q Y]
$$

$+\frac{r}{(n-1)(n-2)}[\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}]$.

Now, interchanging X and Y in equation (5.2) and adding these equation to equation (5.2) with the fact that $R(X, Y) Z+R(Y, Z) X=0$, we get
$\bar{C}(X, Y) Z+\bar{C}(Y, X) Z=0$.

Again from equation (5.2) writing two more equations by the cyclic permutations of X, Y and Z and adding all these three equations with the fact that $R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0$, we get

$$
\begin{equation*}
\bar{C}(X, Y) Z+\bar{C}(Y, Z) X+\bar{C}(Z, X) Y=0 \tag{5.6}
\end{equation*}
$$

Thus, we can state as follows

Theorem (3.2):In a generalized Sasakian space-form admitting quarter-symmetric metric connection, we have

$$
\begin{equation*}
\bar{C}(X, Y) Z+\bar{C}(Y, X) Z=0 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\bar{C}(X, Y) Z+\bar{C}(Y, Z) X+\bar{C}(Z, X) Y=0 . \tag{ii}
\end{equation*}
$$

References:

[1] Alegre, P., Blair, D. E. and Carriazo, A. (2004): Generalized Sasakian-space-forms, Israel Journal ofMathematics, vol. 141, pp. 157-183, 2004.
[2] Alegree, P. and Carriazo, A. (2008): Structures on generalized Sasakian-space-forms, Differential Geometry and its Applications, Vol.26, no6, pp. 656-666.
[3] Alegree, P. andCarriazo, A. (2011): Generalized Sasakian-space-forms and conformal changes of the metric, Results in Mathematics, Vol.59, no.3-4,pp. 485-493.
[4] Alegre, P., Carriazo,A., Kim, Y. H. and Yoon, D.W.(2007):B.Y. Chen's inequality forsubmanifolds of generalized space forms,Indian Journal of Pure and Applied Mathematics,vol.38, no.3,pp.185-201.
[5] Al-Ghefari, R., Al-Solamy, F. R. and Shahid,M.H. (2006): CR-submanifolds of generalized space forms,JP Journal of Geometry and Topology, vol.6,no.2,pp.151-166.
[6] Al-Ghefari, R., Al-Solamy, F. R. and Shahid,M.H. (2006): Contact CR-warped productsubmanifolds in generalized Sasakian space forms,Balkan Journal of Geometry and its Applications, vol.11,no.2,pp.1-10.
[7] Biswas, S. C. and De, U. C. (1997): Quarter-symmetric metric connection in an SP-Sasakian manifold, Commun. Fac. Sci. Univ. Ank. Series, 46,49-56.
[8] Blair, D. E. (2002): Riemannian geometry of contact and symplectic manifolds, progress in Mathrmatics,203, Birkhauser Boston, Inc., M.A.
[9] De, U. C. and De, K. (2011): On three dimensional Kenmotsu manifolds admitting a quarter-symmetric metric connection, Azerbaijan Journal of Mathematics,1(2),132-142.
[10] De, U. C. andMondal, A. K. (2008): Quarter-symmetric metric connection on a Sasakian manifold, Bull. Math. Analysis and Application, 1,99-108.
[11] De, U. C. and Sarkar, A. (2010): "On the projective curvature tensor of generalized Sasakian-space-forms," QuaestionesMathematicae,vol.33,no.2,pp.245-252.
[12] De, U. C., Singh, R. N. and Pandey, Shravan K. (2012): On Conharmonic Curvature Tensor of Generalized Sasakian-Space-forms volume 2012, Article ID 876276, 14.
[13] Friedmann, A. and Schouten, J. A (1924): Uber die geometric der halbsymmetrischenubertragun, Math. Zeitschr. 21,211-233.
[14] Golab, S. (1975): On semi-symmetric and quarter-symmetric linear connections, Tensor (N.S.), 29, 249-254.
[15] Kim, U. K. (2006): Conformally flat generalized Sasakian-space-forms and locally symmetric generalized Sasakian-space-forms, "Note di Mathematica,Vol.no.1,pp.55-67
[16] Singh, R. N.,Pandey, S. K. (2013): On generalized Sasakian-space-forms, The Mathematics Student, 81(1-4), 205-213.
[17] Singh, R. N.,Pandey, S. K. and Tiwari, Kiran (2013): On quarter-symmetric Metric connection in indefinite Sasakian Manifold, Journal of International Academy of Physical Sciences, 17 (3),255-275.
[18] Singh, R.N. and Pandey,Shravan K.(2013):On the C-Bochner Curvature tensor of generalized Sasakian Space-forms,J. Tensor Society,7,17-28, 2013.
[19] Singh, R. N. and Pandey, S. K.,(2014) On a quarter-symmetric metric connection in an LP-Sasakian manifold, Thai J. Math., 12 (2), $357-$ 371.
[20] Xufeng, X. and Xiaoli,C. (1998): Two theorems on ε-Sasakian manifolds, Int. J. Math. Math. Sci.,21 (2),249-254.
[21] Yano, K. and Imai, T. (1982): quarter-symmetric metric connection and their curvature tensors, Tensor (N.S.),38,13-18.

1. S. K. Pandey

Department of Mathematical Sciences, A.P.S. University, Rewa-486003 (M.P.) India.
2. R. L. Patel

Department of Mathematical Sciences, A.P.S. University, Rewa-486003 (M.P.) India.
3. R. N. Singh

Department of Mathematical Sciences, A.P.S. University, Rewa-486003 (M.P.) India.

