Graceful Labeling of Quarilateral Snakes

G. Sankari ${ }^{1}$, S. Lavanya ${ }^{2}$
${ }^{1}$ Dept of Mathematics, Bharathiar University, Coimbatore, India
${ }^{2}$ Asst Professor, Dept of Mathematics, Bharathi Women's College, Chennai, India

Abstract

The graceful labeling of a graph G with q edges means that there is an injection $g: V(G)$ to \{ $0,1,2, \ldots, q\}$ such that, when each edge uv is assigned the label $|g(u)-g(v)|$, the resulting edge labels are $\{1$, 2, 3, ...q). A graph which admits an graceful labeling is called an graceful graph. In this paper we will prove alternate quadrilateral snakes $A\left(Q S_{n}\right)$, double quadrilateral snakes $D\left(Q S_{n}\right)$, double alternate quadrilateral snakes $D A\left(Q S_{n}\right)$ are graceful.

Keywords: alternate quadrilateral snakes, double quadrilateral snakes, double alternate quadrilateral snakes, graceful labeling.

AMS Mathematics Subject Classification (2010): 05C78

1 INTRODUCTION

One of the most interesting problem in graph theory deals with labeling the vertices of a graph subject to certain constraints. A vertex labeling of a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ is an assignment f of labels to the vertices of G that induces for each edge $u v \in \mathrm{E}(\mathrm{G})$ a label depending on the vertex labels $f(u)$ and $f(v)$. Graceful labeling was introduced by Rosa [7] in 1967. A graceful labeling of a graph G with n edges is an injection $g: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots, n\}$ with the property that the resulting edge labels are also distinct where an edge incident with vertices u and v is assigned the label $|g(u)-g(v)|$. A graph which admits graceful labeling is called a graceful graph.

A triangular cactus is a connected graph all of whose blocks are triangles. A triangular snake is a triangular cactus whose block-cut-vertex graph is a path. By a block-cut-vertex graph of a graph G we mean the graph whose vertices are the blocks and cut-vertices of G where two vertices are adjacent if and only if one vertex is a block and the other is a cut-vertex belonging to the block. In 2001 Barrientos [1] introduced $k \mathrm{C}_{4}$-snake graph as a generalization of the concept of triangular snake introduced by Rosa [8] and he proves that $k \mathrm{C}_{4}$-snakes are graceful. A $k \mathrm{C}_{4}$ -snake is a connected graph with k blocks, each of the block is isomorphic to the cycle C_{n}, such that the block-cut-vertex graph is a path. Let $u_{1}, u_{2}, u_{3}, \ldots, u_{k-1}$ be the consecutive cut-vertices of G and d_{i} be the distance between u_{i} and u_{i+1} in G for $1 \leq i \leq k-2$ the string ($d_{1}, d_{2}, \ldots d_{k-2}$) of integers characterizes the graph G in the class of n-cyclic snakes. If the string
of given $k \mathrm{C}_{n}$-snake is $\left(\left\lfloor\frac{n}{2}\right\rfloor,\left\lfloor\frac{n}{2}\right\rfloor,\left\lfloor\frac{n}{2}\right\rfloor, \ldots .,\left\lfloor\frac{n}{2}\right\rfloor\right)$, we say that $k C_{n}$-snake is linear. A quadrialteral snake is a $k \mathrm{C}_{4}$-snake graph with string ($1,1,1, \ldots . ., 1$) and Gnanajothi [4] had shown quadrilateral snakes are graceful. In this paper, we will prove alternate quadrilateral snakes $\mathrm{A}\left(\mathrm{QS}_{\mathrm{n}}\right)$, double quadrilateral snakes $\mathrm{D}\left(\mathrm{QS}_{n}\right)$ and double alternate quadrilateral snakes $\mathrm{DA}\left(\mathrm{QS}_{n}\right)$ are graceful.

Definition 1.1

A quadrilateral snake QS_{n} is obtained from a path $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ by joining u_{i}, u_{i+1} to new vertices v_{i} and w_{i} respectively and adding edges $v_{i} w_{i}$ for $i=1$, $2, \ldots ., n-1$. That is every edge of a path is replaced by a cycle C_{4}.

Definition 1.2

An alternate quadrilateral snake $\mathrm{A}\left(\mathrm{QS}_{n}\right)$ is obtained from a path $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ by joining u_{i}, u_{i+1} (alternatively) to new vertices v_{i} and w_{i} respectively and adding edges $v_{i} w_{i}$, where $1 \leq i \leq n-1$ for even n and $1 \leq i \leq n-2$ for odd n. That is every alternate edge of a path is replaced by a cycle C_{4}.

Definition 1.3

A double quadrilateral snake $\mathrm{D}\left(\mathrm{QS}_{k}\right)$ is obtained from two quadrilateral snakes that have a common path.

Definition 1.4

An alternate double quadrilateral snake $\mathrm{DA}\left(\mathrm{QS}_{k}\right)$ is obtained from two alternative quadrilateral snakes that have a common path.

2 MAIN RESULTS

Theorem 2.1.

Alternate quadrilateral snakes $\mathrm{A}\left(\mathrm{QS}_{n}\right)$ is graceful.

Proof:

Let $\mathrm{A}\left(\mathrm{QS}_{n}\right)$ be an alternate quadrilateral snake obtained from a path $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ by joining u_{i}, u_{i+l} (alternatively) to new vertices v_{i} and w_{i} respectively and adding edges $v_{i} w_{i}$ where $1 \leq i \leq n-1$
for even n and $1 \leq i \leq n-2$ for odd n. Then, $|\mathrm{E}(\mathrm{G})|=$ $= \begin{cases}\frac{5 n-2}{2}, & n \equiv 0(\bmod 2) \\ \frac{5 n-5}{2}, & n \equiv 1(\bmod 2)\end{cases}$

Case (i) : $n \equiv 0(\bmod 2)$
Define $g: \mathrm{V}(\mathrm{G}) \rightarrow\left\{0,1,2, \ldots, \frac{5 n}{2}-1\right\}$ by
$g\left(u_{2 i-1}\right)=2(i-1) 1 \leq i \leq \frac{n}{2}$
$g\left(u_{2 i}\right)=\frac{5 n}{2}-3 i \quad 1 \leq i \leq \frac{n}{2}$
$g\left(v_{2 i-1}\right)=\frac{5 n}{2}-3 i+2 \quad 1 \leq i \leq \frac{n}{2}$
$g\left(w_{2 i-1}\right)=2 i-1 \quad 1 \leq i \leq \frac{n}{2}$
Let $\mathrm{S}=\left\{g\left(u_{2 i-1}\right)\left|1 \leq i \leq n / 2, g\left(u_{2 i}\right)\right| 1 \leq i \leq n / 2, g\left(v_{2 i-}\right.\right.$ $\left.\left.{ }_{1}\right)\left|1 \leq i \leq n / 2, g\left(w_{2 i-1}\right)\right| 1 \leq i \leq n / 2\right\}$
$=\left\{g\left(u_{1}\right), g\left(u_{3}\right), \ldots, g\left(u_{n-1}\right), g\left(u_{2}\right), g\left(u_{4}\right), \ldots, g\left(u_{n}\right), g\left(v_{1}\right)\right.$,
$\left.g\left(v_{3}\right), \ldots, g\left(v_{n-1}\right), g\left(w_{1}\right), g\left(w_{3}\right), \ldots, g\left(w_{n-1}\right)\right\}$
$=\left\{0,2,4, \ldots, n-2, \frac{5 n}{2}-3, \frac{5 n}{2}-6, \ldots, n, \frac{5 n}{2}-1, \frac{5 n}{2}-4\right.$, $\ldots, n+2,1,3,5, \ldots, n-1\}$
$=\left\{0,1,2, \ldots, n-2, n-1, n, \ldots, \frac{5 n}{2}-1\right\}$
(1)

To prove edge labels are distinct and even
The vertices $u_{2 i-1}$ and $u_{2 i}, 1 \leq i \leq n / 2$ induces the edge labels $\left\{\frac{5 n}{2}-5 i+2,1 \leq i \leq n / 2\right\}=\left\{\frac{5 n}{2}-3, \frac{5 n}{2}-8, \ldots\right.$, 2\}
The vertices $u_{2 i}$ and $u_{2 i+1}, 1 \leq i \leq(n / 2)-1$ induces the edge labels $\left\{\frac{5 n}{2}-5 i, 1 \leq i \leq(n / 2)-1\right\}=\left\{\frac{5 n}{2}-5\right.$, $\left.\frac{5 n}{2}-10, \ldots, 5\right\}$
The vertices $u_{2 i-1}$ and $v_{2 i-1}, 1 \leq i \leq n / 2$ induces the edge labels $\left\{\frac{5 n}{2}-5 i+4,1 \leq i \leq n / 2\right\}=\left\{\frac{5 n}{2}-1, \frac{5 n}{2}-6, \ldots\right.$, 4\}
The vertices $w_{2 i-1}$ and $u_{2 i}, 1 \leq i \leq n / 2$ induces the edge labels $\left\{\frac{5 n}{2}-5 i+1,1 \leq i \leq n / 2\right\}=\left\{\frac{5 n}{2}-4, \frac{5 n}{2}-9, \ldots\right.$, 1\}
The vertices $v_{2 i-l}$ and $w_{2 i-l}, 1 \leq i \leq n / 2$ induces the edge labels $\left\{\frac{5 n}{2}-5 i+3,1 \leq i \leq n / 2\right\}=\left\{\frac{5 n}{2}-2, \frac{5 n}{2}-7, \ldots\right.$, 3\}
So we obtain all the edge labels $\left\{1,2, \ldots, \frac{5 n}{2}-\right.$ $\left.2, \frac{5 n}{2}-1\right\}$ (2)
Therefore, from (1) and (2) it is clear that Alternate quadrilateral snakes $\mathrm{A}\left(\mathrm{QS}_{n}\right)$ is graceful for even n.

Case (ii) $n \equiv 1(\bmod 2)$
Define $g: \mathrm{V}(\mathrm{G}) \rightarrow\left\{0,1,2, \ldots, \frac{5(n-1)}{2}\right\}$ by
$g\left(u_{2 i-I}\right)=2(i-1) \quad 1 \leq i \leq$
$\left\lceil\frac{n}{2}\right\rceil$
$g\left(u_{2 i}\right)=\frac{5(n-1)}{2}-3 i+1 \quad 1 \leq i \leq$ $\left\lfloor\frac{n}{2}\right\rfloor$

$g\left(v_{2 i-l}\right)=$	$\frac{5(n-1)}{2}-3 i+3$
$\left\lfloor\frac{n}{2}\right\rfloor$	$1 \leq i \leq$
$g\left(w_{2 i-1}\right)=$	$2 i-1$
$\left\lfloor\frac{n}{2}\right\rfloor$	$1 \leq i \leq$

Proof same as previous theorem. Therefore, Alternate quadrilateral snakes $\mathrm{A}\left(\mathrm{QS}_{n}\right)$ is graceful for odd n.
Hence, Alternate quadrilateral snakes $\mathrm{A}\left(\mathrm{QS}_{n}\right)$ is graceful.

Figure 1: Graceful labeling of $\mathrm{A}\left(\mathrm{QS}_{9}\right)$

Theorem 2.2.

Double quadrilateral snakes $\mathrm{D}\left(\mathrm{QS}_{n}\right)$ is graceful.

Proof:

Let $\mathrm{D}\left(\mathrm{QS}_{n}\right)$ be an double quadrilateral snake obtained from a path $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} to new vertices v_{i}, x_{i} and w_{i}, y_{i} respectively and adding edges $v_{i} w_{i}$ and $x_{i} y_{i}$, where $1 \leq$ $i \leq n-1$. Then, $|\mathrm{E}(\mathrm{G})|=7(n-1)$

Define $g: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots, 7(n-1)\}$ by

| $g\left(y_{2 i}\right)$ |
| :--- | :--- |
| $\left[\frac{n}{2}\right]-1$ |$\quad=7(n-1)-7(\mathrm{i}-1)-6 \quad 1 \leq i \leq$

Case(i): n is even
Let $\mathrm{S}=\left\{g\left(u_{2 i-l}\right)\left|1 \leq i \leq n / 2, g\left(u_{2 i}\right)\right| 1 \leq i \leq\right.$ $n / 2, g\left(w_{2 i-1}\right)\left|1 \leq i \leq n / 2, g\left(v_{2 i-1}\right)\right| 1 \leq i \leq n / 2, g\left(x_{2 i-1}\right) \mid$ $\left.1 \leq i \leq n / 2, g\left(y_{2 i-I}\right) \mid 1 \leq i \leq n / 2\right\}$
$=\left\{g\left(u_{1}\right), g\left(u_{3}\right), \ldots, g\left(u_{n-1}\right), g\left(u_{2}\right), g\left(u_{4}\right), \ldots, g\left(u_{n}\right)\right.$, $g\left(w_{1}\right), g\left(w_{3}\right), \ldots, g\left(w_{n-1}\right), g\left(w_{2}\right), g\left(w_{4}\right), \ldots, g\left(w_{n-2}\right)$, $g\left(v_{1}\right), g\left(v_{3}\right), \ldots, g\left(v_{n-1}\right), g\left(v_{2}\right), g\left(v_{4}\right), \ldots, g\left(v_{n-2}\right), g\left(x_{1}\right)$, $g\left(x_{3}\right), \ldots, g\left(x_{n-1}\right), g\left(x_{2}\right), g\left(x_{4}\right), \ldots, g\left(x_{n-2}\right), g\left(y_{1}\right), g\left(y_{3}\right), \ldots$, $\left.g\left(y_{n-1}\right), g\left(y_{2}\right), g\left(y_{4}\right), \ldots, g\left(y_{n-2}\right)\right\}$
$\left\{0,7,14, \ldots, \frac{7}{2} n-7,7 n-10,7 n-17, \ldots, \frac{7}{2} n-3,1,8, \ldots\right.$, $\frac{7}{2} n-6,7 n-11,7 n-18, \ldots, \frac{7}{2} n+3,7 n-7,7 n-14, \ldots, \frac{7}{2} n, 4$, $11, \ldots, \frac{7}{2} n-10,7 n-9,7 n-16, \ldots, \frac{7}{2} n-2,6,13, \ldots, \frac{7}{2} n-8$, $\left.3,10, \ldots, \frac{7}{2} n-4,7 n-13,7 n-20, \ldots, \frac{7}{2} n+1\right\}=\{0,1,3,4$, $\left.\ldots, \frac{7}{2} n-3, \frac{7}{2} n-2, \ldots, 7 n-7\right\}$ (3)
To prove edge labels are distinct
The vertices $u_{2 i-1}$ and $u_{2 i}, 1 \leq i \leq n / 2$ induces the edge labels $\{7 n-14 \mathrm{i}+41 \leq i \leq n / 2\}=\{7 n-10,7 n-24, \ldots, 4\}$
The vertices $u_{2 i}$ and $u_{2 i+1}, 1 \leq i \leq(n / 2)-1$ induces the edge labels $\{7 n-14 \mathrm{i}-3,1 \leq i \leq(n / 2)-1\}=\{7 n-17, \quad 7 n-$ $31, \ldots, 11\}$
The vertices $u_{2 i-1}$ and $v_{2 i-1}, 1 \leq i \leq n / 2$ induces the edge labels $\{7 n-14 \mathrm{i}+7,1 \leq i \leq n / 2\}=\{7 n-7,7 n-21, \ldots, 7\}$
The vertices $u_{2 i-1}$ and $x_{2 i-1}, 1 \leq i \leq n / 2$ induces the edge labels $\{7 n-14 i+5,1 \leq i \leq n / 2\}=\{7 n-9,7 n-13, \ldots, 5\}$
The vertices $u_{2 i+1}$ and $w_{2 i}, 1 \leq i \leq(n / 2)-1$ induces the edge labels $\{7 n-14 \mathrm{i}-4,1 \leq i \leq(n / 2)-1\}=\{7 n-18,7 n-$ $32, \ldots, 10\}$
The vertices $u_{2 i+1}$ and $y_{2 i}, 1 \leq i \leq(n / 2)-1$ induces the edge labels $\{7 n-14 \mathrm{i}-6,1 \leq i \leq(n / 2)-1\}=\{7 n-20,7 n-$ $34, \ldots, 8\}$
The vertices $u_{2 i}$ and $w_{2 i-1,} 1 \leq i \leq n / 2$ induces the edge labels $\{7 n-14 \mathrm{i}+3,1 \leq i \leq n / 2\}=\{7 n-11,7 n-25, \ldots, 3\}$
The vertices $u_{2 i}$ and $y_{2 i-1,} 1 \leq i \leq n / 2$ induces the edge labels $\{7 n-14 \mathrm{i}+1,1 \leq i \leq n / 2\}=\{7 n-13,7 n-27, \ldots, 1\}$
The vertices $u_{2 i}$ and $v_{2 i}, 1 \leq i \leq(n / 2)-1$ induces the edge labels $\{7 n-14 \mathrm{i}, 1 \leq i \leq(n / 2)-1\}=\{7 n-14,7 n-28$, ..., 14\}
The vertices $u_{2 i}$ and $x_{2 i}, 1 \leq i \leq(n / 2)-1$ induces the edge labels $\{7 n-14 \mathrm{i}-21,1 \leq i \leq(n / 2)-1\}=\{7 n-16,7 n-$ $30, \ldots, 12\}$
The vertices $v_{2 i-1}$ and $w_{2 i-1}, 1 \leq i \leq n / 2$ induces the edge labels $\{7 n-14 \mathrm{i}+6,1 \leq i \leq n / 2\}=\{7 n-8,7 n-22, \ldots, 6\}$
The vertices $v_{2 i}$ and $w_{2 i}, 1 \leq i \leq(n / 2)-1$ induces the edge labels $\{4 n-8 \mathrm{i}+6,1 \leq i \leq(n / 2)-1\}=\{7 n-15,7 n-29$, ..., 13\}
The vertices $x_{2 i-1}$ and $y_{2 i-1}, 1 \leq i \leq n / 2$ induces the edge labels $\{7 n-14 \mathrm{i}+2,1 \leq i \leq n / 2\}=\{7 n-12,7 n-26, \ldots, 2\}$ The vertices $x_{2 i}$ and $y_{2 i}, 1 \leq i \leq(n / 2)-1$ induces the edge labels $\{7 n-14 \mathrm{i}-5,1 \leq i \leq(n / 2)-1\}=\{7 n-19,7 n-$ $33, \ldots, 9\}$

So we obtain all the edge labels $\{1,2,3, \ldots, 7 n-6$, $7 n-7\}$ (4)
Hence, from (3) and (4) it is clear that double quadrilateral snakes $\mathrm{D}\left(\mathrm{QS}_{n}\right)$ is graceful for even n.

Case(ii): n is odd
The proof is similar to the proof in case(i) as the change is only in the range of values.
Hence, Double quadrilateral snakes $\mathrm{D}\left(\mathrm{QS}_{n}\right)$ is graceful.

Figure 2 : Graceful labeling of $\mathrm{D}\left(\mathrm{QS}_{7}\right)$

Theorem 2.3.

Double alternate quadrilateral snakes
$\mathrm{DA}\left(\mathrm{QS}_{n}\right)$ is graceful.

Proof:

Let $\mathrm{DA}\left(\mathrm{QS}_{n}\right)$ be an double alternate quadrilateral snake obtained from a path $u_{l}, u_{2}, u_{3}, \ldots$, u_{n} by joining u_{i} and u_{i+1} (alternatively) to new vertices $v_{i} x_{i}$ and $w_{i} y_{i}$ respectively and adding edges $v_{i} w_{i}$ and $x_{i} y_{i}$ where $1 \leq i \leq n-1$ for even n and $1 \leq i \leq n-2$ for odd n. Then, $\mathrm{E}(\mathrm{G}) \left\lvert\,= \begin{cases}4 n-1, & n \equiv 0(\bmod 2) \\ 4 n-4, & n \equiv 1(\bmod 2)\end{cases}\right.$

Case $(\boldsymbol{i}): n \equiv 0(\bmod 2)$
Define $g: V(G) \rightarrow\{0,1,2, \ldots, 4 n-1\}$ by

$g\left(u_{2 i-1}\right)=$	$4(i-1)$	$1 \leq i \leq$
$n / 2$		
$g\left(u_{2 i}\right)=$	$4 n-4 i$	$1 \leq i \leq$
$n / 2$		$1 \leq i \leq$
$g\left(w_{2 i-1}\right)=$		
$n / 2$	$4 i-3$	
$g\left(v_{2 i-1}\right)=$	$4 n-4 i+3$	$1 \leq i \leq$
$n / 2$	$4 n-4 i+1$	$1 \leq i \leq$
$g\left(x_{2 i-1}\right)=$	$1 \leq i \leq$	

$n / 2$
Let $\mathrm{S}=\left\{g\left(u_{2 i-1}\right)\left|1 \leq i \leq n / 2, g\left(u_{2 i}\right)\right| 1 \leq i \leq n / 2, g\left(w_{2 i-}\right.\right.$ $\left.{ }_{1}\right)\left|1 \leq i \leq n / 2, g\left(v_{2 i-1}\right)\right| 1 \leq i \leq n / 2, g\left(x_{2 i-1}\right) \mid 1 \leq i \leq n / 2$, $\left.g\left(y_{2 i-1}\right) \mid 1 \leq i \leq n / 2\right\}$
$=\left\{g\left(u_{1}\right), g\left(u_{3}\right), \ldots, g\left(u_{n-1}\right), g\left(u_{2}\right), g\left(u_{4}\right), \ldots, g\left(u_{n}\right)\right.$, $g\left(w_{I}\right), g\left(w_{3}\right), \ldots, g\left(w_{n-1}\right), g\left(v_{I}\right), g\left(v_{3}\right), \ldots, g\left(v_{n-1}\right), g\left(x_{I}\right)$, $\left.g\left(x_{3}\right), \ldots, g\left(x_{n-1}\right), g\left(y_{1}\right), g\left(y_{3}\right), \ldots, g\left(y_{n-1}\right)\right\}$
$=\{0,4, \ldots, 2 n-4,4 n-4,4 n-8, \ldots, 2 n, 1,5, \ldots, 2 n-3,4 n-$
$1,4 n-5, \ldots, 2 n+3,4 n-3,4 n-7, \ldots, 2 n+1,3,7, \ldots, 2 n-1\}$
$=\{0,1,3,4,5,7, \ldots, 2 n-1,2 n, 2 n+1, \ldots, 4 n-3,4 n-1\}$ (5)

To prove edge labels are distinct
The vertices $u_{2 i-l}$ and $u_{2 i}, 1 \leq i \leq n / 2$ induces the edge labels $\{4 n-8 i+41 \leq i \leq n / 2\}=\{4 n-4,4 n-12, \ldots, 4\}$ The vertices $u_{2 i}$ and $u_{2 i+1}, 1 \leq i \leq(n / 2)-1$ induces the edge labels $\{4 n-8 \mathrm{i}, 1 \leq i \leq(n / 2)-1\}=\{4 n-8,4 n-16, \ldots$, 8\}
The vertices $u_{2 i-1}$ and $v_{2 i-1}, 1 \leq i \leq n / 2$ induces the edge labels $\{4 n-8 \mathrm{i}+7,1 \leq i \leq n / 2\}=\{4 n-1,4 n-9, \ldots, 7\}$
The vertices $u_{2 i-1}$ and $x_{2 i-1}, 1 \leq i \leq n / 2$ induces the edge labels $\{4 n-8 \mathrm{i}+5,1 \leq i \leq n / 2\}=\{4 n-3,4 n-11, \ldots, 5\}$
The vertices $u_{2 i}$ and $w_{2 i-1,} 1 \leq i \leq n / 2$ induces the edge labels $\{4 n-8 \mathrm{i}+3,1 \leq i \leq n / 2\}=\{4 n-5,4 n-13, . ., 3\}$
The vertices $u_{2 i}$ and $y_{2 i-1,} 1 \leq i \leq n / 2$ induces the edge labels $\{4 n-8 \mathrm{i}+1,1 \leq i \leq n / 2\}=\{4 n-7,4 n-15, . ., 1\}$
The vertices $v_{2 i-l}$ and $w_{2 i-l}, 1 \leq i \leq n / 2$ induces the edge labels $\{4 n-8 \mathrm{i}+6,1 \leq i \leq n / 2\}=\{4 n-2,4 n-10, . ., 6\}$
The vertices $x_{2 i-1}$ and $y_{2 i-1}, 1 \leq i \leq n / 2$ induces the edge labels $\{4 n-8 \mathrm{i}+2,1 \leq i \leq n / 2\}=\{4 n-6,4 n-14, . ., 2\}$
So we obtain all the edge labels $\{1,2,3, \ldots, 4 n-2$, $4 n-1\}$ (6)
Hence, from (5) and (6) it is clear that double alternate quadrilateral snakes $\mathrm{DA}\left(\mathrm{QS}_{n}\right)$ is graceful for even n.

Case (ii): $n \equiv 1(\bmod 2)$
Define $g: V(G) \rightarrow\{0,1,2, \ldots, 4 n-4\}$ by

$g\left(u_{2 i-1}\right)$	$=$	$4(i-1)$
$\left\lfloor\frac{n}{2}\right]^{2}$	$1 \leq i \leq$	
$g\left(u_{2 i}\right)$	$=$	$4 n-4 i-3$
$\left\lfloor\frac{n}{2}\right\rfloor$		$1 \leq i \leq$
$g\left(w_{2 i-1}\right)$	$=$	$4 i-3$
$\left\lfloor\frac{n}{2}\right\rfloor$		$1 \leq i \leq$
$g\left(v_{2 i-1}\right)$	$=$	$4 n-4 i$
$\left\lfloor\frac{n}{2}\right\rfloor$		$1 \leq i \leq$
$g\left(x_{2 i-1}\right)$		$4 n-4 i-2$
$\left\lfloor\frac{n}{2}\right\rfloor$	$4 i-1$	$1 \leq i \leq$
$g\left(y_{2 i-1}\right)$		
$\left\lfloor\frac{n}{2}\right\rfloor$		

Proof same as previous theorem. Therefore, Double alternate quadrilateral snakes $\mathrm{DA}\left(\mathrm{QS}_{n}\right)$ is graceful for odd n.
Hence, Double alternate quadrilateral snakes
$\mathrm{DA}\left(\mathrm{QS}_{n}\right)$ is graceful.

Figure 3 : Graceful labeling of $\mathrm{DA}\left(\mathrm{QS}_{8}\right)$

REFERENCES

[1] Barrientos C., 'Graceful labelings of cyclic snakes' ,Ars Combin., 60, 85-99 (2001)
[2] Beineke L. W. and Hegde S. M., 'Strongly multiplicative graphs', Discuss. Math. Graph Theory 21, pp. 63-75 (2001)
[3] Gallian Joseph A. 'The electronic Journal of Combinatorics', A Dynamic survey of graph labeling (2016)
[4] Gnanajothi R.B., 'Topics in graph theory', Ph.D.Thesis, Madurai Kamaraj University (1991)
[5] Golomb S.W., 'How to number a graph in graph Theory and computing', R.C. Read, ed., Academic Press, New York, 23-37 (1972)
[6] Murthy, U.S.R and Bondy, J.A., 'Graph theory with applications' Elsevier North-Holland (1976)
[7] Rosa A.,'On certain valuations of the vertices of a graph', Theory of graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N.Y. and Dunod Paris, Vol.349-355 (1967)
[8] Rosa A., 'Cyclic Steiner Triple System and Labelings of Triangular Cacti', Scientia, 1, pp.87-95 (1988)

