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Abstract:  In the present analysis, we have studied the flow of blood through a uniform tapered tube assuming it 

obeys Bingham fluid model. The wall shear stress and pressure gradient have been obtained. The variations of 

pressure gradient and wall shear stress are shown in tables. 
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I. Introduction:  The  behavior  of  blood flow is mainly due to the  suspension of  red cells in an  aqueous  

phase of  the complex  structure is called  plasma. Due to  presence of the suspended   particle in  plasma,  there 

have been  number of attempts  to  explain the  anomalous  behavior of  blood  by proposing  different  

theoretical  Newtonian  and   Non- Newtonian  fluid models. Iida and  Murata [7] studied  pulsatile  blood flow  

through  small vessels by  assuming  Herschel –Bulkley fluid model  of  blood Ariman et al. [1], Bugliarello  

and  Sevilla  [ 3].  The  idea  of  a tapered  tube model  of  a  blood  vessel  was  given by  Womersley [10], 

Block  [2], Jeffords  and   Knisely [8] have investigated  that all  the  vessels  which carry  blood  towards  the 

tissues  should  be  considered  as long , slowely tapering  cones  rather  than  cylinders.   Charm and  Kurland  

[4] have  examined  flow  properties  of  blood  flowing  through  non- uniform  capillary  tubes. Chaturni  and  

Phalhad [5]  have  studied  a steady  laminar  flow  of  blood  in  a  uniform   tapered  tube  by assuming  blood  

as  polar  fluid.  Dwivedi et al. [6],  Nishmura [9]  have   studied  the steady  blood  flow in  tapered  tube  by  

taking  different  models  of  blood  flow  through  tapered  arteries  with stenosis  and  S. Chakravarthy , P.K 

Mandal [11]  studied  two dimensional  blood  flow through  tapered arteries  under  stenotic  condition .  The 

expression  for  wall  shear  stress ,  pressure drop ,  total  angular  and  axial velocities  have been  calculated.                                            

II.   Mathematical  Formulation:  We  consider  a steady  laminar  flow of  incompressible viscous  Non-

Newtonian fluid model  in a uniformly  tapered  tube of  circular cross-section.       

 

The  radius of the tapered  tube   zR  is given by                                         

            tan0 zRzR                                                      (1)                                         Where  0R  is the  tube  

radius  at 0z ,   is tapered angle  and z is the axis of the tapered tube. 

III.  The  Governing  Equation:  The governing equation  in  cylindrical  co-ordinate  system   z,r  , which   

mathematically  describe the laminar flow  problem of an incompressible viscous fluid. 

The continuity equation is  given by                                                                                                                                    
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Where  P  is the  pressure ,  
r

V
rz




  is the  shear  stress  normal  to  r  in z direction and  V is the axial 

velocity.    

IV.  Constitutive Equation:    The   constitutive equation  for  the  shear  stress  and  strain  rate  is given  by      

                  
0   ;         0     

                  0  ;                      0                           (6)               

Where   0  is  the yield  stress,    is  the coefficient  of  viscosity  and    is  the   shear  strain  rate.    

V.  The  Boundary  Condition:  The  boundary  conditions   are  given  by  

                     0V  ,       at        zRr                           (7)                    

                   wrz  ,    at       zRr                            (8)                   

                    PVV  ,     at      PRr                              (9)                        

                  rz is  finite  at        0r                                (10)   

Where   PR  is  the  plug   radius  and   PV  is  the  plug  velocity.     Integrating equation (5) and using boundary   

condition 

(10) ,   we get  
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With  the   help  of  constitutive equation,  we get  the  velocity    equation  as 
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The   plug  flow   exists  whenever  the shear   stress  does   not   exceed   yield  stress. 

Solving   equation (12)  and (13),  we get  
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Where      
 zw

0
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The  volume  flow  rate Q  is given  by   

            21 QQQ                                                          (16)                                                    
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Where  drrV2Q
PR

0
P1   = 2

PPRV                             (17)                     
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Now   substitute  the values   of  PV  and  V  from  equations     (14)  and  (15)  in  equations  (17)  and (18)  ,  

we get   
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       (19)   Now   from  equations  11   and  19    with  boundary  

condition  8  ,  the  pressure gradient  is obtained  as                   
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equation  19  ,  we  have  the shear stress  at  the wall   as 
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Now   using  equation  20  and  21  ,  we  have  
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(22)                                                   From  the  equation  (20) and (21),   we  obtained  that  both   the pressure  

gradient  and the shear stress  at the  wall  increases when   zR  decreases. 

 VI.  Table1 : Variation  of  pressure  gradient  with  flow  rate  for  different  value  of  tapered  angle                                                  

0.1,01.0R,01.0z 0   

 

Q  

 

 

                                       
dz

dP  

0.1

 

2.1

 

4.1

 

6.1  8.1

 

0.01 0.063 0.064 0.065 0.066 0.067 

0.02 0.127 0.129 0.131 0.133 0.135 

0.03 0.191 0.193 0.197 0.199 0.203 

0.04 0.255 0.258 0.263 0.266 0.271 

0.05 0.318 0.323 0.328 0.333 0.339 

0.06 0.382 0.387 0.394 0.399 0.407 

 

VII.  Table 2: Variation  of  pressure  gradient  with  axial distance  for  different  value  of  flow   rates                         

0.2,4.1,01.0R0     

 

Z  
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02.0Q2 
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04.0Q4 

 

05.0Q5 

 

6Q

=0.06 

0.00 

 

0.093 0.186 0.280 0.373 0.467 0.560 

0.02 
 

0.115 0.231 0.346 0.462 0.578 0.693 

0.04 

 

0.151 0.303 0.455 0.606 0.758 0.909 

0.06 

 

0.220 0.441 0.661 0.882 1.102 1.323 
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0.08 

 

0.409 0.805 1.208 1.610 2.013 2.416 

0.10 
 

2.340 4.680 7.021 9.360 11.70 14.04 

                                                                                               

VIII. Table 3. ( For  Newtonian  Fluid ) Variation  of  wall  shear   stress  with  flow rate  for different  tapered  angle   

0.0,01.0R,1.0z 0   

 

Q  

 

 

                                       
dz

dP  

0.1

 

2.1

 

4.1

 

6.1  8.1

 

0.01 0.084 0.155 0.640 -0.318 -0.099 

0.02 0.169 0.311 0.1280 -0.637 -0.199 

0.03 0.254 0.466 1.920 -0.9556 -0.298 

0.04 0.399 0.622 2.560 -1.27 -0.398 

0.05 0.424 0.778 3.200 -1.593 -0.497 

0.06 0.509 0.933 3.840 -1.912 -0.597 

   

IX. Table 4.  Variation  of  wall  shear   stress  with  flow   rate  for different  tapered  angle                                                                                         

0.1,01.0R,1.0z 0                

 

Q  

 

 

                                 z         

0.1

 

2.1

 

4.1

 

6.1  8.1

 

0.01 0.121 0.148 0.212 0.313 1.346 

0.02 0.242 0.293 0.424 0.626 2.692 

0.03 0.363 0.440 0.636 0.939 4.038 

0.04 0.485 0.587 0.849 1.252 5.384 

0.05 0.606 0.734 1.061 1.565 6.730 

0.06 0.727 0.880 1.273 1.878 8.076 

  

 X. Table 5.  Variation  of  wall  shear   stress  with axial  distance   for different  flow rates                                        

0.24.1,01.0R0  
          

 

Z  

                                   z     

01.0Q1 

 

02.0Q2 

 

03.0Q3 

 

04.0Q4 

 

05.0Q5 

 

0.00 
 

0.0934 0.1868 0.2802 0.3736 0.4870 

0.02 

 

0.1091 0.2182 0.3273 0.4364 0.5455 

0.04 
 

0.1312 0.2624 0.3936 0.5248 0.6560 

0.06 

 

0.1644 0.3288 0.4932 0.6576 0.8220 

0.08 
 

0.2203 0.4406 0.6609 0.8812 1.1015 
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0.10 

 

0.3337 0.6674 1.0011 1.3348 1.6685 

 

XI. Table 6.  (For  Newtonian fluid)   Variation  of  wall  shear   stress  with  flow  rate   for different  tapered  angle                                        

0.0,1.0z,01.0R0       

 

Q  

 

 

                                 z         

0.1

 

2.1

 

4.1

 

6.1  8.1

 

0.01 0.0173 0.0212 0.0303 0.0446 0.1213 

0.02 0.0346 0.0424 0.0606 0.0893 0.2426 

0.03 0.0519 0.0636 0.0909 0.1340 0.3639 

0.04 0.0693 0.0849 0.1213 0.1787 0.4852 

0.05 0.0866 0.1061 0.1516 0.2234 0.6066 

 

XII.  Result  and  Discussion:        From   the expression of  shear  stress at wall  equation  (21)  and   pressure   

gradient   equation  (20),  we observed  that  the  wall  shear stress and pressure  gradient  increases  with  

decrease  in the   radius of the   tapered  tube.   

The  variations  of   pressure  gradient  and wall shear  stress  with  flow  rate  for   different  values  of  tapered  

angle  are shown  in  table  (1) and  (4). We observed  that  the  pressure gradient  and  wall  shear  stress  

increases  with  increase  in flow   rate   for  constant   value  of  tapered  angle. 

Table  (2) and  (5) show  the   variation  of  pressure  gradient and  wall  shear  stress  with  axial  distance  for  

different  value  of  flow  rates  for  constant  tapered  angle. We  observed  that  pressure  gradient  increases  

with  increase  in axial  distance  for constant  value  of  flow rates. 

For   Newtonian   fluid  0 ,  the  variations   of   pressure  gradient  and  wall shear  stress  with flow rate  for  

different  value  of  tapered  angle   are shown  in  table  (3)  and  (6).   The wall  shear  stress  increases  with  

increase  in  flow  rate   but  pressure gradient  increases  with  increase  in  flow  rate   for  constant  value of  

tapered   angle  1.0  to  1.4  and  after  then decreases with  increase in flow rate  for constant   value  of  tapered  

angle  1.6  to  1.8.   
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