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Abstract — In this paper we derive necessary and sufficient

conditions for the matrix equation

X+AX 2A+B"X ?B=1 to have a positive definite
solution X, where, | is an nxn identity matrix and
Aand B are nxn nonsingular complex matrices. We use
these conditions to present some properties on the matrices

A and B . Moreover, relations between the solution X and

the matrices Aand B are proposed.
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1-INTRODUCTION

Consider the nonlinear matrix equation
X+AX ?A+B'X 2B=1 (1.1)
where | isan nxn identity matrix, Aand B are nxn
nonsingular complex matrices , (A* ,B” stand for the

conjugate transpose of A,B  respectively). Throughout

the paper, we denote by r ( A) the spectral radius of A.
A(A) represents the eigenvalues of A and the notation

A>B (A>B) indicates that A—B is positive definite

(semidefinite). Several authors [1-17] have studied the
existence, the perturbation analysis for some matrix
equations, the rate of convergence as well as the necessary
and sufficient conditions of the existence of positive
definite solutions of similar kinds of nonlinear matrix
equations. We organize this paper as follows: First, in
section 2, we propose the necessary and sufficient
conditions for the existence of a positive definite solution
of Eg. (1.1). In section 3, some applications of the obtained
results as well as relations between the solution X and the

matrices Aand B are given.

2- NECESSARY AND SUFFICIENT CONDITIONS
In this section we drive both necessary and
sufficient conditions for the existence of a positive definite

solution of the nonlinear matrix equation (1.1).

Theorem 2.1
The matrix equation (1.1) has a solution X (symmetric and
positive definite) if and only if A and B have the

following factorization:

A=(M"M)Z, , B=(M"M)Z, 2.1)

1 ’
where M is a nonsingular square matrix and the columns

M
of | Zy | satisfy M M+Z,Z +Z,7, =1. Inthis case
Zy
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we take X =(M M) as a solution of the matrix Eq. (1.1).

Proof:
If equation (1.1) has a solution X , then we can write X as

X=(M*M) for some nonsingular matrix M. In

particular M can be chosen to be triangular using
Cholesky Decomposition in [18, p.141], so we have

X +AX ?A+B'X B
=MM +A*(|v|*|v| )_1 (M*M)_1A+B*(M*M)_l(M*M)_lB

then equation (1.1) can be rewritten as

* -1 «—1 " -1 x—1
MM+M™M AfIMTM A

w1 Y w1
+(M “Im Bj (M “Im szl

or equivalently

M y M
“1pg* L “Ipg* T
MM AL M IMT A= 2.2)

— —
MM B) (MIMT B

-1 *—1 -1 *—1
Let MM~ "A=Z, and M M~ B=Z,.
Then A=(M"M)Z, , B=(M"M)Z,
and (2.2) means that MM +2,Z +2,Z, = 1.
Conversely, suppose that Aand B admit the
decomposition (2.1). Set X =(M M ). Then
X +AX ?A+B'X B

* -2 *

=M"'M +((M*M)ZJ[M Mj ((M M)Zl)

MY )ZZT(M*M)_Z(( MM)Z,)
M

=M M+ZlM [M Mj (M M)Zl)
(ZZM M ( )Z(M M)ZZ)
=M M+ZZ+ Z:

i.e., X isasolution to the matrix equation (1.1).

Theorem 2.2
The matrix equation (1.1) has a solution if and only if there

exist unitary matrices P, U, and U, and diagonal

matrices  7°>0, X>0 and ¥>0  with
(2F2 +32 +5V2): I such that:
A=2P"T?PU,XP, B=2P I'?PU,¥P  (23)

In this case X =2P" 7"2P is a solution of equation (1.1).
Proof:
Suppose the matrix equation (1.1) has a solution. Then

from Theorem 2.1 A and B admit the forms

A=(M"M)Z, , B=(M"M)Z, . Since the columns

M
of |Z, | satisfy MM +ZIZl+Z; Z,=1, it can be
Z;
M U K;
extended to the matrix| Z; V; K, | and apply (C-S
Z, V, Kj

decomposition) in [18, p. 77] and [19, p. 37], there exist
unitary matrices U,,U, .U, , P, Q,R and diagonal

matrices 7" >0, 2 >0 and ¥ >0 such that:

M U K,
Z; Vi Ky
Z; Vp Kz
¥
ulooﬁr_E_EPoo
=l0o U, 0 >y Jor o 0 Q0
0 0 Ug)| ¥ 0 1 0 0 R

where (2F2+22+l[/2)=| .

SoM=y2U, I'P ,Z,=U, P and Z, =U,¥ P
Then (2.1) can be rewritten as follows:

A=2P" I'?PU, SP , B=2P I?PU,¥P
Conversely, suppose that Aand B have the decomposition

(2.3). Let X =2P" I"?P . Then
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X +AX 2A+BX 2B=2P" %P
+(2P* r’pU,s P )*(ZP*FZP)J (2F>*r2 PU,> P )
+(2P* r’puz¥ P)*(zp*rzp)_z(zp* r2pu,v p)
=2P I?P+P XU, (P*FZP) (P*FZP)_Z(P*FZP) U,z P
+P" P Uy (P*FZP) (P*FZP)_Z(P*FZP)U3¥’ P
= 2P I?P+P %P+ P ¥2p

= P*(2F2+2’2+V/2)P =1
this shows that X is a solution to the matrix Eq. (1.1).

3. MAIN RESULTS
In this section, we propose some properties of the
equation (1.1) and we present relations between the

solution X and the matrices Aand B .

Theorem 3.1
If the matrix equation (1.1) has a positive definite solution

X, then | A+B| <1

Proof:
Suppose that Eq. (1.1) has a solution., then by Theorem 2.2,

Aand B have the decomposition (2.3).Then
| A+B=[2P" 72 PU s P+2P" 12 PUs# P|
s“zp* r2puU,sp “+H2P* r2pu,y P“

<2|p* r2 PHIIUzll Al

w2|[P* r2e||usl# |1 Pl

Since the matrices U, ,U, and P are unitary,

| acel<2| P r2e| | 2+2|P* r2p| v |
<27z 12| r |17
=2|r2[{lz]+ | [} <1

The last inequality follows from the fact

(ZFZ +3? +‘}’2)= I, which yields that || 7| S%

| =] <1and % |<1
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Theorem 3.2
Suppose that the matrix equation (1.1) has a positive
definite solution X, then the following hold:

(i) X?>AA" +BB"
(ii) r(A+B)s%

4 a4 a4
(iii) r| X 2 A+X 2B-A"X 2 -B"X 2 |<1

4 a4 a4
(iV)r| X 2A+X 2B+A X2 +B X 2 |<1

Proof:
(i): By Theorem 2.1 we have, X =(M "M ) and
A=(M"M)Z, , B=(M'M)Z,
Then
X2 -AA"-BB =(M"M)*~(M"M)Z, Z;(M"M)
~(M"M)Z,Z,(M"M)
=(M"M) |—zlz’i‘—zzz;)(M*M)>o

since A(zizf)zz(z:zi ), i=1,2 and

2 * * * *
|-%2{Z;=M"M >0,50 1 -2, 2 -Z, Z, >0.
i=1

Thus, part (i) is proved.
(ii): Using Theorem 3.1 we get,

AA+B)=2[2P" Ir2PU, P+ 2P" I2PU, ¥ P)

r(A+B)=max| 4 kP* r2pu, s P+ 2p" F2PU,w P)‘
s”lzp* r2PU,XP+ 2P I'2PUs¥ P “
s“zp*rzpuzzp“Jr“zp* r2pusyp “
:2“ P xr2p “+2“ P wr2p ”

s ol
2Qzr||ri+2|¥r ||

<|zrf+wr|
Let X' =diag(o;) , /" =diag(y;), ¥ =diag(y;).

Then Uiz +27/i2 +wi2 =land | 7|< % . Thus
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r(A+B) g||21“||+|| '{’F"
=mf’J‘X{0i 7i}+m?‘x{ Vi7i
| I

2 2 2
< max CL T2V %

i
(iii): Appling Lemma 6 in [20], we get
| -1 -1
r{X2A+X 2B-A"X 2 -B"X 2
* ;1 * * ;1 *
(M M)Z((M M)Zl)+(M M)Z((M M)ZZ)
N L -l
UMDY OB Y (YUY

1 L1
(M"M)2Z, +(M"M)2Z,

1 . . 1
~Z1(M"M)2-Z5(M"M)?2

<r (M*M +71 zl+z§zz)
=r(l)=1

(iv):
-1 T
I+ X 2A+X 2B+A X 2 +B'X 2
. 1 .1
. . . M™M)2Z, +(M"M)2Z
=M M+2121+ZZZZJ_r( )72y ¥ )72,
i, o, 1
+Z1 (M"M)2+Z5(M"M)2
:(M M+Z; ZliZZZZ) (M M+Z; ZliZZZZ)ZO

Therefore,
-1 -1 -1 -1

rIX2A+X 2B+A"X 2 +B"X 2 |<1.

4- CONCLUSION
In this paper both necessary and sufficient

conditions  for the nonlinear matrix  equation

X+A"X2A+B "X ?B=1 to have a positive definite
solution X are derived, where Aand B are nxn
nonsingular complex matrices. Some properties on the
matrices Aand B are presented. Also, relations between
the positive definite solution X and the matrices Aand B

are given.
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