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Abstract— Two major processes in central nervous 

system received the impulses from external and 

internal world are electrical and chemical in nature. 

The impulse transmission through synaptic cleft by 

the chemical process is the predominant type of 

communication. Here we present a fractional order 

model and its analysis for the transport of the 

neurotransmitter ACh (acetylcholine) in the synaptic 

cleft by the presence of finite number of receptors 

and transporters with different kinetic properties on 

the basis of Magleby [1] model. 
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1. INTRODUCTION 

Synaptic transmission has been thoroughly 

investigated over a number of years ([2] - [5]) the 

roles of various transmitters as well as some of the 

pre and post synaptic events are well established. 

Introduction of neurotransmitter kinetics with 

mathematical foundation is described in different 

literature ([1] and [6]). Ordinary differential 

equations are used to describe the dynamics of 

neurotransmitter reactions in bio chemical systems. 

Modeling of biological systems by fractional order 

differential equations has more advantages than 

classical order mathematical modeling. The 

fractional order differential equations (FODEs) 

models are more consistent with the biological 

phenomena than those of integer orders [7]. 

Fractional derivatives contain non local property that 

provides an excellent idea for describing the 

dynamical behavior of various chemical and bio 

chemical systems. In this article, we propose a novel 

neurotransmitter kinetic mathematical model of 

fractional order and we analyze it in the presence of 

finite number of receptors and transporters with 

different kinetic properties. 

2. BASIC FUNCTIONS OF 

FRACTIONAL CALCULUS 

In fractional calculus, the gamma function and beta 

function are the basic mathematical tools to 

understand the origin of its computational 

challenges. 

2.1 THE GAMMA FUNCTION 

The gamma function 𝛤(𝑧) is defined by the integral 

[8] 

𝛤 𝑧 =  𝑒−𝑡
∞

0

𝑡𝑧−1𝑑𝑡, 𝑅𝑒 𝑧 > 0                              (1) 

                                                                                         

Which is the Euler integral of the second kind and 

converges in the right half of the complex plane  

𝑅𝑒 𝑧 > 0. 

2.2 BETA FUNCTION 

The beta function 𝛽(𝑧, 𝑤) is defined by [9] 

𝛽(𝑧, 𝑤) =  𝑡𝑧−1
1

0

(1 − 𝑡)𝑤−1𝑑𝑡, 𝑅𝑒(𝑧) > 0,  

𝑅𝑒(𝑤) > 0                                                                (2) 

                                                      

Which is the Euler’s integral of first kind. 

2.3 MITTAG-LEFFLER FUNCTION 

The Mittag-Leffler function also plays a very 

important role in research of fractional calculus. The 

classical Mittag-Leffler function for one parameter is 

defined by [8] 

𝐸𝛼 𝑧 =  
𝑧𝑘

𝛤 𝛼𝑘 + 1 

∞

𝑘=0

, 𝑧 ∈ 𝐶, 𝑅𝑒 𝛼 > 0           3  
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The Mittag-Leffler function with two parameters 𝛼, 

𝛽 is defined by the series expansion as follows [9]. 

𝐸𝛼,𝛽 𝑧 =   
𝑧𝑘

𝛤 𝛼𝑘 + 𝛽 

∞

𝑘=0

,  𝛼 > 0, 𝛽 >  0        (4) 

                                                                          

3. FRACTIONAL DERIVATIVE 

To analyze the dynamical behavior of a fractional 

system it is necessary to use an appropriate 

definition of the fractional derivative. In fact, the 

definitions of the fractional order derivative are not 

unique and there exist several definitions, including 

Grunwald-Letnikov, Riemann-Liouville, Weyl, 

Riesz and the Caputo [9] representation. 

Let 𝐿1 = 𝐿1[𝑎, 𝑏] be the class of Lebesgue integrable 

functions on [a,b] , 𝑎 < 𝑏 < ∞. 

 

Definition 3.1.  The fractional integral (or the 

Riemann-Liouville integral) of order 𝑝 ∈ ℝ+ of the 

function  f (𝑡)  , 𝑡 > 0(𝑓 ∶  ℝ+ → ℝ)  is defined by 

[7] 

𝐼𝑎
𝑝
𝑥 𝑡 =

1

𝛤 𝑝 
 (
𝑡

𝑎
𝑡 − 𝑠)𝑝−1𝑥 𝑠 𝑑𝑠, 𝑡 > 𝑎              (5)                                                

The fractional derivative of order 𝑝 ∈ (𝑛 − 1, 𝑛) of 

𝑓(𝑡) is defined by two (non equivalent) ways: 

(i) 𝑅𝑖𝑒𝑚𝑎𝑛𝑛 -Liouville fractional derivative: take 

fractional integral of order (n-p) and then take 𝑛𝑡ℎ  

derivative as follows: 

𝐷∗
𝑝
𝑓(𝑡) = 𝐷∗

𝑛 𝐼𝑎
𝑛−𝑝

𝑓(𝑡) , 𝐷∗
𝑛 =

𝑑𝑛

𝑑𝑡𝑛
, 𝑛 = 1,2          (6)                                                                                                                 

(ii) Caputo fractional derivative: take 𝑛𝑡ℎ  derivative, 

and then take a fractional integral of order (n-p) 

𝐷𝑝𝑓 𝑡 = 𝐼𝑎
𝑛−𝑝

𝐷∗
𝑛𝑓 𝑡 , 𝑛 = 1, 2, 3                           (7)                                                                                     

We notice that the definition of time fractional 

derivative of a function 𝑓(𝑡)  at 𝑡 = 𝑡𝑛  involves an 

integration and calculating time fractional derivative 

that requires all past history, that is, all the values of 

𝑓(𝑡)  from 𝑡 = 0  to 𝑡 = 𝑡𝑛 . For the concept of 

fractional derivative, we will adopt Caputo’s 

definition which is a modification of the Riemann-

Liouville definition and has the advantage of dealing 

properly with initial value problems. 

4. THE FRACTIONAL ORDER MODEL 

Typical simulation and optimization models for 

reactive biological systems do not include equations 

involving empirical or semi-empirical expressions 

([10]) . Applying memory effect on the dynamics of 

such systems the kinetics of those reactive systems 

can also be accurately represented by using 

fractional calculus which are similar from those 

obtained by the law of mass action. 

The instantaneous end-plate current voltage 

relationship is linear, and thus, for a fixed voltage, 

the end-plate current is proportional to the end-plate 

conductance. Hence it is sufficient to study the end 

plate conductance rather than the end plate current. 

Since the end plate conductance is a function of 

concentration of 𝐴𝐶ℎ, we restrict our attention to the 

kinetics of ACh in the synaptic cleft. We assume that 

ACh reacts with its receptor, 𝑅, in enzymatic fashion 

given as [11] 

 

And that the ACh receptor complex passes current 

only when it is in the open state  𝐴𝐶ℎ. 𝑅∗. Here the 

concentration of the reactants and products are 

denoted by lower case letters 𝑐 = [𝐴𝐶ℎ],  𝑦 =

[𝐴𝐶ℎ. 𝑅],  𝑥 = [𝐴𝐶ℎ. 𝑅∗] . Where [ ]  denotes the 

concentration of reactants and then it follows from 

the law of mass action that 

    
 𝑑𝑥

𝑑𝑡
 =  −𝜆𝑥 + 𝜇𝑦                                                (8)    

                                                             

𝑑𝑦

𝑑𝑡
 =  𝜆𝑥 + 𝑘1𝑐 𝑁 − 𝑥 − 𝑦 −  𝜇 + 𝑘2 𝑦       9  

  

𝑑𝑐

𝑑𝑡
 =  𝑓 𝑡 − 𝑘𝑒𝑐 − 𝑘1𝑐 𝑁 − 𝑥 − 𝑦 + 𝑘2𝑦    (10) 

                        

Where 𝑁 (the total concentration of ACh receptor) is 

assumed to be conserved, and ACh decays by a 

simple first order process at the rate  −𝑘𝑒 . The 

postsynaptic conductance is assumed to be 

proportional to  𝑥, and the rate of formation of ACh 

is some given function of (𝑡) . 

The model equations in dimensional form can be 

non-dimensionalized by substituting 𝑋 =
𝑥

𝑁
,  𝑌 =

𝑦

𝑁
, 

𝐶 =
𝑘1𝑐

𝑘2
 and  𝜏 = 𝜆𝑡, then we get, 
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𝑑𝑋

𝑑𝜏
 =  −𝑋 +

𝜇

𝜆
𝑌                            (11)     

                                                                 

           𝜀
𝑑𝑌

𝑑𝜏
 =  𝜀𝑋 + 𝐶 1 − 𝑋 − 𝑌                         

−  𝜀
𝜇

𝜆
+ 1 𝑌                      (12)   

                             

  𝜀
𝑑𝐶

𝑑𝜏
 =  𝜀𝐹 𝜏 −

𝑘𝑒

𝑘2

𝐶                                                    

−
𝑁

𝐾
𝐶 1 − 𝑋 − 𝑌 

𝑁

𝐾
𝑌       (13)  

                   

Where   𝜀 =    
𝜆

𝑘2
<< 1,    𝐾 =

𝑘2

𝑘1
,            𝐹(𝜏) =

𝑓(𝑡)

𝜆𝐾
 

Now we study the fractional order into the model of 

Magleby [1]. The new system is described by the 

following set of fractional differential equations. 

       
𝑑𝛾𝑋

𝑑𝜏𝛾
 =  −𝑋 +

𝜇

𝜆
𝑌                               (14) 

                                                                      

    𝜀
𝑑𝛾𝑌

𝑑𝜏𝛾
 =  𝜀𝑋 + 𝐶 1 − 𝑋 − 𝑌 

−  𝜀
𝜇

𝜆
+ 1 𝑌             (15) 

                           

    𝜀
𝑑𝛾𝐶

𝑑𝜏𝛾
 =  𝜀𝐹 𝜏 −

𝑘𝑒

𝑘2

𝐶 −
𝑁

𝐾
𝐶 1 − 𝑋 − 𝑌 

+
𝑁

𝐾
𝑌                             (16) 

                    

𝛾  is a parameter describing the order of the 

fractional time derivative in Caputo sense and 

0 < 𝛾 < 1 . The general response expression 

contains a parameter describing the order of the 

fractional derivatives that can be varied to obtain 

various responses. Obviously, the integer order 

system can be viewed as a special case from the 

fractional order system by putting the time fractional 

order of the derivative equal to unity. In other words, 

the ultimate behavior of the fractional system 

response must converge to the response equation of 

the integer order version of the equation. 

Now we consider the following two cases. 

4.1 Case :𝟏 

Upon setting 𝜀  to zero, we find the quasi -steady 

approximation. 

                               𝑌 =
𝐶 1 − 𝑋 

1 + 𝐶
                        (17) 

                                                                    

Eliminate  ‘𝑌’ from equation (14) we get 

  

              
 𝑑𝛾𝑋

𝑑𝜏𝛾
= −𝑋 +

𝜇

𝜆

𝐶

 1 + 𝐶 
 1 − 𝑋           (18) 

                                             

In the limit 𝐶(𝑡) is very very small equation (15) 

becomes 

𝑑𝛾𝑋

𝑑𝜏𝛾
= −𝑋 

              ⇒ 𝑋 = 𝑐1𝐸𝛾 −𝜏𝛾                                   (19) 

                                  Where 𝐸𝛾  is the Mittag-Leffler 

function , 

𝐸𝛾𝜏 =  
𝜏𝑘

𝛤(𝛾𝑘 + 1)

∞

𝑘=0

,    𝜏 ∈ ℝ 

In original variables we get 

                                           

𝑥 = 𝑁𝑐1𝐸𝛾(−𝜆𝑡)𝛾                                              (20) 

                                                                        

Thus equation (20) explains that the post synaptic 

conductance decays exponentially in the synaptic 

cleft when 𝑐 is small. 

For    
𝑑𝛾𝑋

𝑑𝜏𝛾
= 0,  the quasi equilibrium state. 

4.2 Case :𝟐 

If 𝐹(𝜏) = 0 , and 𝑁 << 𝐾  then equation(16) 

becomes 

                                                                

𝜀
𝑑𝛾𝐶

𝑑𝜏𝛾
= −

𝑘𝑒

𝑘2

𝐶                                     (21) 

                                                        

𝑑𝛾𝐶

𝑑𝜏𝛾
= −

𝑘𝑒

𝑘2𝜀
𝐶 

𝐶 = 𝐶0𝐸𝛾(
−𝑘𝑒

𝑘2𝜀
𝜏)𝛾  

This shows that ACh degrades exponentially in the 

synaptic cleft at the rate −𝑘𝑒  so that 𝑐  quickly 

approaches to zero. 
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For    
𝑑𝛾𝑋

𝑑𝜏𝛾
= 0, the quasi equilibrium state equation 

(14) gives, 

                                        

𝑋 =
𝜆

𝜇
𝑌                                                                       (22) 

                                                                                         

Using (22) 𝑎𝑛𝑑  limits 𝐹(𝜏) = 0,  𝑁 << 𝐾  in 

equation (15) and (16) we get, 

                                       

𝑌 = 𝑌0𝐸𝛾(−
1

𝜀
𝜏)𝛾                                                 (23) 

                                                                         

                                      

𝐶 = 𝐶0𝐸𝛾(−
𝑘𝑒

𝑘2𝜀
𝜏)𝛾                                          (24) 

                                                                       

Using equation (24) in equation (22) we get 

                                     

𝑋 =
𝜆

𝜇
𝑌0𝐸𝛾(

1

𝜀
𝜏)𝛾                                                (25) 

       Since the system is in quasi equilibrium state, 

and using the equation (22) in equation (15) we get, 

𝑥 =
𝑁𝜇𝑘1𝑐

𝑘2𝜆 + (𝜆 + 𝜇)𝑘1𝑐
 

Here we observe that when 𝑐 is small, 𝑥  would be 

approximately proportional to 𝑐 . An exponential 

decrease of 𝑐 caused by the decay term −𝑘𝑒  would 

cause an exponential decrease in the post synaptic 

conductance. 

5. CONCLUSION 

 The fractional order model is more realistic than the 

integer order model. The proposed fractional order 

model is more practical and can describe the 

dynamics of neurotransmitter kinetic system. Here 

we observe that if 𝑐  is small, 𝑥  would be 

approximately proportional to c. In this case an 

exponential decrease of 𝑐 caused by the decay term 

−𝑘𝑒  would cause an exponential decrease in the post 

synaptic conductance in the synaptic cleft and the 

decay of end plate current is due to conformational 

changes of the ACh receptor. 
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