Mappings Via ideals

Nitakshi Goyal
Department of Mathematics
Punjabi University,Patiala
Punjab, India.

December 8, 2017

Abstract

We will give characterizations of Pointwise-I-continuous mapppings and Inversely-I-open maps. We also give the relationship between them.

2010 Mathematics Subject Classification: 54C08, 54C10.
Keywords: inversely- \mathcal{I}-open, pointwise- \mathcal{I}-continuous, ideal.

1 Introduction and Preliminaries

The subject of ideals in topological spaces has been studied by Kuratowski[2] and Vaidyanathaswamy[5]. An ideal I on a topological space (X, τ) is a collection of subsets of X which satisfies that (i) $S \in I$ and $B \in \mathcal{I}$ implies $S \cup B \in \mathcal{I}$ and (ii) $S \in I$ and $B \subset S$ implies $B \in I$. Given a topological space (X, τ) with an ideal I on X known as ideal topological space and $(.)^{*}: \wp(X) \rightarrow \wp(X)$, called a local function[2] of S with respect to I and τ, is defined as follows: for $S \subseteq X, S^{*}(\mathcal{I}, \tau)=\{x \in X: U \cap S \notin \mathcal{I}$ for every open nhd. U of x in $X\}$. A Kuratowski closure operator $c l^{*}($.) for a topology $\tau^{*}(\mathcal{I}, \tau)$, called the $*$-topology, finer than τ, is defined by $c l^{*}(S)=S \cup S^{*}(\mathcal{I}, \tau)$ [4]. When there is no chance of confusion, we will simply write S^{*} for $S^{*}(I, \tau)$ and $\tau^{*}(\mathcal{I})$ for $\tau^{*}(I, \tau)$.

Throughout this paper (X, τ) will denote topological space on which no separation axioms are assumed. If I is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal space. For a subset S of $X, \operatorname{cl}(S)$ and $\operatorname{int}(S)$ will denote the closure of S, interior of S in (X, τ), respectively, $c l^{*}(S)$ and $i n t^{*}(S)$ will denote the closure of S, interior of S in $\left(X, \tau^{*}\right)$, respectively, and S^{C} will denote the complement of S in X.

We will also make use of the following results:
Lemma 1.1. [3] For any sets X and Y, let $f: X \rightarrow Y$ be any map and S be any subset of X. Then:
(a) $f^{\#}(S)=\left\{y \in Y: f^{-1}(y) \subseteq S\right\}$.
(b) $f^{\#}\left(S^{C}\right)=(f(S))^{C}$ and so $f^{\#}(S)=\left(f\left(S^{C}\right)\right)^{C}$ and $f(S)=\left(f^{\#}\left(S^{C}\right)\right)^{C}$.
(c) f is onto if and only if $f^{\#}(A)=f\left(A^{\#}\right)$.
(e) $E^{\#}=f^{-1}\left(f^{\#}(E)\right)$.

Definition 1.1. [1] A mapping $f:(X, \tau, \mathcal{I}) \rightarrow(Y, \sigma)$ is said to be pointwise- \mathcal{I}-continuous if the inverse image of every open set in Y is $\tau^{*}(\mathcal{I})$-open in X. Equivalently, $f:(X, \tau, \mathcal{I}) \rightarrow(Y, \sigma)$ is pointwise- \mathcal{I}-continuous if and only if $f:\left(X, \tau^{*}(\mathcal{I})\right) \rightarrow(Y, \sigma)$ is continuous.

2 Results

The following Theorems give characterization of pointwise- I-continuous maps.
Theorem 2.1. A map $g:(Y, \tau, \mathcal{I}) \rightarrow(Z, \sigma, \mathcal{J})$ with $\mathcal{J}=g(\mathcal{I})$ is pointwise- \mathcal{I}-continuous if and only if for each subset S of $Y, \operatorname{int}\left(g^{\#}(S)\right) \subseteq g^{\#}\left(\operatorname{int}^{*}(S)\right)$.

Proof. We know that g is pointwise- \mathcal{I}-continuous if and only if for each subset S of $X, g\left(c l^{*}(S)\right) \subseteq \operatorname{cl}(g(S))$. But Lemma 1.1 b) implies that $g\left(c l^{*}(S)\right) \subseteq \operatorname{cl}(g(S))$ if and only if $\left(g^{\#}\left(c l^{*}(S)\right)^{C}\right)^{C} \subseteq \operatorname{cl}\left(g^{\#}\left(S^{C}\right)\right)^{C}=\left(\operatorname{int}\left(g^{\#}\left(S^{C}\right)\right)\right)^{C}$. Therefore, $g\left(c l^{*}(S)\right) \subseteq c l(g(S))$ if and only if $\operatorname{int}\left(g^{\#}\left(S^{C}\right)\right) \subseteq g^{\#}\left(i n t^{*}\left(S^{C}\right)\right)$. Since this equivalence holds for arbitrary subsets S of X, we have g is pointwise- \mathcal{I}-continuous if and only if for each subset S of Y, $\operatorname{int}\left(g^{\#}(S)\right) \subseteq g^{\#}\left(i n t^{*}(S)\right)$.

Theorem 2.2. Let $g:(X, \tau, \mathcal{I}) \rightarrow(Y, \sigma, \mathcal{J})$ with $\mathcal{J}=g(\mathcal{I})$ be any surjective map. Then the following conditions are equivalent.
(a) g is pointwise-I-continuous.
(b) $\left.\operatorname{int}\left(g\left(S^{\#}\right)\right) \subseteq g\left(\text { int } t^{*}(S)\right)^{\#}\right)$ for all subsets S of X.
(c) $S^{\#}$ is τ^{*}-open in X whenever $g\left(S^{\#}\right)$ is open in Y.
(d) for any saturated set S in X, S is τ^{*}-open in X whenever $g(S)$ is open in Y.
(e) for any saturated set S in X, S is τ^{*}-closed in X whenever $g(S)$ is closed in Y.

Proof. (a) \Leftrightarrow (b) follows using above theorem and Lemma 1.1 (c).
$($ a $) \Rightarrow(\mathrm{c})$: Let $g\left(S^{\#}\right)$ is open in Y. So $g^{\#}(S)$ is open in Y using Lemma 1.1(c). Since g is pointwise- I-continuous. Therefore, $g^{-1}\left(g^{\#}(S)\right)$ is τ^{*}-open in X. Thus $S^{\#}$ is τ^{*}-open in X using Lemma 1.1.d).
(c) \Rightarrow (d): follows from (c) and follows from the fact that a subset S of X is saturated if and only if $S=S^{\#}$.
$(\mathrm{d}) \Rightarrow(\mathrm{e})$: Let $g(S)$ be closed in Y, where S is saturated in X. Then $(g(S))^{C}=g^{\#}\left(S^{C}\right)$ is open in Y using Lemma 1.1.b). So g is surjective implies $g\left(\left(S^{C}\right)^{\#}\right)$ is open in Y using Lemma 1.1(c). Slso S is saturated implies S^{C} is saturated and so $\left(S^{C}\right)^{\#}=S^{C}$. Therefore, $(g(S))^{C}=g\left(S^{C}\right)$ and so by $(\mathrm{d}), g\left(S^{C}\right)$ is open in Y implies S^{C} is τ^{*}-open in X. Hence S is τ^{*}-closed in X.
(e) \Rightarrow (a): Let F be any closed subset of Y and let $S=g^{-1}(F)$. Then $g(S)=F$, since g is surjective, and so $g(S)$ is closed for a saturated subset S of X. Therefore, by condition (e), $S=g^{-1}(F)$ is τ^{*}-closed in Y. Hence g is pointwise- \mathcal{I}-continuous.

Definition 2.1. A mapping $f:(X, \tau, \mathcal{I}) \rightarrow(Y, \sigma)$ is said to be inversely- \mathcal{I}-open if for any subset A of $X, \operatorname{int}(f(A)) \subseteq$ $f\left(\right.$ int $\left.^{*}(A)\right)$.

The following theorem gives various characterizations of inversely- I-open maps.
Theorem 2.3. For any map $g:(Y, \tau, \mathcal{I}) \rightarrow(Z, \sigma)$, the following conditions are equivalent:
(a) g is inversely-I-open i.e. for each subset A of $Y, \operatorname{int}(g(A)) \subseteq g\left(i n t^{*}(A)\right)$.
(b) $g^{\#}\left(c l^{*}(A)\right) \subseteq c l\left(g^{\#}(A)\right)$.
(c) if V is an open subset of Z and $V \subseteq g(Y)$, then each set consisting of exactly one point and so at least one point from each fiber $g^{-1}(y)$, where $y \in V$, is $\tau^{*}(I)$-open in Y.
(d) for any subset A of Y, A is $\tau^{*}(\mathcal{I})$-open in Y, whenever $g(A)$ is open subset of Z.
(e) for any subset A of Y, A is $\tau^{*}(\mathcal{I})$-closed in Y, whenever $g^{\#}(A)$ is closed subset of Z.

Proof. (a) \Leftrightarrow (b): It follows from the Lemma $1.1(\mathrm{~b})$ and using $(c l(A))^{C}=\operatorname{int}\left(A^{C}\right)$.
(a) \Rightarrow (c): Let g be inversely- \mathcal{I}-open and $V \subseteq g(Y)$ such that V is an open subset of Z. Let S be any set consisting of exactly one point from each fiber $g^{-1}(y), y \in V$. We show that S is τ^{*}-open in Y. Now $g(S)=V$ and the image under g of any proper subset of S is a proper subset of V. If S is not τ^{*}-open in Y, then $\operatorname{int} t^{*}(S) \subset S$ but $i n t^{*}(S) \neq S$ and so $g\left(i n t^{*}(S)\right) \subset V$ but $g\left(i n t^{*}(S)\right) \neq V$. By (a) this implies that $\operatorname{int}(g(S)) \subseteq g\left(i n t^{*}(S)\right) \subset V$ but $g\left(\right.$ int $\left.t^{*}(S)\right) \neq V$, contadicting the fact that $V=\operatorname{int}(g(S))$, since V is open in Z. Hence (c) holds.
$(\mathrm{c}) \Rightarrow(\mathrm{d})$: Let $V=g(A)$ be an open subset of Z. We show that A is τ^{*}-open in Y. Consider the collection $\left\{S_{y}\right\}_{y}$, where each $S_{y}=g^{-1}(y) \cap A, y \in V$. Since $A=\cup_{y} S_{y}$ and each S_{y} contains at least one point from $g^{-1}(y), y \in V$, the set A is τ^{*}-open in Y.
$(\mathrm{d}) \Rightarrow(\mathrm{e})$: For any set A in Y, let $g^{\#}(A)$ be closed in Z, then by Lemma 1.1 b), $\left(g\left(A^{C}\right)\right)^{C}$ is closed in Z and so $g\left(A^{C}\right)$ is open in Z. Therefore, by (d), A^{C} is τ^{*}-open and so A is τ^{*}-closed in Y. Hence (e) holds.
$(\mathrm{e}) \Rightarrow(\mathrm{d})$: If $f(A)$ is open in Z, then by Lemma 1.1 b), $g^{\#}\left(A^{C}\right)$ is closed in Z. Therefore, by (e), A^{C} is τ^{*}-closed and so A is τ^{*}-open in Y. Hence (d) holds.
$(\mathrm{d}) \Rightarrow(\mathrm{a})$: Since for any set A in $Y, \operatorname{int}(g(A)) \subseteq g(A)$, there exists $E \subseteq A$ such that $g(E)=\operatorname{int}(g(A))$. Therefore, $g(E)$ is open subset of Z and by (d), E is τ^{*}-open in Y. Therefore, $E \subseteq i n t^{*}(A)$ and so $g(E) \subseteq g\left(i n t^{*}(A)\right)$. Hence $\operatorname{int}(g(A)) \subseteq g\left(\right.$ int $\left.^{*}(A)\right)$, i.e., g is inversely- \mathcal{I}-open.

The following corollary gives the sufficient condition for a pointwise- I-continuous map to be inversely- I-open.
Corollary 2.1. (a) Every pointwise- I-continuous injective map is inversely- I-open.
(b) Let $f:(Y, \tau, \mathcal{I}) \rightarrow(Z, \sigma)$ be inversely- \mathcal{I}-open. Then f is pointwise- \mathcal{I}-continuous if $f(Y)$ is open in Z.

Proof. We prove only (b). Let G be open in Z. Then $f\left(f^{-1}(G)\right)=G \cap f(Y)$ is open in Z, since $f(Y)$ is open in Z. Then, $f^{-1}(G)$ is τ^{*}-open in Y by Theorem 2.3. Hence f is pointwise- \mathcal{I}-continuous.

Next theorem gives different characterizations of pointwise- \mathcal{I}-closed maps (where a mapping $g:(X, \tau, \mathcal{I}) \rightarrow$ (Y, σ, \mathcal{J}) with $\mathcal{J}=f(\mathcal{I})$ is said to be pointwise- \mathcal{I}-closed if the image of every closed set is $\sigma^{*}(f(\mathcal{I}))$ - closed).

Theorem 2.4. For any map $g:(X, \tau, \mathcal{I}) \rightarrow(Y, \sigma, \mathcal{J})$ with $\mathcal{J}=g(\mathcal{I})$, the following conditions are equivalent.
(a) g is pointwise-I-closed;
(b) for each subset S of $X, c l^{*}(g(S)) \subseteq g(c l(S))$;
(c) for each subset S of $X, g^{\#}(\operatorname{int}(S)) \subseteq i n t^{*}\left(g^{\#}(S)\right)$;
(d) for each open subset G of $X, g^{\#}(G)$ is σ^{*}-open in Y.

Proof. $(\mathrm{a}) \Rightarrow(\mathrm{b})$: Let S be any subset of X. Then $g(S) \subseteq g(c l(S))$. So $c l^{*}(g(S)) \subseteq c l^{*}(g(c l(S)))$. But $c l(S)$ is closed subset of X, so by condition (a), $c l^{*}(g(c l(S)))=g(c l(S))$. Therefore, $c l^{*}(g(S)) \subseteq g(c l(S))$ and (b) holds.
$(\mathrm{b}) \Rightarrow(\mathrm{c})$: By Lemma 1.1 b$)$ and condition (b), $g^{\#}(\operatorname{int}(S))=\left(g\left((\operatorname{int}(S))^{C}\right)\right)^{C}=\left(g\left(c l\left(S^{C}\right)\right)\right)^{C} \subseteq\left(c l^{*}\left(g\left(S^{C}\right)\right)\right)^{C}=$ $\left(c l^{*}\left(g^{\#}(S)\right)^{C}\right)^{C}=\operatorname{int}\left(g^{\#}(S)\right)$. Hence, $g^{\#}(\operatorname{int}(S)) \subseteq i n t^{*}\left(g^{\#}(S)\right)$, and (c) holds.
(c) \Rightarrow (d): Let G be any open subset of X, then $G=\operatorname{int}(G)$ and (c) implies that $g^{\#}(G) \subseteq \operatorname{int} t^{*}\left(g^{\#}(G)\right)$. Therefore, $g^{\#}(G)$ is σ^{*}-open set and (d) holds.
$(\mathrm{d}) \Rightarrow(\mathrm{a})$: Let F be any closed subset of X. Then (d) implies that $g^{\#}\left(F^{C}\right)$ is σ^{*}-open in Y. Therefore, Lemma 1.1 b) implies that $(g(F))^{C}=g^{\#}\left(F^{C}\right)$ is σ^{*}-open in Y. Thus, $g(F)$ is σ^{*}-closed in Y, and hence g is pointwise- \mathcal{I}-closed.

References

[1] J. Kanicwski and Z.Piotrowski, "Concerning continuity apart from a meager set", Proc. Amer. Math. Soc., 98(2), 1986, pp. 324-328.
[2] K.Kuratowski, Topology, volume I, Academic Press,New York, 1966.
[3] N.S. Noorie and R. Bala, "Some Characterizations of open, closed and Continuous Mappings", Int. J. Math. Mathematical Sci., Article ID527106, 5 pages(2008).
[4] R. Vaidyanathswamy, "The localisation Theory in Set Topology", Proc. Indian Acad. Sci., 20, 1945, pp. 51-61.
[5] _----_, Set Topology, Chelsea Publishing Company, New York, 1946.

