Graceful Labeling of Quarilateral Snakes

G. Sankari¹, S. Lavanya²

¹Dept of Mathematics, Bharathiar University, Coimbatore, India ²Asst Professor, Dept of Mathematics, Bharathi Women's College, Chennai, India

Abstract: The graceful labeling of a graph G with q edges means that there is an injection g : V(G) to { 0,1, 2, ..., q} such that, when each edge uv is assigned the label |g(u)-g(v)|, the resulting edge labels are {1, 2, 3, ...q}. A graph which admits an graceful labeling is called an graceful graph. In this paper we will prove alternate quadrilateral snakes $A(QS_n)$, double quadrilateral snakes $D(QS_n)$, double alternate quadrilateral snakes $DA(QS_n)$ are graceful.

Keywords: alternate quadrilateral snakes, double quadrilateral snakes, double alternate quadrilateral snakes, graceful labeling.

AMS Mathematics Subject Classification (2010): 05C78

1 INTRODUCTION

One of the most interesting problem in graph theory deals with labeling the vertices of a graph subject to certain constraints. A **vertex labeling** of a graph G=(V,E) is an assignment f of labels to the vertices of G that induces for each edge

 $uv \in E(G)$ a label depending on the vertex labels f(u)and f(v). Graceful labeling was introduced by Rosa [7] in 1967. A graceful labeling of a graph G with *n*edges is an injection $g : V(G) \rightarrow \{0, 1, 2, ..., n\}$ with the property that the resulting edge labels are also distinct where an edge incident with vertices u and vis assigned the label |g(u)-g(v)|. A graph which admits graceful labeling is called a graceful graph.

A triangular cactus is a connected graph all of whose blocks are triangles. A triangular snake is a triangular cactus whose block-cut-vertex graph is a path. By a block-cut-vertex graph of a graph G we mean the graph whose vertices are the blocks and cut-vertices of G where two vertices are adjacent if and only if one vertex is a block and the other is a cut-vertex belonging to the block. In 2001 Barrientos [1] introduced kC_4 -snake graph as a generalization of the concept of triangular snake introduced by Rosa [8] and he proves that kC_4 -snakes are graceful. A kC_4 -snake is a connected graph with k blocks, each of the block is isomorphic to the cycle C_n , such that the block-cut-vertex graph is a path. Let $u_1, u_2, u_3, ..., u_{k-1}$ be the consecutive cut-vertices of G and d_i be the distance between u_i and u_{i+1} in G for $1 \le i \le k - 2$ the string $(d_1, d_2, \ldots, d_{k-2})$ of integers characterizes the graph G in the class of n-cyclic snakes. If the string

of given kC_n -snake is $\left(\left|\frac{n}{2}\right|, \left|\frac{n}{2}\right|, \left|\frac{n}{2}\right|, \dots, \left|\frac{n}{2}\right|\right)$, we say that kC_n -snake is linear. A quadrialteral snake is a kC_4 -snake graph with string (1, 1, 1, 1, ..., 1) and Gnanajothi [4] had shown quadrilateral snakes are graceful. In this paper, we will prove alternate quadrilateral snakes A(QS_n), double quadrilateral snakes D(QS_n) and double alternate quadrilateral snakes DA(QS_n) are graceful.

Definition 1.1

A quadrilateral snake QS_n is obtained from a path u_1 , u_2 , u_3 , ..., u_n by joining u_i , u_{i+1} to new vertices v_i and w_i respectively and adding edges v_i w_i for i = 1, 2, ..., *n*-1. That is every edge of a path is replaced by a cycle C₄.

Definition 1.2

An alternate quadrilateral snake $A(QS_n)$ is obtained from a path u_1 , u_2 , u_3 , ..., u_n by joining u_i , u_{i+1} (alternatively) to new vertices v_i and w_i respectively and adding edges $v_i w_i$, where $1 \le i \le n-1$ for even n and $1 \le i \le n-2$ for odd n. That is every alternate edge of a path is replaced by a cycle C_4 .

Definition 1.3

A double quadrilateral snake $D(QS_k)$ is obtained from two quadrilateral snakes that have a common path.

Definition 1.4

An alternate double quadrilateral snake $DA(QS_k)$ is obtained from two alternative quadrilateral snakes that have a common path.

2 MAIN RESULTS

Theorem 2.1.

Alternate quadrilateral snakes $A(QS_n)$ is graceful.

Proof:

Let A(QS_n) be an alternate quadrilateral snake obtained from a path u_1 , u_2 , u_3 , ..., u_n by joining u_i , u_{i+1} (alternatively) to new vertices v_i and w_i respectively and adding edges $v_i w_i$ where $1 \le i \le n-1$

for even *n* and $1 \le i \le n-2$ for odd *n*. Then, $|\mathbf{E}(\mathbf{G})| = \begin{cases} \frac{5n-2}{2}, & n \equiv 0 \pmod{2} \\ \frac{5n-5}{2}, & n \equiv 1 \pmod{2} \end{cases}$

Case (*i*) : $n \equiv 0 \pmod{2}$

 $\begin{array}{rl} \text{Define } g: \mathrm{V}(\mathrm{G}) \to \{0, 1, 2, \dots, \frac{5n}{2} - 1\} \text{ by} \\ g(u_{2i-1}) &=& 2(i-1) \ 1 \leq i \leq \frac{n}{2} \\ g(u_{2i}) &=& \frac{5n}{2} - 3i & 1 \leq i \leq \frac{n}{2} \\ g(v_{2i-1}) &=& \frac{5n}{2} - 3i + 2 & 1 \leq i \leq \frac{n}{2} \\ g(w_{2i-1}) &=& 2i - 1 & 1 \leq i \leq n/2 \\ \text{Let } \mathrm{S} = \{ g(u_{2i-1}) \mid 1 \leq i \leq n/2, \ g(u_{2i}) \mid 1 \leq i \leq n/2, \ g(v_{2i-1}) \\ | 1 \leq i \leq n/2, \ g(w_{2i-1}) \mid 1 \leq i \leq n/2 \\ = \{ g(u_1), \ g(u_3), \dots, \ g(u_{n-1}), \ g(u_2), \ g(u_4), \dots, \ g(u_n), \ g(v_1), \\ g(v_3), \dots, \ g(v_{n-1}), \ g(w_1), \ g(w_3), \dots, \ g(w_{n-1}) \\ = \{ 0, 2, 4, \dots, n-2, \frac{5n}{2} - 3, \frac{5n}{2} - 6, \dots, n, \frac{5n}{2} - 1, \frac{5n}{2} - 4, \\ \dots, n+2, 1, 3, 5, \dots, n-1 \\ = \{ 0, 1, 2, \dots, n-2, n-1, n, \dots, \frac{5n}{2} - 1 \\ (1) \end{array}$

To prove edge labels are distinct and even

The vertices u_{2i-1} and u_{2i} , $1 \le i \le n/2$ induces the edge labels $\{\frac{5n}{2} - 5i + 2, 1 \le i \le n/2\} = \{\frac{5n}{2} - 3, \frac{5n}{2} - 8, ..., 2\}$

The vertices u_{2i} and u_{2i+1} , $1 \le i \le (n/2) - 1$ induces the edge labels $\{\frac{5n}{2} - 5i, 1 \le i \le (n/2) - 1\} = \{\frac{5n}{2} - 5, \frac{5n}{2} - 10, ..., 5\}$

The vertices u_{2i-1} and v_{2i-1} , $1 \le i \le n/2$ induces the edge labels $\{\frac{5n}{2} - 5i + 4, 1 \le i \le n/2\} = \{\frac{5n}{2} - 1, \frac{5n}{2} - 6, ..., 4\}$

The vertices w_{2i-1} and u_{2i} , $1 \le i \le n/2$ induces the edge labels $\{\frac{5n}{2} - 5i + 1, 1 \le i \le n/2\} = \{\frac{5n}{2} - 4, \frac{5n}{2} - 9, ..., 1\}$

The vertices v_{2i-1} and w_{2i-1} , $1 \le i \le n/2$ induces the edge labels $\{\frac{5n}{2} - 5i + 3, 1 \le i \le n/2\} = \{\frac{5n}{2} - 2, \frac{5n}{2} - 7, ..., 3\}$

So we obtain all the edge labels $\{1, 2, ..., \frac{5n}{2} - 2, \frac{5n}{2} - 1\}$ (2)

Therefore, from (1) and (2) it is clear that Alternate quadrilateral snakes $A(QS_n)$ is graceful for even *n*.

Case (ii)
$$n \equiv 1 \pmod{2}$$

Define $g: V(G) \rightarrow \{0, 1, 2, ..., \frac{5(n-1)}{2}\}$ by
 $g(u_{2i-1}) = 2(i-1)$ $1 \le i \le \frac{n}{2}$
 $g(u_{2i}) = \frac{5(n-1)}{2} - 3i + 1$ $1 \le i \le \frac{n}{2}$

$$g(v_{2i-1}) = \frac{5(n-1)}{2} - 3i + 3 \qquad 1 \le i \le |n|$$

$$\begin{array}{l} \left\lfloor \frac{1}{2} \right\rfloor \\ g(w_{2i-1}) &= 2i-1 \\ \left\lfloor \frac{n}{2} \right\rfloor \end{array} \quad 1 \leq i \leq 1$$

Proof same as previous theorem. Therefore, Alternate quadrilateral snakes $A(QS_n)$ is graceful for odd *n*. Hence, Alternate quadrilateral snakes $A(QS_n)$ is graceful.

Theorem 2.2.

Double quadrilateral snakes $D(QS_n)$ is graceful.

Proof:

Let $D(QS_n)$ be an double quadrilateral snake obtained from a path u_1 , u_2 , u_3 , ..., u_n by joining u_i and u_{i+1} to new vertices v_i , x_i and w_i , y_i respectively and adding edges $v_i w_i$ and $x_i y_i$, where $1 \le i \le n-1$. Then, |E(G)| = 7(n-1)

Define $g : V(G) \to \{0, 1, 2, ..., 7(n-1)\}$ by

$$g(y_{2i}) = 7(n-1)-7(i-1)-6$$
 $1 \le i \le [\frac{n}{2}]-1$

Case(i) : n is even

Let S={ $g(u_{2i-1}) \mid 1 \le i \le n/2$, $g(u_{2i}) \mid 1 \le i \le$ $n/2, g(w_{2i-1}) \mid 1 \le i \le n/2, g(v_{2i-1}) \mid 1 \le i \le n/2, g(x_{2i-1}) \mid$ $1 \le i \le n/2, g(y_{2i-1}) \mid 1 \le i \le n/2$ $=\{g(u_1), g(u_3), ..., g(u_{n-1}), g(u_2), g(u_4), ..., g(u_n), \}$ $g(w_1), g(w_3), ..., g(w_{n-1}), g(w_2), g(w_4), ..., g(w_{n-2}),$ $g(v_1), g(v_3), ..., g(v_{n-1}), g(v_2), g(v_4), ..., g(v_{n-2}), g(x_1),$ $g(x_3), \ldots, g(x_{n-1}), g(x_2), g(x_4), \ldots, g(x_{n-2}), g(y_1), g(y_3), \ldots,$ $g(y_{n-1}), g(y_2), \underline{g}(y_4), ..., g(y_{n-2})\}$ $\{0, 7, 14, ..., \frac{7}{2}n-7, 7n-10, 7n-17, ..., \frac{7}{2}n-3, 1, 8, ...,$ $\frac{7}{2}n - 6, 7n - 11, 7n - 18, \dots, \frac{7}{2}n + 3, 7n - 7, 7n - 14, \dots, \frac{7}{2}n, 4, \\11, \dots, \frac{7}{2}n - 10, 7n - 9, 7n - 16, \dots, \frac{7}{2}n - 2, 6, 13, \dots, \frac{7}{2}n - 8, \\3, 10, \dots, \frac{7}{2}n - 4, 7n - 13, 7n - 20, \dots, \frac{7}{2}n + 1\} = \{0, 1, 3, 4, 7n - 13, 7n - 20, \dots, \frac{7}{2}n + 1\} = \{0, 1, 3, 4, 7n - 13, 7n - 20, \dots, \frac{7}{2}n + 1\} = \{0, 1, 3, 4, 7n - 13, 7n - 20, \dots, \frac{7}{2}n + 1\} = \{0, 1, 3, 4, 7n - 13, 7n - 20, \dots, \frac{7}{2}n + 1\} = \{0, 1, 3, 4, 7n - 13, 7n - 20, \dots, \frac{7}{2}n + 1\} = \{0, 1, 3, 4, 7n - 13, 7n - 20, \dots, \frac{7}{2}n + 1\} = \{0, 1, 3, 4, 7n - 13, 7n - 20, \dots, \frac{7}{2}n + 1\} = \{0, 1, 3, 4, 7n - 13, 7n - 20, \dots, \frac{7}{2}n + 1\}$ $\dots, \frac{7}{2}n - 3, \frac{7}{2}n - 2, \dots, 7n - 7\}$ (3)

To prove edge labels are distinct

The vertices u_{2i-1} and u_{2i} , $1 \le i \le n/2$ induces the edge labels {7*n*-14i+4 1 $\leq i \leq n/2$ } = {7*n*-10, 7*n*-24, ..., 4} The vertices u_{2i} and u_{2i+1} , $1 \le i \le (n/2)-1$ induces the edge labels {7*n*-14i-3, $1 \le i \le (n/2)-1$ }={7*n*-17, 7*n*-31, ..., 11}

The vertices u_{2i-1} and v_{2i-1} , $1 \le i \le n/2$ induces the edge labels {7n-14i+7, $1 \le i \le n/2$ } = {7n-7, 7n-21, ..., 7} The vertices u_{2i-1} and x_{2i-1} , $1 \le i \le n/2$ induces the edge

labels {7n-14i+5, $1 \le i \le n/2$ } = {7n-9, 7n-13, ..., 5} The vertices u_{2i+1} and w_{2i} , $1 \le i \le (n/2) - 1$ induces the

edge labels $\{7n-14i-4, 1 \le i \le (n/2)-1\} = \{7n-18, 7n-18, 7n-18,$ 32, ..., 10

The vertices u_{2i+1} and y_{2i} , $1 \le i \le (n/2)-1$ induces the edge labels $\{7n-14i-6, 1 \le i \le (n/2)-1\} = \{7n-20, 7n-20, 7n-20,$ 34, ..., 8}

The vertices u_{2i} and w_{2i-1} , $1 \le i \le n/2$ induces the edge labels {7n-14i+3, $1 \le i \le n/2$ }= {7n-11, 7n-25, ..., 3} The vertices u_{2i} and y_{2i-1} , $1 \le i \le n/2$ induces the edge labels {7n-14i+1, $1 \le i \le n/2$ }= {7n-13, 7n-27, ..., 1} The vertices u_{2i} and v_{2i} , $1 \le i \le (n/2) - 1$ induces the edge labels $\{7n-14i, 1 \le i \le (n/2)-1\} = \{7n-14, 7n-28, n-2, n-2\}$..., 14}

The vertices u_{2i} and x_{2i} , $1 \le i \le (n/2)-1$ induces the edge labels {7*n*-14i-21, $1 \le i \le (n/2)$ -1} = {7*n*-16, 7*n*-30, ..., 12

The vertices v_{2i-1} and w_{2i-1} , $1 \le i \le n/2$ induces the edge labels {7*n*-14i +6, $1 \le i \le n/2$ }= {7*n*-8, 7*n*-22, ..., 6}

The vertices v_{2i} and w_{2i} , $1 \le i \le (n/2) - 1$ induces the edge labels $\{4n-8i+6, 1 \le i \le (n/2)-1\} = \{7n-15, 7n-29, n-29, n-$..., 13}

The vertices x_{2i-1} and y_{2i-1} , $1 \le i \le n/2$ induces the edge labels {7*n*-14i+2, $1 \le i \le n/2$ } = {7*n*-12, 7*n*-26, ..., 2} The vertices x_{2i} and y_{2i} , $1 \le i \le (n/2) - 1$ induces the edge labels $\{7n-14i-5, 1 \le i \le (n/2)-1\} = \{7n-19, 7n-19, 7n-19,$ 33, ..., 9}

So we obtain all the edge labels $\{1, 2, 3, ..., 7n-6,$ 7n-7 (4)

Hence, from (3) and (4) it is clear that double quadrilateral snakes $D(QS_n)$ is graceful for even *n*.

Case(ii): n is odd

The proof is similar to the proof in case(i) as the change is only in the range of values.

Hence, Double quadrilateral snakes $D(QS_n)$ is graceful.

Theorem 2.3.

Double alternate quadrilateral snakes $DA(QS_n)$ is graceful.

Proof:

Let $DA(QS_n)$ be an double alternate quadrilateral snake obtained from a path u_1 , u_2 , u_3 , ..., u_n by joining u_i and u_{i+1} (alternatively) to new vertices $v_i x_i$ and $w_i y_i$ respectively and adding edges $v_i w_i$ and x_i y_i where $1 \le i \le n-1$ for even *n* and $1 \le i \le n-2$ for odd n. Then, $E(G) \models \begin{cases} 4n-1, & n \equiv 0 \pmod{2} \\ 4n-4, & n \equiv 1 \pmod{2} \end{cases}$

$Case(i): n \equiv 0 \pmod{2}$					
	Define $g: V(G) \to \{0, 1, 2,, 4n-1\}$ by				
$g(u_{2i-1})$	=	4(<i>i</i> -1)	$1 \leq i \leq$		
n/2					
$g(u_{2i})$	=	4 <i>n</i> -4 <i>i</i>	$1 \leq i \leq$		
n/2					
$g(w_{2i-1})$	=	4 <i>i</i> – 3	$1 \leq i \leq$		
n/2					
$g(v_{2i-1})$	=	4 <i>n</i> -4 <i>i</i> +3	$1 \leq i \leq$		
n/2					
$g(x_{2i-1})$	=	4 <i>n</i> -4 <i>i</i> +1	$1 \leq i \leq$		
n/2					
$g(y_{2i-1})$	=	4i-1	$1 \leq i \leq$		
n/2					
Let S={ $g(u_{2i-1}) \mid 1 \le i \le n/2$, $g(u_{2i}) \mid 1 \le i \le n/2$, $g(w_{2i-1}) \mid 1 \le i \le n/2$, $g(w_{2i-1}) \mid 1 \le i \le n/2$, $g(w_{2i-1}) \mid 1 \le i \le n/2$.					
$_{1}) \mid 1 \leq i \leq n/2, \ g(v_{2i-1}) \mid 1 \leq i \leq n/2, \ g(x_{2i-1}) \mid 1 \leq i \leq n/2,$					
$g(y_{2i-1}) \mid 1 \le i \le n/2$					
ſ /	\rangle		()		

 $=\{g(u_1), g(u_3), ..., g(u_{n-1}), g(u_2), g(u_4), ..., g(u_n), \}$ $g(w_1), g(w_3), ..., g(w_{n-1}), g(v_1), g(v_3), ..., g(v_{n-1}), g(x_1),$ $g(x_3), ..., g(x_{n-1}), g(y_1), g(y_3), ..., g(y_{n-1}) \}$

 $= \{0, 4, ..., 2n-4, 4n-4, 4n-8, ..., 2n, 1, 5, ..., 2n-3, 4n-$ 1, 4*n*-5, ..., 2*n*+3,4*n*-3, 4*n*-7, ..., 2*n*+1, 3, 7, ..., 2*n*-1}

 $= \{0, 1, 3, 4, 5, 7, ..., 2n-1, 2n, 2n+1, ..., 4n-3, 4n-1\}$ (5)

To prove edge labels are distinct

The vertices u_{2i-1} and u_{2i} , $1 \le i \le n/2$ induces the edge labels $\{4n - 8i + 4 \ 1 \le i \le n/2\} = \{4n-4, 4n-12, ..., 4\}$ The vertices u_{2i} and u_{2i+1} , $1 \le i \le (n/2)-1$ induces the edge labels $\{4n-8i, 1\le i \le (n/2)-1\} = \{4n-8, 4n-16, ..., 8\}$

The vertices u_{2i-1} and v_{2i-1} , $1 \le i \le n/2$ induces the edge labels $\{4n-8i+7, 1 \le i \le n/2\} = \{4n-1, 4n-9, ..., 7\}$

The vertices u_{2i-1} and x_{2i-1} , $1 \le i \le n/2$ induces the edge labels $\{4n-8i+5, 1 \le i \le n/2\} = \{4n-3, 4n-11, ..., 5\}$

The vertices u_{2i} and w_{2i-1} , $1 \le i \le n/2$ induces the edge labels $\{4n-8i+3, 1 \le i \le n/2\} = \{4n-5, 4n-13, ..., 3\}$

The vertices u_{2i} and y_{2i-1} , $1 \le i \le n/2$ induces the edge labels {4*n*-8*i*+1, $1 \le i \le n/2$ } = {4*n*-7, 4*n*-15, ..., 1}

The vertices v_{2i-1} and w_{2i-1} , $1 \le i \le n/2$ induces the edge labels $\{4n-8i+6, 1 \le i \le n/2\} = \{4n-2, 4n-10, ..., 6\}$

The vertices x_{2i-1} and y_{2i-1} , $1 \le i \le n/2$ induces the edge labels $\{4n-8i+2, 1 \le i \le n/2\} = \{4n-6, 4n-14, ..., 2\}$

So we obtain all the edge labels $\{1, 2, 3, ..., 4n-2, 4n-1\}$ (6)

Hence, from (5) and (6) it is clear that double alternate quadrilateral snakes $DA(QS_n)$ is graceful for even *n*.

<i>Case (ii):</i> $n \equiv 1 \pmod{2}$					
	Define $g: V(G) \to \{0, 1, 2,, 4n-4\}$ by				
$g(u_{2i-1})$	=	4(<i>i</i> -1)	$1 \leq i \leq$		
$\left[\frac{n}{2}\right]$					
$g(u_{2i})$	=	4 <i>n</i> -4 <i>i</i> -3	$1 \le i \le$		
$\left\lfloor \frac{n}{2} \right\rfloor$					
$g(w_{2i-1})$	=	4i - 3	$1 \le i \le$		
$\left\lfloor \frac{n}{2} \right\rfloor$					
$g(v_{2i-1})$	=	4 <i>n</i> -4 <i>i</i>	$1 \le i \le$		
$\left\lfloor \frac{n}{2} \right\rfloor$					
$g(x_{2i-1})$	=	4 <i>n</i> -4 <i>i</i> -2	$1 \leq i \leq$		
$\left\lfloor \frac{n}{2} \right\rfloor$					
$g(y_{2i-1})$	=	4i-1	$1 \leq i \leq$		
$\left\lfloor \frac{n}{2} \right\rfloor$					

Proof same as previous theorem. Therefore, Double alternate quadrilateral snakes $DA(QS_n)$ is graceful for odd *n*.

Hence, Double alternate quadrilateral snakes $DA(QS_n)$ is graceful.

Figure 3 : Graceful labeling of DA(QS₈)

REFERENCES

- [1] Barrientos C., 'Graceful labelings of cyclic snakes' ,Ars Combin., 60, 85-99 (2001)
- [2] Beineke L. W. and Hegde S. M., 'Strongly multiplicative graphs', Discuss. Math. Graph Theory 21, pp. 63-75 (2001)
- [3] Gallian Joseph A. 'The electronic Journal of Combinatorics', A Dynamic survey of graph labeling (2016)
- [4] Gnanajothi R.B., *'Topics in graph theory'*, Ph.D.Thesis, Madurai Kamaraj University (1991)
- [5] Golomb S.W., 'How to number a graph in graph Theory and computing', R.C. Read, ed., Academic Press, New York, 23-37 (1972)
- [6] Murthy, U.S.R and Bondy, J.A., 'Graph theory with applications' Elsevier North-Holland (1976)
- [7] Rosa A., 'On certain valuations of the vertices of a graph', Theory of graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N.Y. and Dunod Paris, Vol.349-355 (1967)
- [8] Rosa A., 'Cyclic Steiner Triple System and Labelings of Triangular Cacti', Scientia, 1, pp.87-95 (1988)