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Abstract - A word, mathematically expressed, is a 

sequence of symbols in a finite set, called an alphabet. 

Parikh matrix is an ingenious tool providing 

information on certain subsequences of a word, 

referred to as subwords. On the other hand, based on 

subwords of a word, the notion of Precedence matrix 

or p-matrix of a word over an alphabet has been 

introduced by A. Cerny (2009) in studying a property, 

known as fair words and it is closely related to Parikh 

matrix. In this paper we consider Precedence matrix 

for words especially over binary, ternary and tertiary 

alphabets and develop algorithm to display of the 

Precedence matrices of words.   

 

Key words - Ternary word, Tertiary word, subword, 

Precedence matrix. 

 

I. INTRODUCTION 

 

The theory of formal languages [5] is one of the 

fundamental areas of theoretical computer science.   

Combinatorics on words [6] is one of the topics of 

study and research (see, for example, [7, 8]) in the 

theory of formal languages but is a comparatively new 

area of research in Discrete Mathematics, with 

applications in many fields. The concept of Parikh 

vector [5], which gives counts of the symbols in a 

word, has been an important notion in the theory of 

formal languages. Extending this concept Mateescu et 

al. [9] introduced the notion of Parikh matrix of a 

word which gives numerical information about certain 

subwords of the word, including the information given 

by the Parikh vector of the word.  A. Cerny [1] 

introduced another notion called precedence matrix or 

p-matrix of a word which is motivated by the notion 

of a fair word.  The main diagonal of this matrix is the 

number of alphabets and the entries above the main 

diagonal provide information on the number of certain 

sub-words in 𝑤 and every entry below the main 

diagonal has the value of reverse the subwords of 

above the main diagonal.  In particular, since the 

structure of words is not reflected by using the 

conventional matrix calculus, as it is the case in Parikh 

matrices. 

Here we consider Precedence matrix and 

developing the algorithm for display Precedence 

matrix of words over binary, ternary and tertiary 

alphabet.   

 

 

II. PRELIMINARIES 

 

A word is a finite sequence of symbols 

taken from a finite set called an alphabet. For 

example the word abaabb is over the binary alphabet 

{a, b}.  An ordered alphabet is an alphabet with an 

ordering on its elements, denoted by the symbol <. 

For example, the ternary alphabet {a, b, c} with an 

ordering a<b<c is an ordered alphabet, denoted as 

{a<b<c}. For a word w, the mirror image or reversal 

of ,1,121   naaaaw nn  is the word 

  121 aaaawmi nn   where each ai is a 

symbol in an alphabet.  A subword u of a given word 

w is a subsequence of w.  We denote the number of 

such subwords u in a given word w by |w|u.  For 

example, if the word is w =abaabb over {a<b}, the 

number of subwords ab in w is |w|ab = 7. The Parikh 

vector [5] of a word w gives the number of 

occurrences of each of the symbols in the word. For 

example, (6, 7, 10) is the Parikh vector of the word 

babcbaacb over the ternary alphabet {a, b, c}. An 

extension of the notion of Parikh vector is the Parikh 

matrix [9] of a word. For a word w over an ordered 

alphabet Σ, the Parikh matrix M(w) of w is a 

triangular matrix, with 1′s on the main diagonal and 

0′s below it but the entries above the main diagonal 

provide information on the number of certain 

subwords in w. For a binary word u over the ordered 

binary alphabet {a<b}, the Parikh matrix is  

.
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The notion of precedence matrix or p-matrix of a 

word over an alphabet has been introduced in [1]. 

Given the square matrices 𝐴, 𝐵  of the same order 

and with integer entries, the matrix BA  is defined 

as follows: the (𝑖, 𝑗)𝑡ℎ  entry of BA  is given by 

 









jiifBABA

jiifBA
BA

jjiiijij

iiii

ij
 ,  

where 𝐴𝑖𝑗 , 𝐵𝑖𝑗  are the (𝑖, 𝑗)𝑡ℎ  entries of 

𝐴, 𝐵 respectively. 
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1) Definition: Let  kaaa ,,, 21  be an 

alphabet.  For a symbol sa for 1 ≤ s ≤ k, let 𝐸𝑎𝑠  

be the k×k matrix defined as   sjiE
jias

 if,1
,

 

and   ,0
,


jias
E  otherwise. The precedence 

morphism (or) p-morphism on Ʃ is the morphism 

𝜑𝑘given by 𝜑𝑘 (as) = 𝐸𝑎𝑠 .  For a word 𝑤 =

 𝑎𝑖1𝑎𝑖2 …𝑎𝑖𝑚 , 𝑎𝑖𝑗 ϵƩ for 1 ≤ j ≤ m, we have 𝜑𝑘 (w) 

=𝜑𝑘 (𝑎𝑖1)  ͦ  𝜑𝑘 (𝑎𝑖2)  ͦ …  ͦ  𝜑𝑘 (𝑎𝑖𝑚 ). In other words 

𝜑𝑘 (w) is computed by the operation ͦ on matrices as 

defined earlier. The resulting matrix 𝜑𝑘 (w) is called 

the precedence matrix or p-matrix of w. 

As an illustration, let  Ʃ =  {𝑎, 𝑏, 𝑐}, so 

that k = 3.  Then 

 

𝜑3(𝑎)= 
1 0 0
0 0 0
0 0 0

 , 𝜑3(𝑏)= 

 
0 0 0
0 1 0
0 0 0

  and      

𝜑3(𝑐)=  
0 0 0
0 0 0
0 0 1

  

 

𝜑3(abcb) =   
1 0 0
0 0 0
0 0 0

   ͦ   
0 0 0
0 1 0
0 0 0

   

ͦ            

                    
0 0 0
0 0 0
0 0 1

    ͦ   
0 0 0
0 1 0
0 0 0
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In fact the p-matrix 𝜑3 for a ternary word 𝑤  

over {a, b, c} is  given by  

𝜑3(w) =   

|𝑤|𝑎 |𝑤|𝑎𝑏 |𝑤|𝑎𝑐
|𝑤|𝑏𝑎 |𝑤|𝑏 |𝑤|𝑏𝑐
|𝑤|𝑐𝑎 |𝑤|𝑐𝑏 |𝑤|𝑐

  

while the p-matrix  w2   for a binary word 

𝑤 over {a, b} is given by 

  .
||||

||||
2 










bba

aba

ww

ww
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Where |𝑤|𝑎  is the number of 𝑎 in 𝑤, |𝑤|𝑏 is the 

number of 𝑏 in 𝑤, |𝑤|𝑐  is the number of 𝑐 in 𝑤, 

|𝑤|𝑎𝑏  is the number of 𝑎𝑏 in 𝑤, similarly |𝑤|𝑏𝑐 , 

|𝑤|𝑎𝑐 , |𝑤|𝑏𝑎 , |𝑤|𝑐𝑏  and |𝑤|𝑐𝑎 are the number of 

𝑏𝑐, 𝑎𝑐, 𝑏𝑎, 𝑐𝑏 and 𝑎𝑐 in 𝑤 respectively.   

2) Theorem: Let Ʃ = {𝑎1, 𝑎2, … , 𝑎𝑘} be an  

ordered alphabet.  For each word 𝑤 over  with 

Precedence matrix 𝜑(𝑤), we have, 

 














jiifBABA

jiifBA

BA

jjiiijij

iiii

ij  

 𝜑(𝑤)𝑖,𝑗 = |𝑤|𝑎𝑖 ,   𝑖 = 𝑗; 

and 𝜑(𝑤)𝑖,𝑗 = |𝑤|𝑎𝑖𝑎𝑗 ,   𝑖 ≠ 𝑗;  

where 𝜑(𝑤)𝑖,𝑗 is the (𝑖, 𝑗)𝑡ℎ  entry of the 

matrix 𝜑(𝑤). 

 

III. ALGORITHM TO DISPLAY 

PRECEDENCE MATRIX 

CORRESPONDING TO A WORD 

 

There are many methods by which we 

can form the Precedence matrix of binary, ternary 

and tertiary words, for example Precedence 

matrix product and use of various tools of 

computing Precedence matrix product etc. Here 

an algorithm for finding Precedence matrix of a 

binary, ternary and tertiary word is introduced. 

With the help of this algorithm Precedence matrix 

of a binary, ternary and tertiary word, however 

large it may be can be found out. 

 

A. Algorithm for binary word of Precedence 

matrix 

The following pseudo code gives instantly 

the precedence matrix of a binary sequence. 

01 Initialize a word = ‘𝑤’ 

02 Set len = length of 𝑤 

03 For 𝑖 =  0 to lendo 

04 Calculate total number of 𝑎, 𝑎𝑏 in 

𝑤 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 52 Number 1 December 2017 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 42 

05  Calculate total number of 𝑏, 𝑏𝑎 in 

𝑤 

06 End 

// Create a matrix (𝑎𝑖𝑗 ) of order 𝑀(=

2) 

07 For 𝑖 =  0 to 𝑀 do 

08 For 𝑗 =  0 to 𝑀 do 

09 If (𝑖 =  𝑗) 

10  If (𝑖 =  0 & 𝑗 =  0) 

11       𝑎𝑖𝑗  = total number of  

‘𝑎’ 

12  If (𝑖 =  1 & 𝑗 =  1)  

13       𝑎𝑖𝑗  = total number of  

‘𝑏’ 

14 else if (𝑖 <  𝑗) 

15  If (𝑖 =  0 & 𝑗 =  1) 

16       𝑎𝑖𝑗  = total number of  

‘𝑎𝑏’ 

17 else if (𝑖 >  𝑗) 

18  If (𝑖 =  1 & 𝑗 =  0) 

19       𝑎𝑖𝑗  = total number of  

‘𝑏𝑎’ 

20   End   

21  End 

22 End 

B. Application of binary word Algorithm 

1) Example  
 

The binary word 𝜉1 = 𝑎𝑏𝑎𝑏 𝑎…𝑎   
10

𝑏…𝑏   
20

 

has the Precedence matrix 
 

𝜑𝑀2
 𝜉1 =  

12 242
21 22

  

 

 

2) Example  
 

The binary word 

𝜉1 = 𝑏…𝑏   
15

𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏 𝑎…𝑎   
10

 has the 

Precedence matrix 
 

𝜑𝑀2
 𝜉1 =  

14 10
250 19

  

 

C. Algorithm for ternary word of 

Precedence matrix 

The following pseudo code gives instantly 

the precedence matrix of a ternary sequence. 

01 Initialize a word = ‘𝑤’ 

02 Set len = length of 𝑤 

03 For 𝑖 =  0 to lendo 

04 Calculate total number of 𝑎, 𝑎𝑏, 𝑎𝑐 in 

𝑤 

05 Calculate total number of 𝑏, 𝑏𝑎, 𝑏𝑐 in 

𝑤 

06 Calculate total number of 𝑐, 𝑐𝑎, 𝑐𝑏 in 

𝑤 

07 End 

// Create a matrix (𝑎𝑖𝑗 ) of order 𝑀(=

3) 

08 For 𝑖 =  0 to 𝑀 do 

09 For 𝑗 =  0 to 𝑀 do 

10 If (𝑖 =  𝑗) 

11  If (𝑖 =  0 & 𝑗 =  0) 

12   𝑎𝑖𝑗  = total number of ‘𝑎’ 

13  If (𝑖 =  1 & 𝑗 =  1)  

14   𝑎𝑖𝑗  = total number of ‘𝑏’ 

15  If (𝑖 =  2 & 𝑗 =  2)  

16   𝑎𝑖𝑗  = total number of  ‘𝑐’ 

17   else if (𝑖 <  𝑗) 
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18   If (𝑖 =  0 & 𝑗 =  1) 

19       𝑎𝑖𝑗  = total number of  ‘𝑎𝑏’ 

20  If (𝑖 =  0 & 𝑗 =  2) 

21         𝑎𝑖𝑗  = total number of  ‘𝑎𝑐’ 

22  If (𝑖 =  1 & 𝑗 =  2) 

23       𝑎𝑖𝑗  = total number of  ‘𝑏𝑐’ 

24   else if (𝑖 >  𝑗) 

25  If (𝑖 =  1 & 𝑗 =  0) 

26       𝑎𝑖𝑗  = total number of  ‘𝑏𝑎’ 

27  If (𝑖 =  2 & 𝑗 =  0) 

28       𝑎𝑖𝑗  = total number of  ‘𝑐𝑎’ 

29  If (𝑖 =  2 & 𝑗 =  1) 

30       𝑎𝑖𝑗  = total number of  ‘𝑐𝑏’ 

31   End   

32  End 

33 End 

D. Application of ternary word Algorithm 

1) Example  
 

The ternary word     

 𝜉1 = 𝑎𝑏𝑐𝑎𝑏𝑐 𝑎 …𝑎   
10

𝑏…𝑏   
15

𝑐 … 𝑐 
5

 has the 

Precedence matrix 

 

𝜑𝑀3
 𝜉2 =  

12 183 83
21 17 88
21 31 7

  

2) Example  
 

The ternary word  

𝜉1 =
𝑏…𝑏   

15

𝑎𝑏𝑐𝑎𝑏𝑐𝑎𝑏𝑐𝑎𝑏𝑐 𝑐 …𝑐 
5

𝑎…𝑎   
10

 has 

the Precedence matrix 
 

𝜑𝑀3
 𝜉2 =  

14 10 83
21 19 88
21 31 14

  

E. Algorithm for tertiary word of 

Precedence matrix 

The following pseudo code gives instantly 

the precedence matrix of a tertiary sequence. 

01 Initialize a word = ‘𝑤’ 

02 Set len = length of 𝑤 

03 For 𝑖 =  0 to lendo 

04 Calculate total number of 

𝑎, 𝑎𝑏, 𝑎𝑐, 𝑎𝑑 in 𝑤 

05 Calculate total number of 

𝑏, 𝑏𝑎, 𝑏𝑐, 𝑏𝑑 in 𝑤 

06 Calculate total number of 

𝑐, 𝑐𝑎, 𝑐𝑏, 𝑐𝑑 in 𝑤 

07 Calculate total number of 

𝑑, 𝑑𝑎, 𝑑𝑏, 𝑑𝑐 in 𝑤 

08 End 

// Create a matrix (𝑎𝑖𝑗 ) of order 𝑀(=

4) 

09 For 𝑖 =  0 to 𝑀 do 

10 For 𝑗 =  0 to 𝑀 do 

11 If (𝑖 =  𝑗) 

12 If (𝑖 =  0 & 𝑗 =  0) 

13      𝑎𝑖𝑗  = total number of  ‘𝑎’ 

14 If (𝑖 =  1 & 𝑗 =  1)  

15      𝑎𝑖𝑗  = total number of  ‘𝑏’ 

16 If (𝑖 =  2 & 𝑗 =  2)  

17      𝑎𝑖𝑗  = total number of  ‘𝑐’ 

18 If (𝑖 =  3 & 𝑗 =  3)  

 

19      𝑎𝑖𝑗  = total number of  ‘𝑑’ 

 20               else if (𝑖 <  𝑗) 

 21   If (𝑖 =  0 & 𝑗 =  1) 

22       𝑎𝑖𝑗  = total number of  ‘𝑎𝑏’ 
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23         else if (𝑖 =  0 & 𝑗 =  2) 

    

24       𝑎𝑖𝑗  = total number of  ‘𝑎𝑐’ 

 25            else if (𝑖 =  0 & 𝑗 =  3) 

 26                 𝑎𝑖𝑗  = total number of  ‘𝑎𝑑’ 

 27 else if (𝑖 =  1 & 𝑗 =  2) 

 28        𝑎𝑖𝑗  = total number of  ‘𝑏𝑐’ 

 29           else if (𝑖 =  1 & 𝑗 =  3) 

 30      𝑎𝑖𝑗  = total number of  ‘𝑏𝑑’ 

 31           else if (𝑖 =  2 & 𝑗 =  3) 

 32      𝑎𝑖𝑗  = total number of  ‘𝑐𝑑’ 

 33 else if (𝑖 >  𝑗) 

 34      If (𝑖 =  1 & 𝑗 =  0) 

 35                    𝑎𝑖𝑗  = total number of  ‘𝑏𝑎’ 

 36      If (𝑖 =  2 & 𝑗 =  0) 

 37            𝑎𝑖𝑗  = total number of  ‘𝑐𝑎’ 

 38      If (𝑖 =  2 & 𝑗 =  1) 

 39              𝑎𝑖𝑗  = total number of  ‘𝑐𝑏’ 

 40               If (𝑖 =  3 & 𝑗 =  0) 

 41           𝑎𝑖𝑗  = total number of  ‘𝑑𝑎’ 

 42         If (𝑖 =  3 & 𝑗 =  1) 

 43           𝑎𝑖𝑗  = total number of  ‘𝑑𝑏’ 

 44               If (𝑖 =  3 & 𝑗 =  2) 

 45           𝑎𝑖𝑗  = total number of  ‘𝑑𝑐’ 

 46 End   

 47              End 

 48       End 

F. Application of tertiary word Algorithm 

1) Example:   The tertiary word  

𝜉3 =
𝑎𝑏𝑐𝑑𝑎𝑏𝑐𝑑 𝑎…𝑎   

10

𝑏…𝑏   
15

𝑐 … 𝑐 
5

𝑑 …𝑑   
5

 has 

the Precedence matrix 

 

𝜑𝑀4
 𝜉3 =  

12 183
21 17

83 83
88 88

21 31
21 31

7 38
11 7

  

 

2) Example: The tertiary word  

𝜉3 =
𝑏…𝑏   

15

𝑑 …𝑑   
5

𝑎𝑏𝑐𝑑𝑎𝑏𝑐𝑑𝑎𝑏𝑐𝑑𝑎𝑏𝑐𝑑 𝑐 … 𝑐 
5

𝑎…𝑎   
10

  

has the Precedence matrix 

 

𝜑𝑀4
 𝜉3 =  

14 10
21 19

83 83
88 88

21 31
21 31

9 38
11 9

  

F. Algorithm for 𝒌-letter words of 

Precedence matrix 

The following pseudo code gives instantly 

the precedence matrix of a 𝑘-sequence. 

01 Initialize a word = ‘𝑤’ 

02 Set 𝑘 = length of w 

03 For 𝑖 =  0 to 𝑘 do 

04 Calculate total number of 

𝑎𝑖 , 𝑎𝑖𝑎𝑖+1, … , 𝑎𝑖𝑎𝑖+𝑘  in 𝑤 

05 Calculate total number of 

𝑎𝑖𝑎𝑖−1, … , 𝑎𝑖𝑎𝑖−𝑘  in 𝑤 

06 End 

// Create a matrix (𝑎𝑖𝑗 ) of order 𝑀(=

𝑘) 

07 For 𝑖 =  0 to 𝑘 do 

08 For 𝑗 =  0 to 𝑘 do 

09 If (𝑖 =  𝑗) 

10      𝑎𝑖𝑗  = total number of  ‘𝑎𝑖 ’ 

11 else if (𝑖 <  𝑗) 

12      𝑎𝑖𝑗  = total number of  ‘𝑎𝑖𝑎𝑗 ’ 
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13 else if (𝑖 >  𝑗) 

14      𝑎𝑖𝑗  = total number of  ‘𝑎𝑗𝑎𝑖 ’ 

15 End   

16 End 

IV. CONCLUSION 

Here we consider a Precedence matrix 

similar to Parikh Matrix.  In this paper we have given 

algorithm for finding the Precedence matrix 

corresponding to a word.  This helps us to find 

Precedence matrix of binary, ternary and tertiary word 

big or small instantly.   
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VI. APPENDIX 

In this section we are given Programme for 

algorithm for ternary word of Precedence matrix in 

Java coding 
 

 

publicclass TEST1 { 

 

 publicstaticvoid main(String[] 

args) { 

 

 String input = "abcabbaccac"; 

 charinputData[] = 

input.toCharArray(); 

 intlength = inputData.length; 

 intaCount=0; 

 intbCount=0; 

 intcCount=0; 

 //To count a,b,c 

 for(inti=0;i<length;i++){ 

 

 charc=Character.toLowerCase(in

putData[i]); 

  switch(c){ 

   case'a': 

   aCount++; 

   break; 

   case'b': 

   bCount++; 

   break; 

    

case'c': 

   cCount++; 

   break; 

  } 

 }  

  

 charfindMe='b';charfindFromMe=

'a';intposition=0; 

 intabCount=0; 

 for(inti=0;i<length;i++){ 

  if(findFromMe == 

Character.toLowerCase(inputData[i]))

{ 

  

 for(intj=position;j<length;j++

){ 

   

 if(findMe==Character.toLowerCa

se(inputData[j])){ 

    

 abCount++; 

    } 

   } 

  } 

  position++; 

 } 

  

 findMe='c';findFromMe='a';posi

tion=0;intacCount=0; 

 for(inti=0;i<length; i++){ 

 

 if(findFromMe==Character.toLow

erCase(inputData[i])){ 

  

 for(intj=position;j<length;j++

){ 
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 if(findMe==Character.toLowerCa

se(inputData[j])){ 

    

 acCount++; 

    } 

   } 

  } 

position++; 

   }  

 

 findMe='a';findFromMe='b';posi

tion=0;intbaCount=0; 

 for(inti=0;i<length;i++){ 

 

 if(findFromMe==Character.toLow

erCase(inputData[i])){ 

  

 for(intj=position;j<length;j++

){ 

    if(findMe == 

Character.toLowerCase(inputData[j]))

{ 

    

 baCount++; 

    } 

   } 

  } 

  position++; 

 } 

  

 findMe='c';findFromMe='b';posi

tion=0;intbcCount=0; 

 for(inti=0;i<length;i++){ 

 

 if(findFromMe==Character.toLow

erCase(inputData[i])){ 

  

 for(intj=position;j<length;j++

){ 

    if(findMe == 

Character.toLowerCase(inputData[j]))

{ 

    

 bcCount++; 

    } 

   } 

  } 

  position++; 

 } 

  

 findMe='a';findFromMe='c';posi

tion=0;intcaCount=0; 

 for(inti=0;i<length;i++){ 

 

 if(findFromMe==Character.toLow

erCase(inputData[i])){ 

  

 for(intj=position;j<length;j++

){ 

    if(findMe == 

Character.toLowerCase(inputData[j]))

{ 

    

 caCount++; 

    } 

   } 

  } 

  position++; 

 } 

 

 findMe='b';findFromMe='c';posi

tion=0;intcbCount=0; 

 for(inti=0;i<length;i++){ 

 

 if(findFromMe==Character.toLow

erCase(inputData[i])){ 

  

 for(intj=position;j<length;j++

){ 

    if(findMe == 

Character.toLowerCase(inputData[j]))

{ 

    

 cbCount++; 

    } 

   } 

  } 

  position++; 

 } 

 

 for(inti=0;i<3;i++){ 

  for(intj=0;j<3;j++){ 

   if(i==j){ 

    if(j==0) 

    

 System.out.print(aCount+"\t"); 

    elseif(j==1)  

    

 System.out.print(bCount+"\t"); 

    elseif(j==2)  

    

 System.out.print(cCount+"\t"); 

    }elseif 

(i==0 &&j==1){ 

    

 System.out.print(abCount+"\t")

; 

    }elseif 

(i==0 &&j==2){ 

    

 System.out.print(acCount+"\n")

; 

    }elseif 

(i==1 &&j==0){ 

    

 System.out.print(baCount+"\t")

; 

    }elseif 

(i==1 &&j==2){ 
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 System.out.print(bcCount+"\n")

; 

    }elseif 

(i==2 &&j==0){ 

    

 System.out.print(caCount+"\t")

; 

    }elseif 

(i==2 &&j==1){ 

    

 System.out.print(cbCount+"\t")

; 

    } 

   } 

  } 

 } 

 

} 

OUTPUT 

4 5 11 

7 3 10 

5 2 4 

 


