On multiple integral transformations with the multivariable I-functions

F.A. $A Y A N T^{1}$

1 Teacher in High School , France

Vinod Gill
Department of Mathematics Amity University, Rajasthan, Jaipur-303002, India

ABSTRACT

In this paper, two multiple integral transformations of the multivariable I-function defined by Prathima and Nambisan [3] with general arguments have been established. Next two new multiple integrals for the multivariable I-function have been evaluated by employing the transformations. The integrals have further been generalized to give two another multiple integrals involving product of two multivariable I-functions in their integrands.

Keywords : Serie expansion of the multivariable I-function, multivariable I-function, multiple integral.
2010 : Mathematics Subject Classification. 33C45, 33C60, 26D20

1. Introduction

The multivariable I-function defined by Prathima and Nambisan [3] is an extension of the multivariable H-function defined by Srivastava and Panda [4,5]. It is defined in term of multiple Mellin-Barnes type integral :

$$
I\left(z_{1}, \cdots, z_{r}\right)=I_{P, Q: P_{1}, Q_{1} ; \cdots ; P_{r}, Q_{r}}^{0, N: M_{1}, N_{1} ; \cdots ; M_{r}, N_{r}}\left(\begin{array}{c}
\mathrm{z}_{1} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{z}_{r}
\end{array}\right) \quad\left(\mathrm{a}_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)} ; A_{j}\right)_{1, P}: \quad\left(\mathrm{b}_{j} ; \beta_{j}^{(1)}, \cdots, \beta_{j}^{(r)} ; B_{j}\right)_{1, Q}:
$$

$$
\begin{align*}
& \left(\mathrm{c}_{j}^{(1)}, \gamma_{j}^{(1)} ; C_{j}^{(1)}\right)_{1, N_{1}},\left(c_{j}^{(1)}, \gamma_{j}^{(1)} ; C_{j}^{(1)}\right)_{N_{1}+1, P_{1}} ; \cdots ;\left(c_{j}^{(r)}, \gamma_{j}^{(r)} ; C_{j}^{(r)}\right)_{1, N_{r}},\left(c_{j}^{(r)}, \gamma_{j}^{(r)} ; C_{j}^{(r)}\right)_{N_{r}+1, P_{r}} \\
& \quad\left(\mathrm{~d}_{j}^{(1)}, \delta_{j}^{(1)} ; 1\right)_{1, M_{1}},\left(d_{j}^{(1)}, \delta_{j}^{(1)} ; D_{1}\right)_{M_{1}+1, Q_{1}} ; \cdots ;\left(d_{j}^{(r)}, \delta_{j}^{(r)} ; 1\right)_{1, M_{r}},\left(d_{j}^{(r)}, \delta_{j}^{(r)} ; D_{r}\right)_{M_{r}+1, Q_{r}} \tag{1.1}\\
& \quad=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \phi\left(s_{1}, \cdots, s_{r}\right) \prod_{i=1}^{r} \theta_{i}\left(s_{i}\right) z_{i}^{s_{i}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r} \tag{1.2}
\end{align*}
$$

where $\phi\left(s_{1}, \cdots, s_{r}\right), \theta_{i}\left(s_{i}\right)$ for $i=1, \cdots, r$ are given by :
$\phi\left(s_{1}, \cdots, s_{r}\right)=\frac{\prod_{j=1}^{N} \Gamma^{A_{j}}\left(1-a j+\sum_{i=1}^{r} \alpha_{j}^{(i)} s_{j}\right)}{\prod_{j=N+1}^{P} \Gamma^{A_{j}}\left(a_{j}-\sum_{i=1}^{r} \alpha_{j}^{(i)} s_{j}\right) \prod_{j=1}^{Q} \Gamma^{B_{j}}\left(1-b j+\sum_{i=1}^{r} \beta_{j}^{(i)} s_{j}\right)}$
$\phi_{i}\left(s_{i}\right)=\frac{\prod_{j=1}^{N_{i}} \Gamma^{C_{j}^{(i)}}\left(1-c_{j}^{(i)}+\gamma_{j}^{(i)} s_{i}\right) \prod_{j=1}^{M_{i}} \Gamma\left(d_{j}^{(i)}-\delta_{j}^{(i)} s_{i}\right)}{\prod_{j=N_{i}+1}^{P_{i}} \Gamma^{C_{j}^{(i)}}\left(c_{j}^{(i)}-\gamma_{j}^{(i)} s_{i}\right) \prod_{j=M_{i}+1}^{Q_{i}} \Gamma^{D_{j}^{(i)}}\left(1-d_{j}^{(i)}+\delta_{j}^{(i)} s_{i}\right)}$
For more details, see Prathima and Nambisan [3].
We can obtain the series representation and behaviour for small values for the function $I\left(z_{1}, \cdots, z_{r}\right)$ defined and represented by (1.1). The series representation may be given as follows, which is valid under the following conditions :

$$
\begin{gathered}
\delta_{i}^{(h)}\left[d_{i}^{(j)}+r\right] \neq \delta_{i}^{(j)}\left[d_{i}^{(h)}+\mu\right] \text { for } j \neq h, j, h=1, \cdots, M_{i}, r, \mu=0,1,2, \cdots \\
U_{i}=\sum_{j=1}^{P} A_{j} \alpha_{j}^{(i)}-\sum_{j=1}^{Q} B_{j} \beta_{j}^{(i)}+\sum_{j=1}^{P_{i}} C_{j}^{(i)} \gamma_{j}^{(i)}-\sum_{j=M_{i}+1}^{Q_{i}} D_{j}^{(i)} \delta_{j}^{(i)} \leqslant 0, i=1, \cdots, r \text { and } z_{i} \neq 0
\end{gathered}
$$

and if all the poles of (1.11) are simple ,then the integral (1.11) can be evaluated with the help of the Residue theorem to give

$$
\begin{equation*}
\bar{I}\left(z_{1}, \cdots, z_{r}\right)=\sum_{G_{i}=1}^{M_{i}} \sum_{g_{i}=1}^{\infty} \phi \frac{\prod_{i=1}^{r} \phi_{i} z_{i}^{\eta_{G_{i}}, g_{i}}(-)^{\sum_{i=1}^{r} g_{i}}}{\prod_{i=1}^{r} \delta_{G^{(i)}}^{(i)} \prod_{i=1}^{r} g_{i}!} \tag{1.5}
\end{equation*}
$$

where ϕ_{1} and ϕ_{i} are defined by

$$
\begin{equation*}
\phi=\frac{\prod_{j=1}^{N} \Gamma^{A_{j}}\left(1-a j+\sum_{i=1}^{r} \alpha_{j}^{(i)} \eta_{G_{i}, g_{i}}\right)}{\prod_{j=N+1}^{P} \Gamma^{A_{j}}\left(a_{j}-\sum_{i=1}^{r} \alpha_{j}^{(i)} \eta_{G_{i}, g_{i}}\right) \prod_{j=1}^{Q} \Gamma^{B_{j}}\left(1-b j+\sum_{i=1}^{r} \beta_{j}^{(i)} \eta_{G_{i}, g_{i}}\right)} \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{i}=\frac{\prod_{j=1}^{N_{i}} \Gamma_{j}^{C_{j}^{(i)}}\left(1-c_{j}^{(i)}+\gamma_{j}^{(i)} \eta_{G_{i}, g_{i}}\right) \prod_{j=1}^{M_{i}} \Gamma\left(d_{j}^{(i)}-\delta_{j}^{(i)} \eta_{G_{i}, g_{i}}\right)}{\prod_{j=N_{i}+1}^{P_{i}} \Gamma_{j}^{C_{j}^{(i)}}\left(c_{j}^{(i)}-\gamma_{j}^{(i)} \eta_{G_{i}, g_{i}}\right) \prod_{j=M_{i}+1}^{Q_{i}} \Gamma^{\left(D_{j}^{(i)}\right.}\left(1-d_{j}^{(i)}+\delta_{j}^{(i)} \eta_{G_{i}, g_{i}}\right)}, i=1, \cdots, r \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta_{G_{i}, g_{i}}=\frac{d_{G^{(i)}}^{(i)}+g_{i}}{\delta_{G^{(i)}}^{(i)}}, i=1, \cdots, r \tag{1.8}
\end{equation*}
$$

and

$\left.\begin{array}{l}\left(\mathrm{c}_{j}^{(1)}, \gamma_{j}^{(1)} ; C_{j}^{(1)}\right)_{1, p_{1}} ; \cdots ;\left(c_{j}^{(s)}, \gamma_{j}^{(s)} ; C_{j}^{(s)}\right)_{1, p_{r}} \\ \left(\mathrm{~d}_{j}^{(1)}, \delta_{j}^{(1)} ; D_{j}^{(1)}\right)_{1, q_{1}} ; \cdots ;\left(d_{j}^{(s)}, \delta_{j}^{(s)} ; D_{j}^{(s)}\right)_{1, q_{r}}\end{array}\right)$
where $\phi\left(u_{1}, \cdots, u_{s}\right), \zeta_{i}\left(u_{i}\right)$ for $i=1, \cdots, s$ are given by:
$\phi^{\prime}\left(u_{1}, \cdots, u_{s}\right)=\frac{\prod_{j=1}^{\mathbf{n}} \Gamma^{A_{j}}\left(1-a_{j}+\sum_{i=1}^{s} \alpha_{j}^{(i)} u_{j}\right)}{\prod_{j=\mathbf{n}+1}^{\mathbf{p}} \Gamma^{A_{j}}\left(a_{j}-\sum_{i=1}^{s} \alpha_{j}^{(i)} u_{j}\right) \prod_{j=\mathbf{m}+1}^{\mathbf{q}} \Gamma^{B_{j}}\left(1-b_{j}+\sum_{i=1}^{s} \beta_{j}^{(i)} u_{j}\right)}$
$\zeta_{i}\left(u_{i}\right)=\frac{\prod_{j=1}^{n_{i}} \Gamma^{C_{j}^{(i)}}\left(1-c_{j}^{(i)}+\gamma_{j}^{(i)} u_{i}\right) \prod_{j=1}^{m_{i}} \Gamma^{D_{j}^{(i)}}\left(d_{j}^{(i)}-\delta_{j}^{(i)} u_{i}\right)}{\prod_{j=n_{i}+1}^{p_{i}} \Gamma^{(i)}\left(c_{j}^{(i)}-\gamma_{j}^{(i)} u_{i}\right) \prod_{j=m_{i}+1}^{q_{i}^{i}} \Gamma_{j}^{D_{j}^{(i)}}\left(1-d_{j}^{(i)}+\delta_{j}^{(i)} u_{i}\right)}$
For more details, see Prathima and Nambisan [3]. Following the result of Braaksma the I-function of r variables is analytic if

$$
\begin{equation*}
U_{i}=\sum_{j=1}^{\mathrm{p}} A_{j} \alpha_{j}^{(i)}-\sum_{j=1}^{\mathrm{q}} B_{j} \beta_{j}^{(i)}+\sum_{j=1}^{p_{i}} C_{j}^{(i)} \gamma_{j}^{(i)}-\sum_{j=1}^{q_{i}} D_{j}^{(i)} \delta_{j}^{(i)} \leqslant 0, i=1, \cdots, s \tag{1.13}
\end{equation*}
$$

The integral (2.1) converges absolutely if
where $\left|\arg \left(z_{k}\right)\right|<\frac{1}{2} \Delta_{k} \pi, k=1, \cdots, s$
$\Delta_{k}=-\sum_{j=\mathbf{n}+1}^{\mathbf{p}} A_{j} \alpha_{j}^{(k)}-\sum_{j=1}^{\mathbf{q}} B_{j} \beta_{j}^{(k)}+\sum_{j=1}^{m_{k}} D_{j}^{(k)} \delta_{j}^{(k)}-\sum_{j=m_{k}+1}^{q_{k}} D_{j}^{(k)} \delta_{j}^{\prime(k)}+\sum_{j=1}^{n_{k}} C_{j}^{(k)} \gamma_{j}^{(k)}-\sum_{j=n_{k}+1}^{p_{k}} C_{j}^{(k)} \gamma_{j}^{(k)}>0$
In this paper, we shall note.
$X=m_{1}, n_{1} ; \cdots ; m_{s}, n_{s} \quad: Y=p_{1}, q_{1} ; \cdots ; p_{s}, q_{s}$
$\mathbb{A}=\left(a_{j} ; A_{j}^{(1)}, \cdots, A_{j}^{(s)} ; A_{j}\right)_{1, \mathbf{p}}:\left(c_{j}^{(1)}, \gamma_{j}^{(1)} ; C_{j}^{(1)}\right)_{1, p_{1}} ; \cdots ;\left(c_{j}^{(s)}, \gamma_{j}^{(s)} ; C_{j}^{(s)}\right)_{1, p_{s}}$
$\mathbb{B}=\left(b_{j} ; B_{j}^{(1)}, \cdots, B_{j}^{(s)} ; B_{j}\right)_{1, \mathbf{q}}:\left(\mathrm{d}_{j}^{(1)}, \delta_{j}^{(1)} ; D_{j}^{(1)}\right)_{1, q_{1}} ; \cdots ;\left(d_{j}^{(s)}, \delta_{j}^{(s)} ; D_{j}^{(s)}\right)_{1, q_{s}}$

2. Multiple integral transformations

In this section, following multiple transformations are established.

$$
\begin{align*}
& \int_{0}^{\infty} \cdots \int_{0}^{\infty} \prod_{j=1}^{p} x_{j}^{s_{j}-1} I\left(\begin{array}{c}
\mathrm{Z}_{1}\left(1+\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{-v_{1}}\left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{\mu_{1}} \prod_{j=1}^{p} x_{j}^{v_{j}^{(1)}} \\
\cdots \\
\cdots \\
\mathrm{Z}_{s}\left(1+\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{-v_{s}}\left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{\mu_{s}} \prod_{j=1}^{p} x_{j}^{v_{j}^{(s)}}
\end{array}\right) \\
& f\left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{p}=\prod_{j=1}^{p} \frac{\left(c_{j}^{\prime \prime}\right)^{-s_{j} / t_{j}}}{t_{j}} \int_{0}^{\infty} z^{S-1} f(z) \\
& I_{\mathbf{p}+p, \mathbf{q}+1 ; Y}^{\mathbf{m}, \mathbf{n}+p ; X}\left(\left.\begin{array}{c}
\mathrm{Z}_{1} \prod_{j=1}^{p}\left(c_{j}^{\prime \prime}\right)^{-v_{j}^{(1)} / t_{j}} z^{V_{1}+\mu_{1}}(1+z)^{v_{1}} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{Z}_{s} \prod_{j=1}^{p}\left(c_{j}^{\prime \prime}\right)^{-v_{j}^{(s)} / t_{j}} z^{V_{s}+\mu_{s}}(1+z)^{v_{s}}
\end{array} \right\rvert\,\left(1-\frac{s_{j}}{t_{j}}: \frac{v_{j}^{(1)}}{t_{j}}, \cdots, \frac{v_{j}^{(s)}}{t_{j}} ; 1\right)_{1, p}, \mathbb{A}{ }^{\left(1-\mathrm{S}: \mathrm{V}_{1}, \cdots, V_{s} ; 1\right), \mathbb{B}} \begin{array}{c}
\\
\cdot
\end{array}\right) \mathrm{d} z \tag{2.1}
\end{align*}
$$

where $S=\sum_{j=1}^{p} \frac{s_{j}}{t_{j}}, V_{i}=\sum_{j=1}^{p} \frac{v_{j}^{(i)}}{t_{j}} ; i=1, \cdots, s$
provided that $\mu_{i}, v_{j}^{(i)} \geqslant 0 ; j=1, \cdots, p, i=1, \cdots, s ; v_{i}>0 ; i=1, \cdots, s$
$\min \left\{c_{j}^{\prime \prime}, t_{j}, \operatorname{Re}\left(s_{j}\right)\right\}>0$ for $j=1, \cdots, p$ and $\left|\arg \left(Z_{k}\right)\right|<\frac{1}{2} \Delta_{k} \pi, k=1, \cdots, s$
$v_{i}-\mu_{i}-V_{i}>0, i=1, \cdots, s$ and the function f is so prescribed that the various integrals (2.1) exist, also,

$$
\int \cdots \int_{R_{p}} \prod_{j=1}^{p} x_{j}^{s_{j}-1} I\left(\begin{array}{c}
\mathrm{Z}_{1}\left(1-\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{-v_{1}}\left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{\mu_{1}} \prod_{j=1}^{p} x_{j}^{v_{j}^{(1)}} \\
\cdots \\
\cdots \\
\mathrm{Z}_{s}\left(1-\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{-v_{s}}\left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{\mu_{s}} \prod_{j=1}^{p} x_{j}^{v_{j}^{(s)}}
\end{array}\right)
$$

$$
f\left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{p}=\prod_{j=1}^{p} \frac{\left(c_{j}^{\prime \prime}\right)^{-s_{j} / t_{j}}}{t_{j}} \int_{0}^{1} z^{S-1} f(z)
$$

where $S=\sum_{j=1}^{p} \frac{s_{j}}{t_{j}}, V_{i}=\sum_{j=1}^{p} \frac{v_{j}^{(i)}}{t_{j}} ; i=1, \cdots, s$
provided that $v_{i}, \mu_{i}, v_{j}^{(i)} \geqslant 0 ; j=1, \cdots, p, i=1, \cdots, s$
$\min \left\{c_{j}^{\prime \prime}, t_{j}, \operatorname{Re}\left(s_{j}\right)\right\}>0$ for $j=1, \cdots, p$ and $\left|\arg \left(Z_{k}\right)\right|<\frac{1}{2} \Delta_{k} \pi, k=1, \cdots, s$
and the function f is so prescribed that the various integrals in (2.2) exist. Also R_{p} is the region defined by
$x_{j} \geqslant 0$ and $\sum_{i=1}^{p} c_{j}^{\prime \prime} x^{t_{j}} \leqslant 1(j=1, \cdots, p)$
Proof of (2.1)
Writing contour integral for the multivariable I-function in the l.h.s. of (2.1), changing the order of integrations, which is justified under the conditions mentioned with (2.1), we find that

$$
\begin{gather*}
\text { l.h.s. }=\frac{1}{(2 \pi \omega)^{s}} \int_{L_{1}^{\prime}} \cdots \int_{L_{s}^{\prime}} \phi^{\prime}\left(u_{1}, \cdots, u_{s}\right) \prod_{i=1}^{s} \zeta_{i}\left(u_{i}\right) Z_{i}^{u_{i}}\left\{\int_{0}^{\infty} \cdots \int_{0}^{\infty}\right. \\
\left.\left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{\sum_{i=1}^{s} \mu_{i} u_{i}}\left(1+\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{-\sum_{i=1}^{s} v_{i} u_{i}} f\left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{p}\right\} \mathrm{d} u_{1} \cdots \mathrm{~d} u_{s} \tag{2.3}
\end{gather*}
$$

Now, by an appeal of the following useful result of Edwards [1, page 172]:
$\int_{0}^{\infty} \cdots \int_{0}^{\infty} \prod_{j=1}^{p} x_{j}^{s_{j}-1} f\left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{p}=\frac{\prod_{j=1}^{p}\left(\frac{s_{j}}{t_{j}}\right)}{\Gamma\left(\sum_{j=1}^{p}\left(\frac{s_{j}}{t_{j}}\right)\right)} \prod_{j=1}^{p} \frac{\left(c_{j}^{\prime \prime}\right)^{-s_{j} / t_{j}}}{t_{j}} \int_{0}^{\infty} z^{S-1} f(z) \mathrm{d} z$
where $S=\sum_{j=1}^{p} \frac{s_{j}}{t_{j}} ; i=1, \cdots, s$ and $\min \left\{c_{j}^{\prime \prime}, t_{j}, \operatorname{Re}\left(s_{j}\right)\right\}>0$ for $j=1, \cdots, p$
and using (1.10) again, we get the right hand side of (2.1).
To prove (2.2), we follow a method similar to that given above.

3. Multiple integrals

In the early section, we have remarked that a number of multiple integrals can be easily obtained by choosing the function f suitably. For the sake of illustration, we evaluate here following two simple and interesting multiple integrals :

First integral

Taking $f(z)=z^{\sigma}(1+z)^{-\lambda}$ in (2.1), using (1.10) and a known result [2, page 10], to evaluate the z-integral, we arrive at the following interesting and new integral.

$$
\begin{align*}
& \int_{0}^{\infty} \cdots \int_{0}^{\infty} \prod_{j=1}^{p} x_{j}^{s_{j}-1} I\left(\begin{array}{c}
\mathrm{Z}_{1}\left(1+\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{-v_{1}}\left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{\mu_{1}} \prod_{j=1}^{p} x_{j}^{v_{j}^{(1)}} \\
\cdots \\
\cdots \\
\mathrm{Z}_{s}\left(1+\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{-v_{s}}\left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{\mu_{s}} \prod_{j=1}^{p} x_{j}^{v_{j}^{(s)}}
\end{array}\right) \\
& \left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{\sigma}\left(1+\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{-\lambda} \mathrm{d} x_{1} \cdots \mathrm{~d} x_{p}=\prod_{j=1}^{p} \frac{\left(c_{j}^{\prime \prime}\right)^{-s_{j} / t_{j}}}{t_{j}} \\
& \underset{I_{\mathbf{p}+p+2, \mathbf{q}+2 ; Y}^{\mathrm{m}, \mathbf{n}+p+2 ; X}}{ }\left(\begin{array}{c|c}
\mathrm{Z}_{1} \prod_{j=1}^{p}\left(c_{j}^{\prime \prime}\right)^{-v_{j}^{(1)} / t_{j}} & \left(1-\frac{s_{j}}{t_{j}}: \frac{v_{j}^{(1)}}{t_{j}}, \cdots, \frac{v_{j}^{(s)}}{t_{j}} ; 1\right)_{1, p}, \\
\cdot & \\
\cdot & \\
\mathrm{Z}_{s} \prod_{j=1}^{p}\left(c_{j}^{\prime \prime}\right)^{\left.-v_{j}^{(s)}\right)} t_{j} & \text { (1-S: } \left.\mathrm{V}_{1}, \cdots, V_{s} ; 1\right),
\end{array}\right. \\
& \left.\left(1-\sigma-S: \mu_{1}+V_{1}, \cdots, \mu_{s}+V_{s}\right),\left(1+\sigma-\lambda+S: v_{1}-\mu_{1}-V_{1}, \cdots, v_{s}-\mu_{s}-V_{s} ; 1\right), \mathbb{A}\right) \tag{3.1}\\
& \left(1-\lambda ; v_{1}, \cdots, v_{s} ; 1\right), \mathbb{B}
\end{align*}
$$

where $S=\sum_{j=1}^{p} \frac{s_{j}}{t_{j}}, V_{i}=\sum_{j=1}^{p} \frac{v_{j}^{(i)}}{t_{j}} ; i=1, \cdots, s$
provided that $\mu_{i}, v_{j}^{(i)} \geqslant 0 ; j=1, \cdots, p, i=1, \cdots, s ; v_{i}>0 ; i=1, \cdots, s$
$\min \left\{c_{j}^{\prime \prime}, t_{j}, \operatorname{Re}\left(s_{j}\right), \operatorname{Re}(\sigma+1), \operatorname{Re}(\lambda)\right\}>0$ for $j=1, \cdots, p$
$v_{i}-\mu_{i}-V_{i}>0, i=1, \cdots, s$ and $\left|\arg \left(Z_{k}\right)\right|<\frac{1}{2} \Delta_{k} \pi, k=1, \cdots, s$
$0<\operatorname{Re}(S+\sigma)+\sum_{i=1}^{s}\left(V_{i}+\mu_{i}\right) \min _{1 \leqslant j \leqslant m_{i}} \operatorname{Re}\left(\frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right)<\operatorname{Re}(\lambda)+\sum_{i=1}^{s} v_{i} \min _{1 \leqslant j \leqslant m_{i}} \operatorname{Re}\left(\frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right)$
Second integral
Taking $f(z)=z^{\sigma}(1-z)^{-\lambda}$ in (2.2), using (1.10) and a known result [2, page 10], to evaluate the z-integral, we arrive at the following interesting and new integral.

$$
\begin{align*}
& \int \cdots \int_{R_{p}} \prod_{j=1}^{p} x_{j}^{s_{j}-1} I\left(\begin{array}{c}
\mathrm{Z}_{1}\left(1-\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{-v_{1}}\left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{\mu_{1}} \prod_{j=1}^{p} x_{j}^{v_{j}^{(1)}} \\
\cdots \\
\cdots \\
\mathrm{Z}_{s}\left(1-\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{-v_{s}}\left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{\mu_{s}} \prod_{j=1}^{p} x_{j}^{v_{j}^{(s)}}
\end{array}\right) \\
& \left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{\sigma}\left(1-\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{-\lambda} \mathrm{d} x_{1} \cdots \mathrm{~d} x_{p}=\prod_{j=1}^{p} \frac{\left(c_{j}^{\prime \prime}\right)^{-s_{j} / t_{j}}}{t_{j}} \\
& I_{\mathbf{p}+p+2, \mathbf{q}+2 ; Y}^{\mathbf{m}, \mathbf{n}+p+2 ; X}\left(\begin{array} { c }
{ \mathrm { Z } _ { 1 } \prod _ { j = 1 } ^ { p } (c _ { j } ^ { \prime \prime }) ^ { - v _ { j } ^ { (1) } / t _ { j } } } \\
{ \cdot } \\
{ \cdot } \\
{ \cdot } \\
{ \mathrm { Z } _ { s } \prod _ { j = 1 } ^ { p } (c _ { j } ^ { \prime \prime }) ^ { - v _ { j } ^ { (s) } / t _ { j } } }
\end{array} \left(\begin{array}{c}
\left(1-\frac{s_{j}}{t_{j}}: \frac{v_{j}^{(1)}}{t_{j}}, \cdots, \frac{v_{j}^{(s)}}{t_{j}} ; 1\right)_{1, p}, \\
\cdot \\
\cdot \\
\left(1-\mathrm{S}: \mathrm{V}_{1}, \cdots, V_{s} ; 1\right),
\end{array}\right.\right. \\
& \left(1-\sigma-S ; \mu_{1}+V_{1}, \cdots, \mu_{s}+V_{s} ; 1\right),\left(-\lambda+S: v_{1}, \cdots, v_{s} ; 1\right), \mathbb{A} \tag{3.2}\\
& \left(-\lambda-\sigma-S ; \mu_{1}+v_{1}+\dot{V_{1}}, \cdots, \mu_{s}+v_{s}+V_{s} ; 1\right), \mathbb{B}
\end{align*}
$$

where $S=\sum_{j=1}^{p} \frac{s_{j}}{t_{j}}, V_{i}=\sum_{j=1}^{p} \frac{v_{j}^{(i)}}{t_{j}} ; i=1, \cdots, s$, also R_{p} is the region defined by $x_{j} \geqslant 0$ and $\sum_{i=1}^{p} c_{j}^{\prime \prime} x^{t_{j}} \leqslant 1(j=1, \cdots, p)$
provided that $v_{i}, \mu_{i}, v_{j}^{(i)} \geqslant 0 ; j=1, \cdots, p, i=1, \cdots, s$
$\min \left\{c_{j}^{\prime \prime}, t_{j}, \operatorname{Re}\left(s_{j}\right), \operatorname{Re}(\sigma+1), \operatorname{Re}(\lambda+1)\right\}>0$ for $j=1, \cdots, p$
$v_{i}-\mu_{i}-V_{i}>0, i=1, \cdots, s$ and $\left|\arg \left(Z_{k}\right)\right|<\frac{1}{2} \Delta_{k} \pi, k=1, \cdots, s$
$0<\operatorname{Re}(S+\sigma)+\sum_{i=1}^{s}\left(V_{i}+\mu_{i}\right) \min _{1 \leqslant j \leqslant m_{i}} \operatorname{Re}\left(\frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right)$ and $\operatorname{Re}(\lambda+1)+\sum_{i=1}^{s} v_{i} \min _{1 \leqslant j \leqslant m_{i}} \operatorname{Re}\left(\frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right)>0$

4. Generalized of the integrals (3.1) and (3.2)

First integral

$$
\begin{gathered}
\int_{0}^{\infty} \cdots \int_{0}^{\infty} \prod_{j=1}^{p} x_{j}^{s_{j}-1}\left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{\sigma}\left(1+\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{-\lambda} \\
\bar{I}\left(\begin{array}{c}
\mathrm{z}_{1}\left(1+\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{-u}\left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{\rho} \prod_{j=1}^{p} x_{j}^{u_{j}^{(1)}} \\
\cdots \\
\mathrm{z}_{r}\left(1+\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{-u}\left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{\rho} \prod_{j=1}^{p} x_{j}^{u_{j}^{(s)}}
\end{array}\right)
\end{gathered}
$$

$$
I\left(\begin{array}{c}
\mathrm{Z}_{1}\left(1+\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{-v_{1}}\left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{\mu_{1}} \prod_{j=1}^{p} x_{j}^{v_{j}^{(1)}} \\
\cdots \\
\mathrm{Z}_{s}\left(1+\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{-v_{s}}\left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{\mu_{s}} \prod_{j=1}^{p} x_{j}^{v_{j}^{(s)}}
\end{array}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{p}
$$

$$
=\sum_{G_{i}=1}^{M_{i}} \sum_{g_{i}=1}^{\infty} \phi \frac{\prod_{i=1}^{r} \phi_{i} z_{i}^{\eta_{G_{i}, g_{i}}}(-)^{\sum_{i=1}^{r} g_{i}}}{\prod_{i=1}^{r} \delta_{G^{(i)}}^{(i)} \prod_{i=1}^{r} g_{i}!} \prod_{j=1}^{p} \frac{\left(c_{j}^{\prime \prime}\right)^{-\left(s_{j}+u_{j}^{(i)} \eta_{G_{i}, g_{i}}\right) / t_{j}}}{t_{j}}
$$

$$
I_{\mathbf{p}+p+2, \mathbf{q}+2 ; Y}^{\mathbf{m}, \mathbf{n}+p+2 ; X}\left(\begin{array}{c|c}
\mathrm{Z}_{1} \prod_{j=1}^{p}\left(c_{j}^{\prime \prime}\right)^{-v_{j}^{(1)} / t_{j}} & \left(1-\frac{s_{j}+u_{j}^{(i)} \eta_{G_{i}, g_{i}}}{t_{j}}: \frac{v_{j}^{(1)}}{t_{j}}, \cdots, \frac{v_{s}^{(s)}}{t_{j}} ; 1\right)_{1, p} \\
\cdot & \cdot \\
\mathrm{Z}_{s} \prod_{j=1}^{p}\left(c_{j}^{\prime \prime}\right)^{-v_{j}^{(s)} / t_{j}} & \left(1-\mathrm{S}\left(\eta_{G_{i}, g_{i}}\right)\right. \\
\vdots \\
\left.V_{1}, \cdots, V_{s} ; 1\right),
\end{array}\right.
$$

$$
\left(1-\sigma-\rho \eta_{G_{i}, g_{i}}-S\left(\eta_{G_{i}, g_{i}}\right) ; \mu_{1}+V_{1}, \cdots, \mu_{s}+V_{s} ; 1\right)
$$

$$
\left.\begin{array}{c}
\left(1+\sigma+\rho \eta_{G_{i}, g_{i}}-\lambda-\mu \eta_{G_{i}, g_{i}}+S\left(\eta_{G_{i}, g_{i}}\right): v_{1}-\mu_{1}-V_{1}, \cdots, v_{s}-\mu_{s}-V_{s} ; 1\right), \mathbb{A} \\
\vdots \tag{4.1}\\
\left(1-\lambda-u \eta_{G_{i}, g_{i}}: v_{1}, \cdots, v_{s} ; 1\right), \mathbb{B}
\end{array}\right)
$$

where $S\left(\eta_{G_{i}, g_{i}}\right)=\sum_{j=1}^{p} \frac{s_{j}+u_{j}^{(i)} \eta_{G_{i}, g_{i}}}{t_{j}}, \phi, \phi_{i}$ and $\eta_{G_{i}, g_{i}}$ are defined respectively by (1.6), (1.7) and (1.8).
The integral (4.1) is valid if :
(i) the sets of conditions given with (3.1) are satisfied.
(ii) $u=\rho-\sum_{j=1}^{p} \frac{u_{j}^{(i)}}{t_{j}}>0, u, \rho, u_{j}^{(i)} \geqslant 0(j=1, \cdots, p ; i=1, \cdots, r)$
(iii) The multiple series on the right hand side are absolutely convergents.
(iv) $U_{i}=\sum_{j=1}^{P} A_{j} \alpha_{j}^{(i)}-\sum_{j=1}^{Q} B_{j} \beta_{j}^{(i)}+\sum_{j=1}^{P_{i}} C_{j}^{(i)} \gamma_{j}^{(i)}-\sum_{j=M_{i}+1}^{Q_{i}} D_{j}^{(i)} \delta_{j}^{(i)}<0, i=1, \cdots, r$

Second integral

$$
\begin{align*}
& \int \cdots \int_{R_{p}} \prod_{j=1}^{p} x_{j}^{s_{j}-1}\left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{\sigma}\left(1-\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{-\lambda} \\
& I\left(\begin{array}{c}
\mathrm{z}_{1}\left(1-\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{-u}\left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{\rho} \prod_{j=1}^{p} x_{j}^{u_{j}^{(1)}} \\
\cdots \\
\cdots \\
\mathrm{z}_{r}\left(1-\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{-u}\left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{\rho} \prod_{j=1}^{p} x_{j}^{u_{j}^{(s)}}
\end{array}\right) \\
& I\left(\begin{array}{c}
\mathrm{Z}_{1}\left(1-\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{-v_{1}}\left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{\mu_{1}} \prod_{j=1}^{p} x_{j}^{v_{j}^{(1)}} \\
\cdots \\
\cdots \\
\mathrm{Z}_{s}\left(1-\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{-v_{s}}\left(\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}\right)^{\mu_{s}} \prod_{j=1}^{p} x_{j}^{v_{j}^{(s)}}
\end{array}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{p} \\
& =\sum_{G_{i}=1}^{M_{i}} \sum_{g_{i}=1}^{\infty} \phi \frac{\prod_{i=1}^{r} \phi_{i} z_{i}^{\eta_{G_{i}, g_{i}}}(-)^{\sum_{i=1}^{r} g_{i}}}{\prod_{i=1}^{r} \delta_{G^{(i)}}^{(i)} \prod_{i=1}^{r} g_{i}!} \prod_{j=1}^{p} \frac{\left(c_{j}^{\prime \prime}\right)^{-\left(s_{j}+u_{j}^{(i)} \eta_{G_{i}, g_{i}}\right) / t_{j}}}{t_{j}} \\
& I_{\mathbf{p}+p+2, \mathbf{q}+2 ; Y}^{\mathbf{m}, \mathbf{n}+p+2 ; X}\left(\begin{array}{c}
\mathrm{Z}_{1} \prod_{j=1}^{p}\left(c_{j}^{\prime \prime}\right)^{-v_{j}^{(1)} / t_{j}} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{Z}_{s} \prod_{j=1}^{p}\left(c_{j}^{\prime \prime}\right)^{-v_{j}^{(s)} / t_{j}}
\end{array}\left(1-\frac{s_{j}+u_{j}^{(i)} \eta_{G_{i}, g_{i}}}{t_{j}}: \frac{v_{j}^{(1)}}{t_{j}}, \cdots, \frac{v_{j}^{(s)}}{t_{j}} ; 1\right)_{1, p},\right. \\
& \left.\left(1-\sigma-\rho \eta_{G_{i}, g_{i}}-S\left(\eta_{G_{i}, g_{i}}\right) ; \mu_{1}+V_{1}, \cdots, \mu_{s}+V_{s} ; 1\right),\left(-\lambda-u \eta_{G_{i}, g_{i}}: v_{1}, \cdots, v_{s} ; 1\right), \mathbb{A}\right) \\
& \left(-\lambda-\sigma-(u+\rho) \eta_{G_{i}, g_{i}}-S\left(\eta_{G_{i}, g_{i}}\right): \mu_{1}+v_{1}+V_{1}, \cdots, \mu_{s}+v_{s}+V_{s} ; 1\right), \mathbb{B} \tag{4.2}
\end{align*}
$$

where $S\left(\eta_{G_{i}, g_{i}}\right)=\sum_{j=1}^{p} \frac{s_{j}+u_{j}^{(i)} \eta_{G_{i}, g_{i}}}{t_{j}}, \phi, \phi_{i}$ and $\eta_{G_{i}, g_{i}}$ are defined respectively by (1.6), (1.7) and (1.8).
also R_{p} is the region defined by $x_{j} \geqslant 0$ and $\sum_{i=1}^{p} c_{j}^{\prime \prime} x^{t_{j}} \leqslant 1(j=1, \cdots, p)$
The integral (4.2) is valid if :
(i) the sets of conditions given with (3.2) are satisfied.
(ii) $u, \rho, u_{j}^{(i)} \geqslant 0(j=1, \cdots, p ; i=1, \cdots, r)$
(iii) The multiple series on the right hand side are absolutely convergents.
(iv) $U_{i}=\sum_{j=1}^{P} A_{j} \alpha_{j}^{(i)}-\sum_{j=1}^{Q} B_{j} \beta_{j}^{(i)}+\sum_{j=1}^{P_{i}} C_{j}^{(i)} \gamma_{j}^{(i)}-\sum_{j=M_{i}+1}^{Q_{i}} D_{j}^{(i)} \delta_{j}^{(i)}<0, i=1, \cdots, r$

Proof
To prove (4.1), first expressing the multivariable I-function defined by Prathima and Nambisan [3] in series with the help of (1.1) and we interchange the order of summations and ($x_{1} \cdots x_{p}$) -integral (which is permissible under the conditions stated). Now collect the power of $\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}$ and $1-\sum_{j=1}^{p} c_{j}^{\prime \prime} x_{j}^{t_{j}}$ and use the integral (3.1), we obtain the desired result.

The integral (4.2) can be proved in a similar manner.

5. Conclusion

The integral (4.1) and (4.2) involve the multivariable I-functions defined by Prathima and Nambisan [3], which is quite general in character. On specializing the various parameters of these functions, a number of new obtained double, triple and multiple integrals can be obtained involving special functions of one and several variables.

References

[1] Edwards J. A treatise of the integral calculus. Vol II, Chelsea Publ. Co. New York. 1954.
[2] Erdelyi A. et al. Higher trancentendal functions. Vol I. Mc Graw-Hill, New York. 1953.
[3] Prathima J. Nambisan V. and Kurumujji S.K. A Study of I-function of Several Complex Variables, International Journalof Engineering Mathematics Vol (2014), 2014 page 1-12.
[4] Srivastava H.M. and Panda R. Some expansion theorems and generating relations for the H -function of several complex variables. Comment. Math. Univ. St. Paul. 24 (1975), page.119-137.
[5] Srivastava H.M. and Panda R. Some expansion theorems and generating relations for the H -function of several complex variables II. Comment. Math. Univ. St. Paul. 25 (1976), page.167-197.

Le parc Fleuri , Bat B
83140 , Six-Fours les plages
Tel : 06-83-12-49-68
Department : VAR
Country : FRANCE

