
International Journal of Mathematics Trends and Technology (IJMTT) – Volume 52 Number 2 December 2017 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 120 

Roman Labeling of graphs and Application to 

Military Strategy 
Satheesh E.N

1
, J. Suresh Kumar

2 

Post-Graduate Department of Mathematics 

N.S.S.Hindu College, Changanacherry, Kerala, India-686102  
 

Abstract: 

In this paper, we introduce a new type of graph 

labeling called Roman labeling and a graph 

parameter called Roman number. Its properties are 

studied and its values for special types of graphs are 

explored. 
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1. INTRODUCTION 

The majority of graph theory research on 

graph labeling pays attention only to finding vertex 

labeling function that satisfies some specified property 

for the induced edge labeling, paying little attention to 

the graph structure [6]. In his Doctoral Dissertation 

[2], Jason Robert Lewis suggested several new or 

little-studied graph parameters. Several studies were 

made in applying such parameters to Roman defense 

strategy [2, 3, 4, 5].  

The idea behind it is that if we consider the 

edges and the vertices of a graph as some streets and 

the junctions, which are the meeting points of the 

streets, then the label of a vertex is the number of 

soldiers deployed at that junction and we require that 

every street (edge) should be guarded by at least 1 

soldier. That is, in case of any street having no 

soldiers, then there should be an adjacent junction 

with two soldiers so that one of them can be deployed 

to the former junction in case of emergency. 

These works motivated us to define a new 

type of graph labeling, namely, Roman Labeling. We 

study the properties of Roman Labeling and the values 

of Roman number for special types of graphs. For the 

terms and definitions not explicitly here, refer Harary 

[7] 

2. Main Results 

In this section, we consider only connected 

graphs. The disconnected graphs can be studied 

though their components. 

Let G be a connected graph. Roman labeling of G 

is a function f: V(G)  {0, 1, 2} such that any vertex 

with label 0 must be adjacent to a vertex with label 2. 

The function value f(v) of a vertex v of the graph G is 

called the label of v. 

It can be easily seen that if G has a Roman 

labeling, then for any edge e = {u, v}, either both u 

and v are adjacent to vertices with labels at least 1 or 

the edge e is incident with a vertex with label 2.  

Clearly, the function, f, partitions the vertex set, 

V(G) into three vertex subsets, V0, V1 and V2 .which 

are the subsets of V(G) with labels 0, 1,2 respectively. 

Weight of a Roman labeling, f is defined as the 

sum of all vertex labels. Roman number of a graph G 

is defined as the minimum weight of a Roman 

labeling on G and is denoted by R(G). A Roman 

labeling with the minimum weight is called a Roman 

Number. 

We observe that a vertex, u is either an end-

vertex of an edge, e = xy or is incident to an edge e = 

xy. Based on this, we define the edge neighborhood of 

a vertex v as follows: 

𝐸 𝑣 =  𝑒 ∈ 𝐸 𝐺 : 𝑣 𝑖𝑠 𝑎𝑛 𝑒𝑛𝑑𝑣𝑒𝑟𝑡𝑒𝑥  𝑜𝑓 𝑒  
   = {𝑒 ∈ 𝐸 𝐺 : 𝑒 𝑖𝑠 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑣} 

 

Theorem 2.1. Let f be a minimal Roman labeling 

function of a graph G. Then there is no edge 

connecting 𝑉1and 𝑉2. 

Proof.If possible, suppose that there is an edge e = uv, 

such that 𝑢 ∈ 𝑉1and 𝑣 ∈ 𝑉2.. Since v is adjacent to u, 

it is incident to all edges incident at u. So we can 

reduce f(u) from one tozero, which is a contradiction 

to the fact that f be a minimal Roman labeling 

function of a graph G 

Theorem 2.2. For a graph G, R(G) = 1 if and only if 

𝐸 𝑣 = 𝐸(𝐺) for some vertex v of G. 

Proof. If R(G) = 1 , then all edges of G are adjacent to 

v. Hence, 𝐸 𝑣 = 𝐸(𝐺). Conversely, if 𝐸 𝑣 = 𝐸(𝐺), 

then v is incident with all the edges of G, then the 

function f(v) = 1 and f(x) = 0 for all other vertices of 

G is a Roman labeling function with R(G) = 1. 

Theorem 2.3.For a graph G, R(G)= 1 if and only if G 

is a star graph. 

Proof. First suppose R(G) = 1. Then there is no vertex 

with label 2 and exactly one vertex, v, with label 1. 

Then v is incident with all the edges of G. Then, G is a 

star graph. Conversely, suppose G is a star graph. 

Then, the function defined by f(v) = 1 and f(u) = 0 for 

any other vertex u, is a Roman labeling of G with 

R(G) = 1. 

Theorem 2.4.If R(G)= 2, then 𝐸(𝑣) = 𝐸(𝐺), for some 

vertex v of G. 

Proof. If R(G)= 2 and f is a Roman labeling of G, then 

we have 2 cases to consider. 

Case-1: f(v) = 2 for exactly one vertex v. 

Then all vertices with label 0 must be adjacent to v 

and since S(G)=2, they constitutes the entire set of 

vertices, so that 𝐸 𝑣 = 𝐸(𝐺) 

Case: 2: There are exactly two vertices, say 

u, v with f(u)=f(v)=1. Then, all other vertices with 

label 0 and no vertex must have label 2. Hence G is 

precisely the edge {u, v}, so that 𝐸 𝐺 = 𝐸 𝑣 .  

Theorem 2.5.If G is not a star graph and the minimum 

eccentricity and the maximum eccentricity of vertices 

in G are 1 and 2 respectively, then R(G)= 2. 
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Proof. Since G is not a star graph and minimum 

eccentricity is 1, there exists a vertex v, which is 

adjacent to all other vertices. So the function defined 

by f(v) = 2 and f(u) = 0 for any other vertex u, is a 

Roman labeling so that R(G)=2. 

Theorem 2.6.If R(G) = 3, then there exists a Roman 

labeling, f and exactly two vertices u, v such that f(u) 

= 1and f(v) = 2.  

Proof. Let f be a minimal Roman labeling of the given 

graph G. Then R(G)= 3 is possible in the following 

two ways:  

Case-1: There exist exactly two vertices u, v such that 

f(u) = 1and f(v) = 2. This is the required condition in 

the theorem. 

Case: 2 There exist three vertices u, v, w such that 

f(u)=f(v)=f(w)=1. Then we can find another vertex x 

and a vertex among u, v and w, sayu such that the new 

function g defined by g(x) = 2. g(u) = 1 and g(y) = 0 

for all the remaining vertices is a a Roman labeling of 

G. Since G is connected, there exist a pair of vertices 

among u, v, w, say p and q, such that the induced 

subgraphs induced by the neighborhoods, N[p] 

andN[q] have one vertex in common. We can define a 

new Roman labeling by assigning 2 to this common 

vertex, 1 to the third vertex and 0 to the remaining 

vertices. Thus this case reduces to case-1 and hence 

the theorem. 

Theorem2.7. If G = Kn, n>2, then R(G)= 2 

Proof. In G = Kn, 𝐸(𝑣) = 𝐸(𝐺) and 𝐸(𝑣) ≠ 𝐸(𝐺) for 

all vertices of G, the result follows. 

Theorem2.8. If G = Pn, then R(G)= 2r or 2r-1 

according as if n = 5r, 5r – 1 or n = 5r − 2, 5r – 3, 5r − 

4 

Proof. Along the path we take a block of four edges. 

Let v1, e1, v2, e2, v3, e3, v4, e4, v5 be the vertices and 

edges on the path. Arranging two guards at the vertex 

v3 we can guard all the edges in the block. We can do 

the same for each block five vertices and four edges. 

We cannot guard a block by less number of guards. 

Thus for a path which contains n = 5r vertices 2r 

guards are needed. 

For a path containing 5r − 2, 5r − 3 or 5r − 4 

vertices, there are r – 1 complete blocks of five 

vertices. We require 2(r − 1) guards to take care of the 

edges in the blocks. After taking the blocks from one 

end if there remains either one or two vertices at the 

other end, one guard arranged at the first vertex on the 

last section can protect the last edges. If there are three 

vertices at the last portion, say u1, u2, u3, one guard is 

needed at u3. In all these cases R(Pn) = 2r − 1. If in the 

remaining block there are four vertices, then two 

guards are to be placed at the vertex u4. Hence R(Pn) = 

2r. 

Theorem 2.9.If G = Cn, then R(G)=2r or 2r–1 

according as n=5r,5r–1 or n=5r−2, 5r–3,  5r−4 

Proof. An argument similar to that used in the 

previous proof is sufficient to prove the result. Let the 

graph G be decomposed into sub-graphs {Gi}, such 

that each subgraph is any one of the following type, 

• Either the minimum eccentricity of vertices in Gi is 2 

and the maximum eccentricity is 3 or 4 

• Minimum eccentricity and maximum eccentricity of 

vertices in Gi are respectively 1 and 2. 

We denote the decomposition of G by D = 

{Gi}. Some of these graphs have R(Gi) = 2 and the 

remaining have R(Gi) = 1. We define a related number 

N(D) = a+2b, where a and b are the number of sub-

graphs having R(Gi) =1 and 2 respectively.  

As illustrated below, a graph has many 

decompositions. The graph G given in the Figure 2.1 

has the vertex set V = {v1, v2, ..., v9}.It is decomposed 

into three subgraphs G1, G2 and G3, which are given in 

Figure 2.2 and another decomposition into subgraphs 

H1, H2 are given in Figure 2.3. 

 
Figure 2.1 

 
Figure 2.2 

 
Figure 2.3 

Theorem 2.10. For complete r-partite graph, 𝐺 =
𝐾𝑚1 .𝑚2…..𝑚𝑟

 R(G)=2 where 𝑟 ≥ 2 

Proof. Let V = 𝑉1⋃𝑉2 ⋃𝑉3 … . 𝑉𝑟  be the partition of 

the vertex set of V(G). Take a vertex v from V1. Every 

edge in G is either incident with v or adjacent to an 

edge, which is incident with v. So the function f(v) = 2 

and f(u) = 0 for any other vertex u is a Roman labeling 

of G. 
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