
International Journal of Mathematics Trends and Technology (IJMTT) – Volume 52 Number 1 December 2017

ISSN: 2231-5373 http://www.ijmttjournal.org Page 40

Precedence Matrices and words over some

ordered alphabet
R. Stella Maragatham

1
, V. Nithya Vani*

2

 1,2
Department of Mathematics, Queen Mary’s College, Chennai 600004 India,

* Ph.D Research Scholar, Department of Mathematics, Queen Mary’s College, Chennai

Abstract - A word, mathematically expressed, is a

sequence of symbols in a finite set, called an alphabet.

Parikh matrix is an ingenious tool providing

information on certain subsequences of a word,

referred to as subwords. On the other hand, based on

subwords of a word, the notion of Precedence matrix

or p-matrix of a word over an alphabet has been

introduced by A. Cerny (2009) in studying a property,

known as fair words and it is closely related to Parikh

matrix. In this paper we consider Precedence matrix

for words especially over binary, ternary and tertiary

alphabets and develop algorithm to display of the

Precedence matrices of words.

Key words - Ternary word, Tertiary word, subword,

Precedence matrix.

I. INTRODUCTION

The theory of formal languages [5] is one of the

fundamental areas of theoretical computer science.

Combinatorics on words [6] is one of the topics of

study and research (see, for example, [7, 8]) in the

theory of formal languages but is a comparatively new

area of research in Discrete Mathematics, with

applications in many fields. The concept of Parikh

vector [5], which gives counts of the symbols in a

word, has been an important notion in the theory of

formal languages. Extending this concept Mateescu et

al. [9] introduced the notion of Parikh matrix of a

word which gives numerical information about certain

subwords of the word, including the information given

by the Parikh vector of the word. A. Cerny [1]

introduced another notion called precedence matrix or

p-matrix of a word which is motivated by the notion

of a fair word. The main diagonal of this matrix is the

number of alphabets and the entries above the main

diagonal provide information on the number of certain

sub-words in 𝑤 and every entry below the main

diagonal has the value of reverse the subwords of

above the main diagonal. In particular, since the

structure of words is not reflected by using the

conventional matrix calculus, as it is the case in Parikh

matrices.

Here we consider Precedence matrix and

developing the algorithm for display Precedence

matrix of words over binary, ternary and tertiary

alphabet.

II. PRELIMINARIES

A word is a finite sequence of symbols

taken from a finite set called an alphabet. For

example the word abaabb is over the binary alphabet

{a, b}. An ordered alphabet is an alphabet with an

ordering on its elements, denoted by the symbol <.

For example, the ternary alphabet {a, b, c} with an

ordering a<b<c is an ordered alphabet, denoted as

{a<b<c}. For a word w, the mirror image or reversal

of ,1,121   naaaaw nn is the word

  121 aaaawmi nn  where each ai is a

symbol in an alphabet. A subword u of a given word

w is a subsequence of w. We denote the number of

such subwords u in a given word w by |w|u. For

example, if the word is w =abaabb over {a<b}, the

number of subwords ab in w is |w|ab = 7. The Parikh

vector [5] of a word w gives the number of

occurrences of each of the symbols in the word. For

example, (6, 7, 10) is the Parikh vector of the word

babcbaacb over the ternary alphabet {a, b, c}. An

extension of the notion of Parikh vector is the Parikh

matrix [9] of a word. For a word w over an ordered

alphabet Σ, the Parikh matrix M(w) of w is a

triangular matrix, with 1′s on the main diagonal and

0′s below it but the entries above the main diagonal

provide information on the number of certain

subwords in w. For a binary word u over the ordered

binary alphabet {a<b}, the Parikh matrix is

.

100

||10

||||1

)(
















 b

aba

u

uu

uM

The notion of precedence matrix or p-matrix of a

word over an alphabet has been introduced in [1].

Given the square matrices 𝐴, 𝐵 of the same order

and with integer entries, the matrix BA is defined

as follows: the (𝑖, 𝑗)𝑡ℎ entry of BA is given by

 









jiifBABA

jiifBA
BA

jjiiijij

iiii

ij
 ,

where 𝐴𝑖𝑗 , 𝐵𝑖𝑗 are the (𝑖, 𝑗)𝑡ℎ entries of

𝐴, 𝐵 respectively.

International Journal of Mathematics Trends and Technology (IJMTT) – Volume 52 Number 1 December 2017

ISSN: 2231-5373 http://www.ijmttjournal.org Page 41

1) Definition: Let  kaaa ,,, 21  be an

alphabet. For a symbol sa for 1 ≤ s ≤ k, let 𝐸𝑎𝑠

be the k×k matrix defined as   sjiE
jias

 if,1
,

and   ,0
,


jias
E otherwise. The precedence

morphism (or) p-morphism on Ʃ is the morphism

𝜑𝑘given by 𝜑𝑘 (as) = 𝐸𝑎𝑠 . For a word 𝑤 =

 𝑎𝑖1𝑎𝑖2 …𝑎𝑖𝑚 , 𝑎𝑖𝑗 ϵƩ for 1 ≤ j ≤ m, we have 𝜑𝑘 (w)

=𝜑𝑘 (𝑎𝑖1) ͦ 𝜑𝑘 (𝑎𝑖2) ͦ … ͦ 𝜑𝑘 (𝑎𝑖𝑚). In other words

𝜑𝑘 (w) is computed by the operation ͦ on matrices as

defined earlier. The resulting matrix 𝜑𝑘 (w) is called

the precedence matrix or p-matrix of w.

As an illustration, let Ʃ = {𝑎, 𝑏, 𝑐}, so

that k = 3. Then

𝜑3(𝑎)=
1 0 0
0 0 0
0 0 0

 , 𝜑3(𝑏)=

0 0 0
0 1 0
0 0 0

 and

𝜑3(𝑐)=
0 0 0
0 0 0
0 0 1

𝜑3(abcb) =
1 0 0
0 0 0
0 0 0

 ͦ
0 0 0
0 1 0
0 0 0

ͦ

0 0 0
0 0 0
0 0 1

 ͦ
0 0 0
0 1 0
0 0 0

.

110

120

121



















In fact the p-matrix 𝜑3 for a ternary word 𝑤

over {a, b, c} is given by

𝜑3(w) =

|𝑤|𝑎 |𝑤|𝑎𝑏 |𝑤|𝑎𝑐
|𝑤|𝑏𝑎 |𝑤|𝑏 |𝑤|𝑏𝑐
|𝑤|𝑐𝑎 |𝑤|𝑐𝑏 |𝑤|𝑐

while the p-matrix  w2 for a binary word

𝑤 over {a, b} is given by

  .
||||

||||
2 










bba

aba

ww

ww
w

Where |𝑤|𝑎 is the number of 𝑎 in 𝑤, |𝑤|𝑏 is the

number of 𝑏 in 𝑤, |𝑤|𝑐 is the number of 𝑐 in 𝑤,

|𝑤|𝑎𝑏 is the number of 𝑎𝑏 in 𝑤, similarly |𝑤|𝑏𝑐 ,

|𝑤|𝑎𝑐 , |𝑤|𝑏𝑎 , |𝑤|𝑐𝑏 and |𝑤|𝑐𝑎 are the number of

𝑏𝑐, 𝑎𝑐, 𝑏𝑎, 𝑐𝑏 and 𝑎𝑐 in 𝑤 respectively.

2) Theorem: Let Ʃ = {𝑎1, 𝑎2, … , 𝑎𝑘} be an

ordered alphabet. For each word 𝑤 over with

Precedence matrix 𝜑(𝑤), we have,

 














jiifBABA

jiifBA

BA

jjiiijij

iiii

ij

 𝜑(𝑤)𝑖,𝑗 = |𝑤|𝑎𝑖 , 𝑖 = 𝑗;

and 𝜑(𝑤)𝑖,𝑗 = |𝑤|𝑎𝑖𝑎𝑗 , 𝑖 ≠ 𝑗;

where 𝜑(𝑤)𝑖,𝑗 is the (𝑖, 𝑗)𝑡ℎ entry of the

matrix 𝜑(𝑤).

III. ALGORITHM TO DISPLAY

PRECEDENCE MATRIX

CORRESPONDING TO A WORD

There are many methods by which we

can form the Precedence matrix of binary, ternary

and tertiary words, for example Precedence

matrix product and use of various tools of

computing Precedence matrix product etc. Here

an algorithm for finding Precedence matrix of a

binary, ternary and tertiary word is introduced.

With the help of this algorithm Precedence matrix

of a binary, ternary and tertiary word, however

large it may be can be found out.

A. Algorithm for binary word of Precedence

matrix

The following pseudo code gives instantly

the precedence matrix of a binary sequence.

01 Initialize a word = ‘𝑤’

02 Set len = length of 𝑤

03 For 𝑖 = 0 to lendo

04 Calculate total number of 𝑎, 𝑎𝑏 in

𝑤

International Journal of Mathematics Trends and Technology (IJMTT) – Volume 52 Number 1 December 2017

ISSN: 2231-5373 http://www.ijmttjournal.org Page 42

05 Calculate total number of 𝑏, 𝑏𝑎 in

𝑤

06 End

// Create a matrix (𝑎𝑖𝑗) of order 𝑀(=

2)

07 For 𝑖 = 0 to 𝑀 do

08 For 𝑗 = 0 to 𝑀 do

09 If (𝑖 = 𝑗)

10 If (𝑖 = 0 & 𝑗 = 0)

11 𝑎𝑖𝑗 = total number of

‘𝑎’

12 If (𝑖 = 1 & 𝑗 = 1)

13 𝑎𝑖𝑗 = total number of

‘𝑏’

14 else if (𝑖 < 𝑗)

15 If (𝑖 = 0 & 𝑗 = 1)

16 𝑎𝑖𝑗 = total number of

‘𝑎𝑏’

17 else if (𝑖 > 𝑗)

18 If (𝑖 = 1 & 𝑗 = 0)

19 𝑎𝑖𝑗 = total number of

‘𝑏𝑎’

20 End

21 End

22 End

B. Application of binary word Algorithm

1) Example

The binary word 𝜉1 = 𝑎𝑏𝑎𝑏 𝑎…𝑎
10

𝑏…𝑏
20

has the Precedence matrix

𝜑𝑀2
 𝜉1 =

12 242
21 22

2) Example

The binary word

𝜉1 = 𝑏…𝑏
15

𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏 𝑎…𝑎
10

 has the

Precedence matrix

𝜑𝑀2
 𝜉1 =

14 10
250 19

C. Algorithm for ternary word of

Precedence matrix

The following pseudo code gives instantly

the precedence matrix of a ternary sequence.

01 Initialize a word = ‘𝑤’

02 Set len = length of 𝑤

03 For 𝑖 = 0 to lendo

04 Calculate total number of 𝑎, 𝑎𝑏, 𝑎𝑐 in

𝑤

05 Calculate total number of 𝑏, 𝑏𝑎, 𝑏𝑐 in

𝑤

06 Calculate total number of 𝑐, 𝑐𝑎, 𝑐𝑏 in

𝑤

07 End

// Create a matrix (𝑎𝑖𝑗) of order 𝑀(=

3)

08 For 𝑖 = 0 to 𝑀 do

09 For 𝑗 = 0 to 𝑀 do

10 If (𝑖 = 𝑗)

11 If (𝑖 = 0 & 𝑗 = 0)

12 𝑎𝑖𝑗 = total number of ‘𝑎’

13 If (𝑖 = 1 & 𝑗 = 1)

14 𝑎𝑖𝑗 = total number of ‘𝑏’

15 If (𝑖 = 2 & 𝑗 = 2)

16 𝑎𝑖𝑗 = total number of ‘𝑐’

17 else if (𝑖 < 𝑗)

International Journal of Mathematics Trends and Technology (IJMTT) – Volume 52 Number 1 December 2017

ISSN: 2231-5373 http://www.ijmttjournal.org Page 43

18 If (𝑖 = 0 & 𝑗 = 1)

19 𝑎𝑖𝑗 = total number of ‘𝑎𝑏’

20 If (𝑖 = 0 & 𝑗 = 2)

21 𝑎𝑖𝑗 = total number of ‘𝑎𝑐’

22 If (𝑖 = 1 & 𝑗 = 2)

23 𝑎𝑖𝑗 = total number of ‘𝑏𝑐’

24 else if (𝑖 > 𝑗)

25 If (𝑖 = 1 & 𝑗 = 0)

26 𝑎𝑖𝑗 = total number of ‘𝑏𝑎’

27 If (𝑖 = 2 & 𝑗 = 0)

28 𝑎𝑖𝑗 = total number of ‘𝑐𝑎’

29 If (𝑖 = 2 & 𝑗 = 1)

30 𝑎𝑖𝑗 = total number of ‘𝑐𝑏’

31 End

32 End

33 End

D. Application of ternary word Algorithm

1) Example

The ternary word

 𝜉1 = 𝑎𝑏𝑐𝑎𝑏𝑐 𝑎 …𝑎
10

𝑏…𝑏
15

𝑐 … 𝑐
5

 has the

Precedence matrix

𝜑𝑀3
 𝜉2 =

12 183 83
21 17 88
21 31 7

2) Example

The ternary word

𝜉1 =
𝑏…𝑏

15

𝑎𝑏𝑐𝑎𝑏𝑐𝑎𝑏𝑐𝑎𝑏𝑐 𝑐 …𝑐
5

𝑎…𝑎
10

 has

the Precedence matrix

𝜑𝑀3
 𝜉2 =

14 10 83
21 19 88
21 31 14

E. Algorithm for tertiary word of

Precedence matrix

The following pseudo code gives instantly

the precedence matrix of a tertiary sequence.

01 Initialize a word = ‘𝑤’

02 Set len = length of 𝑤

03 For 𝑖 = 0 to lendo

04 Calculate total number of

𝑎, 𝑎𝑏, 𝑎𝑐, 𝑎𝑑 in 𝑤

05 Calculate total number of

𝑏, 𝑏𝑎, 𝑏𝑐, 𝑏𝑑 in 𝑤

06 Calculate total number of

𝑐, 𝑐𝑎, 𝑐𝑏, 𝑐𝑑 in 𝑤

07 Calculate total number of

𝑑, 𝑑𝑎, 𝑑𝑏, 𝑑𝑐 in 𝑤

08 End

// Create a matrix (𝑎𝑖𝑗) of order 𝑀(=

4)

09 For 𝑖 = 0 to 𝑀 do

10 For 𝑗 = 0 to 𝑀 do

11 If (𝑖 = 𝑗)

12 If (𝑖 = 0 & 𝑗 = 0)

13 𝑎𝑖𝑗 = total number of ‘𝑎’

14 If (𝑖 = 1 & 𝑗 = 1)

15 𝑎𝑖𝑗 = total number of ‘𝑏’

16 If (𝑖 = 2 & 𝑗 = 2)

17 𝑎𝑖𝑗 = total number of ‘𝑐’

18 If (𝑖 = 3 & 𝑗 = 3)

19 𝑎𝑖𝑗 = total number of ‘𝑑’

 20 else if (𝑖 < 𝑗)

 21 If (𝑖 = 0 & 𝑗 = 1)

22 𝑎𝑖𝑗 = total number of ‘𝑎𝑏’

International Journal of Mathematics Trends and Technology (IJMTT) – Volume 52 Number 1 December 2017

ISSN: 2231-5373 http://www.ijmttjournal.org Page 44

23 else if (𝑖 = 0 & 𝑗 = 2)

24 𝑎𝑖𝑗 = total number of ‘𝑎𝑐’

 25 else if (𝑖 = 0 & 𝑗 = 3)

 26 𝑎𝑖𝑗 = total number of ‘𝑎𝑑’

 27 else if (𝑖 = 1 & 𝑗 = 2)

 28 𝑎𝑖𝑗 = total number of ‘𝑏𝑐’

 29 else if (𝑖 = 1 & 𝑗 = 3)

 30 𝑎𝑖𝑗 = total number of ‘𝑏𝑑’

 31 else if (𝑖 = 2 & 𝑗 = 3)

 32 𝑎𝑖𝑗 = total number of ‘𝑐𝑑’

 33 else if (𝑖 > 𝑗)

 34 If (𝑖 = 1 & 𝑗 = 0)

 35 𝑎𝑖𝑗 = total number of ‘𝑏𝑎’

 36 If (𝑖 = 2 & 𝑗 = 0)

 37 𝑎𝑖𝑗 = total number of ‘𝑐𝑎’

 38 If (𝑖 = 2 & 𝑗 = 1)

 39 𝑎𝑖𝑗 = total number of ‘𝑐𝑏’

 40 If (𝑖 = 3 & 𝑗 = 0)

 41 𝑎𝑖𝑗 = total number of ‘𝑑𝑎’

 42 If (𝑖 = 3 & 𝑗 = 1)

 43 𝑎𝑖𝑗 = total number of ‘𝑑𝑏’

 44 If (𝑖 = 3 & 𝑗 = 2)

 45 𝑎𝑖𝑗 = total number of ‘𝑑𝑐’

 46 End

 47 End

 48 End

F. Application of tertiary word Algorithm

1) Example: The tertiary word

𝜉3 =
𝑎𝑏𝑐𝑑𝑎𝑏𝑐𝑑 𝑎…𝑎

10

𝑏…𝑏
15

𝑐 … 𝑐
5

𝑑 …𝑑
5

 has

the Precedence matrix

𝜑𝑀4
 𝜉3 =

12 183
21 17

83 83
88 88

21 31
21 31

7 38
11 7

2) Example: The tertiary word

𝜉3 =
𝑏…𝑏

15

𝑑 …𝑑
5

𝑎𝑏𝑐𝑑𝑎𝑏𝑐𝑑𝑎𝑏𝑐𝑑𝑎𝑏𝑐𝑑 𝑐 … 𝑐
5

𝑎…𝑎
10

has the Precedence matrix

𝜑𝑀4
 𝜉3 =

14 10
21 19

83 83
88 88

21 31
21 31

9 38
11 9

F. Algorithm for 𝒌-letter words of

Precedence matrix

The following pseudo code gives instantly

the precedence matrix of a 𝑘-sequence.

01 Initialize a word = ‘𝑤’

02 Set 𝑘 = length of w

03 For 𝑖 = 0 to 𝑘 do

04 Calculate total number of

𝑎𝑖 , 𝑎𝑖𝑎𝑖+1, … , 𝑎𝑖𝑎𝑖+𝑘 in 𝑤

05 Calculate total number of

𝑎𝑖𝑎𝑖−1, … , 𝑎𝑖𝑎𝑖−𝑘 in 𝑤

06 End

// Create a matrix (𝑎𝑖𝑗) of order 𝑀(=

𝑘)

07 For 𝑖 = 0 to 𝑘 do

08 For 𝑗 = 0 to 𝑘 do

09 If (𝑖 = 𝑗)

10 𝑎𝑖𝑗 = total number of ‘𝑎𝑖 ’

11 else if (𝑖 < 𝑗)

12 𝑎𝑖𝑗 = total number of ‘𝑎𝑖𝑎𝑗 ’

International Journal of Mathematics Trends and Technology (IJMTT) – Volume 52 Number 1 December 2017

ISSN: 2231-5373 http://www.ijmttjournal.org Page 45

13 else if (𝑖 > 𝑗)

14 𝑎𝑖𝑗 = total number of ‘𝑎𝑗𝑎𝑖 ’

15 End

16 End

IV. CONCLUSION

Here we consider a Precedence matrix

similar to Parikh Matrix. In this paper we have given

algorithm for finding the Precedence matrix

corresponding to a word. This helps us to find

Precedence matrix of binary, ternary and tertiary word

big or small instantly.

V. REFERENCES

[1] A. Cerny, ―On fair words‖ Journal of Automata, Languages
and Combinatorics., 14 (2), pp 163-174, 2009.

[2] A. Bhattacharjee, B. S. Purkayastha, ―Some alternative ways
to find M-ambiguous binary words corresponding to a Parikh

Matrix‖, Int. J. of Computer Applications, Vol 4 No.1 pp 53–64,

2014.

[3] A. Bhattacharjee, B. S. Purkayastha, ―Parikh Matrices and

Words over Ternary Ordered Alphabet‖ P

roceedings of fourth International Conference on Soft computing

for Problem Solving, Vol 1(AISC, Vol 335) pp135–145, 2014.

[4] A. Bhattacharjee, B. S. Purkayastha, ―Parikh Matrices and

Words over Tertiary Ordered Alphabet‖, Int. J. of Computer
Applications, Vol 85, No.4, pp10–15, 2014.

[5] A. Mateescu, A. Salomaa, K. Salomaa and S. Yu, A
Sharpening of the Parikh Mapping, RAIRO-Theoretical

Informatics and Applications, 35, 551—564, 2001.

[6] M. Lothaire, Combinatorics on Words, Cambridge

Mathematical Library, Cambridge university Press, 1997.

[7] L. Kari and K. Mahalingam, Involutively bordered words,

International Journal of Foundations of Computer Science, 18,

1089-1106, 2007.

[8] C. A. Priya Darshini, V. R. Dare, I. Venkat and K.G.

Subramanian, Factors of words under an involution, Journal of
Mathematics and Informatics, 1 (2013-14) 52-59.

[9] A. Mateescu and A. Salomaa, Matrix indicators for subword
occurrences and ambiguity, International Journal of Foundations

of Computer Science, 17, 277-292, 2004.

[10] K. Mahalingam and K. G. Subramanian, Product of Parikh

Matrices and Commutativity, International Journal of
Foundations of Computer Science, 23, 207-223, 2012.

VI. APPENDIX

In this section we are given Programme for

algorithm for ternary word of Precedence matrix in

Java coding

publicclass TEST1 {

 publicstaticvoid main(String[]

args) {

 String input = "abcabbaccac";

 charinputData[] =

input.toCharArray();

 intlength = inputData.length;

 intaCount=0;

 intbCount=0;

 intcCount=0;

 //To count a,b,c

 for(inti=0;i<length;i++){

 charc=Character.toLowerCase(in

putData[i]);

 switch(c){

 case'a':

 aCount++;

 break;

 case'b':

 bCount++;

 break;

case'c':

 cCount++;

 break;

 }

 }

 charfindMe='b';charfindFromMe=

'a';intposition=0;

 intabCount=0;

 for(inti=0;i<length;i++){

 if(findFromMe ==

Character.toLowerCase(inputData[i]))

{

 for(intj=position;j<length;j++

){

 if(findMe==Character.toLowerCa

se(inputData[j])){

 abCount++;

 }

 }

 }

 position++;

 }

 findMe='c';findFromMe='a';posi

tion=0;intacCount=0;

 for(inti=0;i<length; i++){

 if(findFromMe==Character.toLow

erCase(inputData[i])){

 for(intj=position;j<length;j++

){

International Journal of Mathematics Trends and Technology (IJMTT) – Volume 52 Number 1 December 2017

ISSN: 2231-5373 http://www.ijmttjournal.org Page 46

 if(findMe==Character.toLowerCa

se(inputData[j])){

 acCount++;

 }

 }

 }

position++;

 }

 findMe='a';findFromMe='b';posi

tion=0;intbaCount=0;

 for(inti=0;i<length;i++){

 if(findFromMe==Character.toLow

erCase(inputData[i])){

 for(intj=position;j<length;j++

){

 if(findMe ==

Character.toLowerCase(inputData[j]))

{

 baCount++;

 }

 }

 }

 position++;

 }

 findMe='c';findFromMe='b';posi

tion=0;intbcCount=0;

 for(inti=0;i<length;i++){

 if(findFromMe==Character.toLow

erCase(inputData[i])){

 for(intj=position;j<length;j++

){

 if(findMe ==

Character.toLowerCase(inputData[j]))

{

 bcCount++;

 }

 }

 }

 position++;

 }

 findMe='a';findFromMe='c';posi

tion=0;intcaCount=0;

 for(inti=0;i<length;i++){

 if(findFromMe==Character.toLow

erCase(inputData[i])){

 for(intj=position;j<length;j++

){

 if(findMe ==

Character.toLowerCase(inputData[j]))

{

 caCount++;

 }

 }

 }

 position++;

 }

 findMe='b';findFromMe='c';posi

tion=0;intcbCount=0;

 for(inti=0;i<length;i++){

 if(findFromMe==Character.toLow

erCase(inputData[i])){

 for(intj=position;j<length;j++

){

 if(findMe ==

Character.toLowerCase(inputData[j]))

{

 cbCount++;

 }

 }

 }

 position++;

 }

 for(inti=0;i<3;i++){

 for(intj=0;j<3;j++){

 if(i==j){

 if(j==0)

 System.out.print(aCount+"\t");

 elseif(j==1)

 System.out.print(bCount+"\t");

 elseif(j==2)

 System.out.print(cCount+"\t");

 }elseif

(i==0 &&j==1){

 System.out.print(abCount+"\t")

;

 }elseif

(i==0 &&j==2){

 System.out.print(acCount+"\n")

;

 }elseif

(i==1 &&j==0){

 System.out.print(baCount+"\t")

;

 }elseif

(i==1 &&j==2){

International Journal of Mathematics Trends and Technology (IJMTT) – Volume 52 Number 1 December 2017

ISSN: 2231-5373 http://www.ijmttjournal.org Page 47

 System.out.print(bcCount+"\n")

;

 }elseif

(i==2 &&j==0){

 System.out.print(caCount+"\t")

;

 }elseif

(i==2 &&j==1){

 System.out.print(cbCount+"\t")

;

 }

 }

 }

 }

}

OUTPUT

4 5 11

7 3 10

5 2 4

