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1. INTRODUCTION AND PRELIMINARIES

S.M.Ulam, in this famous lecture in 1940
to the mathematics club of university as the
stability problems of Wisconsin, presented a
number of unsolved problems. This is the starting
point of the theory of the stability of functional
equations. One of the questions led to a new line of
investigation, nowadays known as the stability
problems.

For very general functional equations one can
ask the following question .When is it it true that
the solution of an equation differing slightly from a
given one, must of necessity be close to the
solution of the given equation? Similarly, if we
replace a given functional inequality, when can
assert that the solutions of the inequality lie near to
the solutions of the strict equation?

f (Xi +xj )+ (—n2+5n—2) % f (Xi )

Suppose that G is a group, H (d) is a metric

group, and f :G — H ,for any > 0,does there
exists a o > 0 such that

d(f(xy), f(x)f(y))<e
Holds forall X,y € G?

These kinds of the questions from the basis of
stability theory, and D.H.Hyers [14,15] obtained
the first important result in this field .Many
examples of this have been solved and many
variations have been studied since.

The quadratic function f (CX) =cx? satisfies
the functional equation

f(x+y)+ f(x—y)=2f(X)+2f(y)
(11)
And therefore the equation (1.1) is called the
quadratic functional equation.

The Hyers-Ulam stability theorem for the
quadratic functional equation (1.1) was proved by

F.skof for the functions f :E, — E, where E;

is the normed space and E, be a Banach space, the
result of Skof is still true if the relevant domain
E, is replaced by an Abelian group it was delt by

P.W.Choelewa [10].S.Czerwik [11,12] proved the
Hyer-Ulam-Rassias stability of the quadratic
functional equation.This result further generalized
by Th.M.Rassias [40-45].C.Borelli ,and G.L.Forti
[9]

In 2006,K.W.Jun and H.M.Kim [16-20]
introduced the following generalized AQ type
functional equation

f(gxi}r(n—z)iz:f(xi): > f(x+x)

I<i<j<n

(1.2)
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in the class of functional equation between real
vector spaces. For N = 3,Pl.kannappan[33] proved
that a function f satisfies the functional equation
(1.2) if and only if there exists a symmetric bi-
additive function B such that
f (X) = B(X, X)+ A(X) for all (see[18]).The
Hyers —Ulam stability for the equation (1.2) when
N =3 was proved by S.M.Jung [20] .The Hyers-
Ulam- Rassias for the equation (2) when
N =4 was also investigated by 1.S.Chang et al.,[6]
Recently,M.Arumkumar ,S.Murthy and
G.Ganapathy introduced the general solution and
generalized Ulam-Hyers stability of n-dimensional
quadratic functional of the form
n-1

_ Zn:(n—i +1)g(xi):%2(n—l) jn_lg(xj +xi+1)—g(xj —X

i=1 i=1

In Banach spaces.

Very recently, J.M.Rassias introduced the Leibnitz
type additive quadratic functional equation of the
form

f(x—t)+f(y-t)+f(z-t)

¢ (x+y+z_t)f(2x—y—zj
3 3

f(—x+2y—zj ; (—x—y+22j
3 3

(1.4)

And obtained its general solution and generalized
Ulam-Hyers-stability of Leibnitz AQ-mixed type
functional equation in Quasi-Beta normed space
using direct and fixed point methods .

In this paper,the authors obtain the generalized
Ulam-Hyers stability of n dimensional quadratic
functional

n n n
f in+2f—x.+ > X;
i=1 j=1 i=Li#j

=(n—3) > f(xi+xj)

i, j=L1<i<j<n

+(—n2+5n—2) g f(xi)
i=1
(1.5)

Where n is a positive integer with N >3 in Banach
spaces using Direct and fixed point methods.

2. STABILITY RESULTS -
METHOD

In this section, we present the generalized
Ulam-Hyers stability of the functional equation
(1.5)

DIRECT

Theorem 2.1,  Let je{-11} and

o X" —[0,00) be a function such that
29%,29%,,...,29 xn)

sl

k=0
Converges in R and
_ a(2k1><1,2ij1,...,2k"xn)
lim - =0 (2.2
k—o0 4 J

Forall X,y,ze X .Let f:X —Y beaneven
function satisfying the inequality

| Df (%, %5, %,) | < @(%,—X%,X,—X,X,0,...,0)
2.2)

for all X,X,,...,
guadratic mapping Q: X — Y which satisfies the
functional equation (1.5) and

X, € X . There exists a unique

U(ijx)

o0
D
T 4
T2

1
f(X)-Q(x) (<
| 1000 1505
(2.3)
Where U(X)za(x,—x, X,—X, X,0,...,0) forall
X € X . The mapping Q(X) is defined

_f(29%)
By Q(x) = lim —g @9
forall Xe X .
Proof.  Assume  that j=1. Replacing
(X, X, X,) and (X,—X, X,—X, X,0,...,0) in
(2.2) ,we get
|2(n-5) f(2x)-8(n-5) f (x) |
<a(X,—X, X,—X, X,0,...,0)
(2.5)
for all X e X . It follows from (2.5) that
f(2x) 1
————f(X) | £ ———=n(X
el B
(2.6)

Where 77(X) =a(X,—X, X,—X, X,0,...,0) for all

X € X . Replacing X by 2X in (2.6) and dividing
by 4 and adding the resultant inequality with (2.6),
we obtain

f(2°x) 1 7(2x)
- f(2X) | £ ———|n(x)+
-1 g a0
2.7
for all xe X. Generalizing, we
have

ISSN: 2231-5373

http://www.ijmttjournal.org

Page 397




International Journal of Mathematics Trends and Technology (IJIMTT) — Volume 51 Number 6 November 2017

f(2kx) 1 2n(2%%)
f(x)- <
(n—5) ~ 4
© 77(2k X)
—5);; 4
(2.8)
for all Xe X . In order to prove convergence of

f(2*x)

the sequence { 2 },replace X by 2'x and

dividing 2' (2.8), forany k,| > 0, to deduce

I K+l K ol
f(2|X) f(2k|X) 1 f(2' X)— f(2;<2x)
4 4 4
n—1 77(2k+| X)
k - 4k+|
(2.9)
- 77(2k+| X)
kZ; 4k+|
—)O as I —> o
forall Xe X .
f (2k X)
Hence the sequence a

Cauchy sequence. Since Y is complete, there
exists a mapping Q: X —Y such that

Q(x)_llm f( ) vV xeX.

Letting K —> 00 in (2.8), we see that (2.4) holds
for xe X . To prove that Q satisfies (1.5)
(X5 Xy y ey X)) by
(2%, 2" X,,...,2X.) and dividing 4 in (2.2),
we obtain

replacing

1
<02 2%

for all X, X,,...,

above inequality and using the definition of Q(X),
we see that

DQ(X, X,,..., X,) =0.
Hence Q satisfies (1.5) for all X, X,,...,X, € X..

To show that Q is unique, let B(X) be another
quadratic mapping satisfying (1.5) and (2.3), then

X, € X . Letting K — o0 in the

| Q)-8 |- @@0-BEX |
s%” Q2N -fE@x|+| f@x-BE@x |
1 - n(zkﬂ)

<
B 8(n—5)kz_;‘ 44+

forall X e X . Hence Q is unique.

—>0al—ow

for all X e X . The rest of the proof is similar to

that of j =1. Hence for j =—1 also the theorem

is true. This completes the proof of the theorem.
The following corollary is an immediate

consequence of Theorem 2.1 concerning the

stability of (1.5).

Corollary 2.2. Let ¢ and S be a nonnegative real

numbers. Let an even function f:X —>Y
satisfying the inequality
A,
n
ek =l & e
M+ 2l
Azl T &
(2.10)
for all X,X,,..., X, e X . Then there exists a
unique quadratic function Q : X — Y such that
_H
6/n-5|
Sul x|
f(x)— < ,
I 100=Q00 =555z
5] x|*
2(n-5)|4-2"|
(2.11)
forall Xxe X .

Proof: If we replace

H,

DX Xy X, ) < #{él” s}
n S n ns
il +

(2.12) in Theorem 2.1, we arrive (2.11).
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3.FIXED POINT STABILITY RESULTS OF
(1.5)

The following theorems are useful to
prove our fixed point stability results.
Theorem A. (Banach contraction principle) Let

(X,d) be a complete metric spaces and consider

a mapping T:X —> X which is strictly
contractive mapping, that is,

(A)d(Tx, Ty)<d(x,Y)
for some (Lipschtiz constant) L <1, then,
(i) The mapping T has one and only fixed
point X =T (X").
(if) The fixed point for each given element
X is globally contractive that is

(A)

limT"x=x"

n—oo

for any starting point X € X .
(iii) One has the following estimation

inequalities,
(A)
1

d(T”x, x*)g—d(T”x,T””x),VnzO,VXE X.
1-L
(A)

d(x,x*)zid(x,x*),
1-L
Theorem B. (The Alternative Fixed Point)
Suppose that for a complete generalized metric
space (X,d) and a strictly contractive mapping
T : X — X with Lipschtiz constant L, then for
each given element X € X either,

(B)

VxeX.

d(T"x,T""X) =0, V¥n>0.
(B,) There exists a natural number N, such that,
() d(T"x,T"X)<oo forall VN=>0.
(if) The sequence {T ”X} is convergent to a
fixed point Y~ of T ,
(iii) y* is the unique fixed point of T in the
set Y :{er;d(T”°x, y) <oo}.

(iv) d(y*,y)Sﬁd(y,Ty) for all
yeyY.

4. Fixed Point Stability of (1.5):

In this section, we present the generalized Ulam-
Hyers stability of the functional equation (1.5)
using fixed point method.

Theorem 4.1. Let f:V —>B be an even
mapping for which there exists a function

a:V" —[0,00) with the condition
(2%, 2%,,.., 2, )
lim

k—o0 4k

=0

4.1)
where

2, i=0;
= 1

2
such that the functional inequality

, 1=

| DF (X, %5100, %) [| < (X, =X, X, =X, X, 0,....,0)
(4.2)
forall X, X,,..., X, €V . If there exist L = L(i)
such that the function
,5,0,...,0)
2

N | X

1 X X X
H“”:z(n—_s)“(a"a’a"

has the property,

= Bnx)=LB(x)
Ui
(4.3)
for all X €V . Then there exists a unique quadratic
function Q:V — B satisfying the functional
equation (1.5) and

| F0-Q() <

Llfi
=P

(4.4)
holds for all X eV .
Proof. Consider the set
X :{P/P:V — B, P(O):O}

and introduce the generalized metric on X .

d(p,q) =inf {K &(0,0):| p(x) —a(x) || < KB(x),x eV }.

It is easy to see that (X,d) is complete. Define
T:X—>X by

TP =% p(7x)
n;

forall XeV . Now
p,ge X
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d(p.a) <K = p(x) - a(x) | < KA(x).x €V;

X
1 1 1 H f(x)-4f (Ej < B(X)
= jp(ﬂix)_izqoﬁx) SizKﬁ(Uix):XEV;
UK Ui Ui (4.9
forall XeV .
{5 P -y a0 | < LK), X eV (ie.) d(f,TF)<1 =d(f,Tf)<1=L"<co.
i i In above case, we arrive
= [Tp(0) -Ta(x) || < LK () x e V; d(f,Tf)<L™
— d(Tp,Tq) < LK. Therefore (82 (I)) holds. By (82 (II)) it
follows that there exists a fixed point Q of T in
This implies X h that
d(Tp,Tq) < Ld(p,q) forall p,qe X . stenhe f(2kx)
(i,e.,) T is strictly contractive mapping on X Q(x) = lim —, VxeV.
with Lipschtiz constant L . It is follows from (2.5) ko 4
that (4.10)
In order to prove Q:V—>B is
H 2(n —5) f(2x) —8(n —5) f(x) H quadratic.  Replacing (X, X,,...,X,) by
<a(X,—X,X,—X X,0,...,0) (2%, 2“%,,...,2X ) in (4.2) and dividing by
(4.5) _ 4% | it follows from (4.1) and (4.10), we see that
Iﬁ;ta” x eV . Itis follows from (4.5) Q satisfies (1.5) for all X, X,,..., X, €V . Hence
f(2x) Q satisfies the functional equation (1.5).
‘ F(x)- 4 By (B, (iii)), Q is the unique fixed
1 point of T in the set,
< — - .
_8(n—5)¢(x’ X, X% =% %,0,...,0) Yz{f eX.d(Tf,Q)<oo}
(4.6) Using the fixed point alternative result, Q is the
forall X €V . Using (4.5), for the case i =0, it unique function such that,
reduces to || f(X)—Q(X) || <KA(x)
1 1 forall xeV ,and k>0,
X)—— X) || <= L(X Finally by 1IV) ), we obtain
f(x) 4f(2) <4ﬂ() B, (iv)
1
(4.7) d(f,Q)<——d(f,Tf
forall XxeV. ( Q) 1-L ( )
(e d(F,TF) <= d(f.0)<
T2 ( ’Q)‘l—l_'
H | h
:d(f,Tf)S%:L:Ll<oo. ence, we conclude that N
y | F()-Q(x)] < L B(x)
Again replacing X = — in (4.5), we get .
2 for all X €V . This completes the proof of the

theorem.
Corollary 7.2. Let f:V—>B be an even
mapping and there exists a real numbers 4 and S

el

< 1 ¢(§’_§’§’_§’§’Ow,oj such that,
2(n-5)"\2" 2’2" 2'2
(4.8)
forall X €V . Using (4.3) for the case 1 =1, it
reduces to,
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Hf(xl,x2,~--,xn)u

A,
n S
w2l

n S n ns
alfid + E ")
(4.11)

for all X, X,,...,X, €V . There exists a quadratic
mapping Q :V — B such that

IN

_H
6/n-5|
Sl x [
f(x)— < ,
1100=Q00 <15 s az
5] x|
2(n-5)|4-2"|
(4.12)
forall XxeV.

Proof: Setting

y7a
(331 = ﬂ{kgl||xk|r}

n $ n ns
sl ™}

n
N
772k
e 3
LAl + S

—0as k - oo,

=<—>0as k— oo,

—0as k> oo,

(4.13)
ie, (41) is  holds. But we have
1 X X X X X
_ 222 _220..0
A 2(n—5)a(2 2'27 22 )
. Hence
1 X X X X X
= —’——,—,——,—,0,...,0
A 2(n—5)a(2 2’27 2'2 j
A
A s
2|
ﬂ/ ns
X
Also,
i A
n’ 6(n->5)
1 _ )52 x|
77i2 ﬂ(ﬂiX)— 77i2 Z(n—5)
52 x|
7’ 2(n-5)
Uiizﬁ(x)
s—2
=3n" " B(X)
ns—2
m B(X)
(4.14)
Hence the inequality (4.13) holds
either L=27 for s=0 if i=0 and L:S%
for s=0if i=1.
gither L=2"? for s<1 if i=0 and
L= ]:2 for s>1if i=1.
25
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gither L=2""? for s<1 if i=0 and

L=L_2 for s>1if i=1.
2nS

Now from (4.13), we prove the following cases

Case:1 L=27, i=0

272 1-0
|00 Q(X)||< ﬂ() (2) 2

1-27 2(n-5) 6(n-5)

(4.15)
1 -2
Case: 2 L=[—j , i=1
2
Ll—i
| £09-QE0 < 1= A9
l 1-1
_(2j A _ A
_1 (1j-1 2(n-5) 6(5-n)
2
(4.16)
Case:3 L=22 s<1 i=0
1_
| 00— Q(X)||< B(X)
(22" s :
= 1_25—2 252(n_5)||x|| )
_ SAx[
2(n-5)(4-2°)

(4.17)

1 52
Case: 4 Lz(zj , s>1 i=1

(@)

1-27° 2°2(n-5
__ S
2(n-5)(2°-4)

x| (4.18)
)II |

Case: 5 L =2%72 S<%, i=0

I f()-Q(x)[|<
(2*2)" 5 .
= 1_2ns—2 2n52(n_5)||x|| ’
A x|”

~2(n-5)(4-2")

(4.19)

3s-2
Case: 6 L:(EJ , S>1, i=1
2 2

[f0-Q

10.

11

12.

13.

14.

15.

(22—ns )H 5]

< p00-

(4.20)
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