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Abstract — In this paper, | derived shape functions
for 9-noded rectangular element by using Lagrange
functions in natural coordinate system and also |
verified two verification conditions for shape
functions. First verification condition is sum of all
the shape functions is equal to one and second
verification condition is each shape function has a
value of one at its own node and zero at the other
nodes. For computational purpose | used
Mathematica 9 Software [2].
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1. INTRODUCTION

In engineering problems there are some basic
unknowns. If they are found, the behaviour of the
entire structure can be predicted. The basic
unknowns or the field variables which are
encountered in the engineering problems are
displacements in solid mechanics, velocities in fluid
mechanics, electric and magnetic potentials in
electrical engineering and temperatures in heat flow
problems.

In a continuum, these unknowns are infinite. The
finite element procedure reduces such unknowns to a
finite number by dividing the solution region into
small parts called elements and by expressing the
unknown field variables interms of
assumed approximating functions (Interpolating
functions/Shape functions) within each element. The
approximating functions are defined in terms of field
variables of specified points called nodes or nodal
points. Thus in the finite element analysis the
unknowns are the field variables of the nodal points.
Once these are found the field variables at any point
can be found by using interpolation functions/Shape
functions.

Il. GEOMETRICAL DESCREPTION

Typical nine noded element is shown in Figl.1
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Fig.1 Typical nine noded rectangular element.

I1l. DERIVING SHAPE FUNCTIONS FOR
NINE NODED RECTANGULAR ELEMENT
BY USING LAGRANGE FUNCTIONS.

The natural coordinates of various nodes
are as shown in the Fig.1.

Nodal unknowns

Basic unknowns may be displacements
for stress analysis, temperatures for heat flow
problems and the potentials for fluid flow or in the
magnetic field problems. In the problems like truss
analysis, plane stress and plane strain, it is enough if
the continuity of only displacements are satisfied,
since there is no change in the slopes at any nodal
point. Such problems are classified as ‘Zeroth’
Continuity problems and are indicated as C° —
Continutiy problem.

For the C° Continutiy element in two

dimensions

N, = L(&L @) 1)
Where L, refers to Lagrangian function
at node i.
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In Fig.1 there are 3 nodes in each direction.

Hence n=3 in Lagrange function.
Lagrange Polynomial in one dimension
is defined by
n X _ X n _
L= Ly =] [ 22>

m=l X — Xp, m=L Y = Ym
mz=k mz=k

When i=1
n=3, k=1, x=&,y=n

@O =N, =L(L)

At node 1, Along &-axis nodes 1,2,3
(For L, (&) we should take nodes 2 & 3)
At node 1, Along 77-axis nodes 1,4,7

(For L,(77) we should take nodes 4 & 7)

N = &8N ~&) (7—1.)(n~1,)
' (51_52)(51_53) (771_774)(771_777)
N = (6-0E-1) (#-0)(n-1)
b (-1-0)(-1-1) (-1-0)(-1-1)
N Gl /LU )
Lo1(=2) —1(-2)
N /A /)
! 2 2
N, = (5 —1)477(77—1)

(2)
When i=2
n=3, k=2, x=&,y=n

@D =N, =L (L)
At node 2, Along &-axis nodes 2,1,3

(For L, (&) we should take nodes 1 & 3)
At node 2, Along #7-axis nodes 2,5,8
(For L, (77) we should take nodes 5 & 8)
N. = (E-8)E-&) (n—ns)(m—1m,)

? (& =&, — &) (m, —15) (7, —175)
N. = E-(-NE-D) (r-0)n-1)

* (0-(-1))(0-1) (-1-0)(-1-1)
N 2 (EHDE-D) n(p-1)

(0+1)(-1) (-1)(-2)
&+1)(£-1) n(n-1)

Oy 2

.t
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(+1)(E-1) n(n-1)
1 2
E+1)(E-Dn(n-1)
2
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N, =

©)
When i=3
n=3, k=3, x=&,y=n
@)= N; =L(5)L (1)
At node 3, Along £-axis nodes 3,1,2
(For L,(&) we should take nodes 1 & 2)
At node 3, Along #7-axis nodes 3,6,9
(For L,(77) we should take nodes 6 & 9)
N, = (E-8)E-E) m—16)n—1)
’ (& —E)& &) (17— 1) (17, —175)
N E(DE-0) @-00-
*(1-(-1))1-0) (-1-0)(-1-1)
N = (E+De nn-1)
*(1+1)(1) (-1)(-2)
N, = (EXD¢ n(r-1)

)@ 2
When i=4

n=3, k=4, x=£,y=n

@O =N, =L(5)L)
At node 4, Along £-axis nodes 4,5,6

(For L,(&) we should take nodes 5 & 6)
At node 4, Along 77-axis nodes 4,1,7
(For L,(77) we should take nodes 1 & 7)
N = (6=&)E—&) (n—m)n—m)

) (&= &)E = &) (my—m)(, —1;)

_ E-(0)¢-)  (—-(-1)(n-D)

Y (1= (0)(-1~(~1)) (O0—(-1)(O-1)

§(£-1) (n+)(n-9
(-1)(-1-1) (0+1)(0-1)
§(&-1) (n+1) (-1
-D(=2) (D)
S(&-1)(n+1)(n-))

-2

N, =

N, =

N, =

When i=5
n=3, k=5, x=&,y=n

()
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@D = N; =L (5)Ls ()
At node 5, Along ¢£-axis nodes 5,4,6

(For Lg(&) we should take nodes 4 & 6)
At node 5, Along #7-axis nodes 5,2,8
(For Ls(r7) we should take nodes 2 & 8)
N. = (E-E)(E-&) m—n,)n—15)

° (& — &&= &) (175 —11,) (175 —175)
N =& ~(=1))(&-1) (n - (=) -1)

> (0—(-1))(0-1) (0—(-1))(0-D)

_(E+)(E-) (n+) (-

* (0+1)(-1) (0+1)(-D)
(£+1) (- (r+H) -1
O O
_(E+)(E-D(n+1) (-1

1

5 =

(6)

5

When i=6
n=3, k=6, x=£,y=n

@D = Ns = L(S)Ls ()
At node 6, Along &-axis nodes 6,4,5
(For Ly (&) we should take nodes 4 & 5)
At node 6, Along 77-axis nodes 6,3,9
(For Ly (r7) we should take nodes 3 & 9)
_(E-8)(E-&) (n—1:)(n—1,)
° (&6 — )& — &) (s — 1) (175 —175)
_E-(-1)(¢-09) (7 (1) -1
° (1-(-1))@-0) (0-(-1))(0-1)
_(E+1)(E) (n+) (-1
° (1+1)(1) (0+1)(-D)
(§+1)& (n+1) (-0

“ o0 O
N, = (§+1)§(’72+1) (7-1) )
When i=7

n=3, k=7, x=&,y=n

O =N, =L (5L {)
At node 7, Along £-axis nodes 7,8,9

(For L, (&) we should take nodes 8 & 9)
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At node 7, Along 77-axis nodes 7,4,1
(For L, (77) we should take nodes 4 & 1)
N = (E=G)E~&) (7—m)(—1.)
! (& —&)(& = &) (n, —m) (7, —n,)
_ (E-0)(E-) (-(-1)(n-0)
" (-1-0)(-1-1) (1-(-1))1-0)
&(£-1) (m+)ny

MR TR
N = 56D (n+1)n
T (1)(-2) (1+1)(1)
N Gl I VAR
T )(-2)(2)()
N, = (§ 1Lf(77+1)77 @)
When i=8

n=3, k=8, x=£,y=n
M) = Ny = L(&)Ly ()
At node 8, Along £-axis nodes 8,7,9
(For Ly (&) we should take nodes 7 & 9)
At node 8, Along 77-axis nodes 8,5,2
(For Ly (77) we should take nodes 5 & 2)
N, = &=6)E &) (1-1,)(1~125)
° (& — & )(& — &) (175 —1,) (175 —175)
(E=(CDE-D) (7= (=1 -0)
P O-(-1)0-D @-(-1)r-0)
_(e+9(s-1) (n+1)n
" (0+1)(-1) (1+1)@)
v - EH(ED (D)
¢

+1

@01  (2)(@Q)
_(E)(E-Y)(n+1)n
-2

9)
When i=9

n=3, k=9, x=£,y=n

D)= Ny =L (5L ()

At node 9, Along ¢£-axis nodes 9,7,8
(For Ly(&) we should take nodes 7 & 8)
At node 9, Along #7-axis nodes 9,6,3

(For Ly(r7) we should take nodes 6 & 3)
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N. — (E-E)E-&) m—n)(n—m5)
’ (& =& )& — &) (g —15) (175 —175)

_(E-(-1)(¢-0) (7-(-1))(7-0)

* o (1-(-1)@-0) @-(-1))1-0)

_ (E+1)¢ (n+1)n
P (1+1)(1) (1+1) @)
(E+1)& (n+1)n
(2@ 2)@)
(§+1)§(77 +1)n

N, =

(10)
V. VERIFICATION

(1 a) Verification 1* Point
N, +N,+N;+N, +N;+Ng+ N, +
o, = EED0 D

N (E+D(E-Dn(n-1) N (&+DEn(n-1) N

—2 4
+§(§—1)(r7;r1)(77—1)+
N (§+1)(§—1)1(n+1)(n—1) N
(E+DE@+D0 =D &E-Dn+Dn
-2 4
L (ENEDm Dy (E+DER+Dn
A 4
N, +N,+N;+N, + N, + N+ N, +
+Ng +Ng =1

.. Sum of all the shape functions is
equal to one.
1% point is verified.

(11 a) Verification 2" Point
(i) At Node 1 (-1,-1)
g=-1 =1

when &£=-1, n=-1

N, = §(E-Dn(n-1)

4
N, = —1(—1-1)(4—1)(—1—1) _
_2EDE2) 4

4 4
N, =1
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N, = E+DE-1n(r-1)

2 )

~ (F1+D(1-D(D)(-1-D)
2 -2
=0
_E+D)(nm-1)
s 4
_ 4D EDEDEL-D)

4

=z

zZz Z
N

=2
w

N,=0

_ S -Dm+Dn-1)

‘ -2

C1(-1-1)(-1+)(-1-)

‘o -2

,=0

_E+D)(E-Dm+D(n-1)

° 1

N, _ (HL+D) (- (1+D)(-1-D)
1

=z

z =2 Z

=

;=0
N, - D (-1
-2
_( 1+ (-)(-1+1(-1-1)
2

=

Ny, =0

_¢E@-D(n+Dn
4
(DE-D(E+D(ED)
4

=

N, =

=z

,=0

N, = DD+

8 -2

_ (H+D) (- (1+D)(-D)
)

N,

=0
8
< AtNode1N,=1 N,=0, N,=0,
N, =0, N, =0, N, =0, N, =0,
N, =0, N, =0
. At Node 1 2™ condition is verified.
(i) At Node 2 (0/1) &=0 7=-1

Nl N2 N3 N4 N5 N6 N7 N8 N,
1

Output 0 0 0 00O0OCO
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(iii) At Node 3 (1,-1) &=1,7=-1

Nl N2 N3 N4 N5 N6 N7 N8

Output 0 0 10 00 0 O O

N,

(iv) At Node 4(-1,0) &=-1,7=0

N1N2 N3 N4 N5 NGN Ng N,

78
Outpuu 0 0 01 00 O O O

(v) At Node 5(0,0) &=0,7=0

N1 N2 N3 N4 N5 N6 N7 N8 N,

Output 0 0 0 0 1 0 0 O O

(vi) At Node 6(1,0) £=17=0

N1N2N3N4N5N N
0 00

Output 0 O

6 N7 Ng N
1000
(vii) At Node 7(-1,1) &=-1,7=1
N, Ny NaN, Ng Ng N; Ny
Output 0 0 0 0 00 1 0 0

N,

(viii) At Node 8(0,1) &=0,7=1

Nl N2 N3 N4 N5 N6 N7 N8 N,

Output 0 0 0 0 00 0 1 O
(ix) At Node 9(1,1) &£=1,7=1
N, N, Ny N, No N. N

1 No N3 Ny N5 Ng N7 Ng
Output 0 0 00 00 0 0 1

N,

V. AUTHOR’S CONTRIBUTION

1. Deriving Shape functions for 9 noded Lagrange
element in natural coordinate system by Lagrange
method.

2. Sum of all the shape functions is equal to one.

3. Each Shape function has a value of one at its own
node and zero at the other nodes.
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