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 Abstract – In this paper we derive necessary and sufficient  

 conditions for the matrix equation 

IBXBAXAX
2*2* 


 to have a positive definite   

 solution  X ,  where , I   is  an  nn   identity  matrix  and 

A and B  are nn  nonsingular  complex matrices. We use 

these conditions to present some properties on the matrices 

A and B . Moreover, relations between the solution X  and  

the matrices A and B  are proposed. 
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1-INTRODUCTION 

            Consider the nonlinear matrix equation   

             IBXBAXAX
2*2* 


                                         (1.1)   

where I  is an nn  identity matrix, A and B   are nn  

nonsingular complex matrices , ( ** B,A  stand for the 

conjugate transpose of A , B   respectively). Throughout 

the paper, we denote by )A(r  the spectral radius of A .  

)A(  represents the eigenvalues of A  and the  notation  

)BA(BA    indicates  that  BA  is  positive  definite 

(semidefinite). Several authors [1-17] have studied the 

existence, the perturbation analysis for some matrix 

equations, the rate of convergence as well as the necessary 

and sufficient conditions of the existence of positive 

definite solutions of similar kinds of nonlinear matrix 

equations. We organize this paper as follows: First, in 

section 2, we propose the necessary and sufficient 

conditions for the existence of a positive definite solution 

of Eq. (1.1). In section 3, some applications of the obtained 

results as well as relations between the solution X  and the 

matrices A and B   are given.  

 

2- NECESSARY AND SUFFICIENT CONDITIONS 

In this section we drive both necessary and 

sufficient conditions for the existence of a positive definite 

solution of the nonlinear matrix equation (1.1). 

 

Theorem 2.1 

The matrix equation (1.1) has a solution X (symmetric and 

positive definite) if and only if A  and B   have the 

following factorization: 

     
2

*
1

* Z)MM(B,Z)MM(A                      (2.1) 

where  M  is a nonsingular square matrix and the  columns 

of  
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*  .   In this case 
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we take )MM(X *  as a solution of the matrix Eq. (1.1). 

Proof: 

If equation (1.1) has a solution X , then we can write X as  

)MM(X *  for some nonsingular matrix M . In 

particular M  can be chosen to be triangular using 

Cholesky Decomposition in [18, p.141], so we have   

        BMMMMBAMMMMAMM

BXBAXAX

1*1**1*1***

2*2*








 

then equation (1.1) can be rewritten as 

IBMMBMM

AMMAMMMM

1*1
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1*1
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or equivalently 
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                               (2.2) 

Let  
1

1*1
ZAMM 


 and 

2

1*1
ZBMM 
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 Then  
2

*
1

* Z)MM(B,Z)MM(A   

and (2.2) means that IZZZZMM
2

*

21

*

1

*  .  

Conversely, suppose that A and B  admit the 

decomposition (2.1). Set )MM(X * . Then  
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i.e., X  is a solution to the matrix equation (1.1). 

 

 

 

Theorem 2.2 

The matrix equation (1.1) has a solution if and only if there 

exist unitary matrices P , 
2

U  and 
3

U  and diagonal 

matrices 0 , 0  and 0  with 

  I2 222    such that: 

PUPP2B,PUPP2A
3

2*
2

2*         (2.3) 

In this case PP2X 2*  is a solution of equation (1.1). 

Proof: 

Suppose the matrix equation (1.1) has a solution. Then 

from Theorem 2.1 A  and B   admit the forms 

2
*

1
* Z)MM(B,Z)MM(A  . Since the columns 

of 
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*  , it can be 

extended to the matrix
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 and apply (C-S 

decomposition) in [18, p. 77] and [19, p. 37], there exist 

unitary matrices R,Q,P,U,U,U
321

 and diagonal 

matrices 0 , 0  and 0  such that: 
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where   I2 222   .  

So PU2M
1
   , PUZ

21
  and PUZ

32
  

Then (2.1) can be rewritten as follows: 

PUPP2B,PUPP2A
3

2*
2

2*    

Conversely, suppose that A and B  have the decomposition 

(2.3). Let PP2X 2* . Then  
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this shows that X  is a solution to the matrix Eq. (1.1). 

 

3. MAIN RESULTS 

In this section, we propose some properties of the 

equation (1.1) and we present relations between the 

solution X  and the matrices A and B . 

 

Theorem 3.1 

If the matrix equation (1.1) has a positive definite solution 

X , then 1BA   

Proof: 

Suppose that Eq. (1.1) has a solution., then by Theorem 2.2,  

A and B  have  the decomposition (2.3).Then  
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Since the matrices 
32

U,U and P  are unitary, 
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The last inequality follows from the fact  

  I2 222   , which yields that 
2

1
  ,  

1  and 1  

 

 

Theorem 3.2 

Suppose that the matrix equation (1.1) has a positive 

definite solution X , then the following hold:  
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Proof: 

(i):  By Theorem 2.1 we have, )MM(X *  and       
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Then 
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Thus, part (i) is proved. 

 

(ii): Using Theorem 3.1 we get, 
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(iii): Appling Lemma 6 in [20], we get 
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(iv):          
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Therefore,                          

            1XBXABXAXr 2
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. 

 

4-  CONCLUSION 
In this paper both necessary and sufficient 

conditions for the nonlinear matrix equation 

IBXBAXAX 2*2*    to have a positive definite 

solution X  are derived, where A and B   are nn  

nonsingular complex matrices. Some properties on the 

matrices A and B   are presented. Also, relations between 

the positive definite solution X  and the matrices A and B  

are given. 
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