Mappings Via ideals

Nitakshi Goyal Department of Mathematics Punjabi University,Patiala Punjab, India.

December 8, 2017

Abstract

We will give characterizations of Pointwise-I-continuous mapppings and Inversely-I-open maps. We also give the relationship between them.

2010 Mathematics Subject Classification: 54C08, 54C10. Keywords: inversely-*I*-open, pointwise-*I*-continuous, ideal.

1 Introduction and Preliminaries

The subject of ideals in topological spaces has been studied by Kuratowski[2] and Vaidyanathaswamy[5]. An ideal I on a topological space (X, τ) is a collection of subsets of X which satisfies that (i) $S \in I$ and $B \in I$ implies $S \cup B \in I$ and (ii) $S \in I$ and $B \subset S$ implies $B \in I$. Given a topological space (X, τ) with an ideal I on X known as ideal topological space and (.)* : $\wp(X) \rightarrow \wp(X)$, called a local function[2] of S with respect to I and τ , is defined as follows: for $S \subseteq X$, $S^*(I, \tau) = \{x \in X : U \cap S \notin I \text{ for every open nhd. } U \text{ of } x \text{ in } X\}$. A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(I, \tau)$, called the *-topology, finer than τ , is defined by $cl^*(S) = S \cup S^*(I, \tau)$ [4]. When there is no chance of confusion, we will simply write S^* for $S^*(I, \tau)$ and $\tau^*(I)$ for $\tau^*(I, \tau)$.

Throughout this paper (X, τ) will denote topological space on which no separation axioms are assumed. If I is an ideal on X, then (X, τ, I) is called an ideal space. For a subset S of X, cl(S) and int(S) will denote the closure of S, interior of S in (X, τ) , respectively, $cl^*(S)$ and $int^*(S)$ will denote the closure of S, interior of S in (X, τ) , respectively, $cl^*(S)$ and $int^*(S)$ will denote the closure of S, interior of S in (X, τ) , respectively, and S^C will denote the complement of S in X.

We will also make use of the following results:

Lemma 1.1. [3] For any sets X and Y, let $f : X \to Y$ be any map and S be any subset of X. Then:

- (a) $f^{\#}(S) = \{y \in Y : f^{-1}(y) \subseteq S\}.$
- (b) $f^{\#}(S^{C}) = (f(S))^{C}$ and so $f^{\#}(S) = (f(S^{C}))^{C}$ and $f(S) = (f^{\#}(S^{C}))^{C}$.
- (c) f is onto if and only if $f^{\#}(A) = f(A^{\#})$.
- (e) $E^{\#} = f^{-1}(f^{\#}(E)).$

Definition 1.1. [1] A mapping $f : (X, \tau, I) \to (Y, \sigma)$ is said to be pointwise-*I*-continuous if the inverse image of every open set in *Y* is $\tau^*(I)$ -open in *X*. Equivalently, $f : (X, \tau, I) \to (Y, \sigma)$ is pointwise-*I*-continuous if and only if $f : (X, \tau^*(I)) \to (Y, \sigma)$ is continuous.

2 Results

The following Theorems give characterization of pointwise-*I*-continuous maps.

Theorem 2.1. A map $g : (Y, \tau, I) \to (Z, \sigma, \mathcal{J})$ with $\mathcal{J} = g(I)$ is pointwise-*I*-continuous if and only if for each subset *S* of *Y*, $int(g^{\#}(S)) \subseteq g^{\#}(int^{*}(S))$.

Proof. We know that g is pointwise-*I*-continuous if and only if for each subset S of X, $g(cl^*(S)) \subseteq cl(g(S))$. But Lemma 1.1(b) implies that $g(cl^*(S)) \subseteq cl(g(S))$ if and only if $(g^{\#}(cl^*(S))^C)^C \subseteq cl(g^{\#}(S^C))^C = (int(g^{\#}(S^C)))^C$. Therefore, $g(cl^*(S)) \subseteq cl(g(S))$ if and only if $int(g^{\#}(S^C)) \subseteq g^{\#}(int^*(S^C))$. Since this equivalence holds for arbitrary subsets S of X, we have g is pointwise-*I*-continuous if and only if for each subset S of Y, $int(g^{\#}(S)) \subseteq g^{\#}(int^*(S))$.

Theorem 2.2. Let $g : (X, \tau, I) \to (Y, \sigma, \mathcal{J})$ with $\mathcal{J} = g(I)$ be any surjective map. Then the following conditions are equivalent.

- (a) g is pointwise-I-continuous.
- (b) $int(g(S^{\#})) \subseteq g(int^{*}(S))^{\#})$ for all subsets S of X.
- (c) $S^{\#}$ is τ^* -open in X whenever $g(S^{\#})$ is open in Y.
- (d) for any saturated set S in X, S is τ^* -open in X whenever g(S) is open in Y.
- (e) for any saturated set S in X, S is τ^* -closed in X whenever g(S) is closed in Y.

Proof. (a) \Leftrightarrow (b) follows using above theorem and Lemma 1.1(c).

(a) \Rightarrow (c): Let $g(S^{\#})$ is open in Y. So $g^{\#}(S)$ is open in Y using Lemma 1.1(c). Since g is pointwise-*I*-continuous. Therefore, $g^{-1}(g^{\#}(S))$ is τ^* -open in X. Thus $S^{\#}$ is τ^* -open in X using Lemma 1.1(d).

(c) \Rightarrow (d): follows from (c) and follows from the fact that a subset S of X is saturated if and only if $S = S^{\#}$.

 $(d) \Rightarrow (e)$: Let g(S) be closed in Y, where S is saturated in X. Then $(g(S))^C = g^{\#}(S^C)$ is open in Y using Lemma 1.1(b). So g is surjective implies $g((S^C)^{\#})$ is open in Y using Lemma 1.1(c). Sloo S is saturated implies S^C is saturated and so $(S^C)^{\#} = S^C$. Therefore, $(g(S))^C = g(S^C)$ and so by (d), $g(S^C)$ is open in Y implies S^C is τ^* -open in X. Hence S is τ^* -closed in X.

(e) \Rightarrow (a): Let *F* be any closed subset of *Y* and let $S = g^{-1}(F)$. Then g(S) = F, since *g* is surjective, and so g(S) is closed for a saturated subset *S* of *X*. Therefore, by condition (e), $S = g^{-1}(F)$ is τ^* -closed in *Y*. Hence *g* is pointwise-*I*-continuous.

Definition 2.1. A mapping $f : (X, \tau, I) \to (Y, \sigma)$ is said to be inversely-*I*-open if for any subset *A* of *X*, $int(f(A)) \subseteq f(int^*(A))$.

The following theorem gives various characterizations of inversely-*I*-open maps.

Theorem 2.3. For any map $g: (Y, \tau, I) \to (Z, \sigma)$, the following conditions are equivalent:

- (a) g is inversely-*I*-open i.e. for each subset A of Y, $int(g(A)) \subseteq g(int^*(A))$.
- (b) $g^{\#}(cl^{*}(A)) \subseteq cl(g^{\#}(A)).$
- (c) if V is an open subset of Z and $V \subseteq g(Y)$, then each set consisting of exactly one point and so at least one point from each fiber $g^{-1}(y)$, where $y \in V$, is $\tau^*(I)$ -open in Y.
- (d) for any subset A of Y, A is $\tau^*(I)$ -open in Y, whenever g(A) is open subset of Z.
- (e) for any subset A of Y, A is $\tau^*(I)$ -closed in Y, whenever $g^{\#}(A)$ is closed subset of Z.

Proof. (a) \Leftrightarrow (b): It follows from the Lemma 1.1(b) and using $(cl(A))^{C} = int(A^{C})$.

(a)⇒(c): Let *g* be inversely-*I*-open and $V \subseteq g(Y)$ such that *V* is an open subset of *Z*. Let *S* be any set consisting of exactly one point from each fiber $g^{-1}(y)$, $y \in V$. We show that *S* is τ^* -open in *Y*. Now g(S) = V and the image under *g* of any proper subset of *S* is a proper subset of *V*. If *S* is not τ^* -open in *Y*, then $int^*(S) \subset S$ but $int^*(S) \neq S$ and so $g(int^*(S)) \subset V$ but $g(int^*(S)) \neq V$. By (a) this implies that $int(g(S)) \subseteq g(int^*(S)) \subset V$ but $g(int^*(S)) \neq V$, contadicting the fact that V = int(g(S)), since *V* is open in *Z*. Hence (c) holds.

(c) \Rightarrow (d): Let V = g(A) be an open subset of Z. We show that A is τ^* -open in Y. Consider the collection $\{S_y\}_y$, where each $S_y = g^{-1}(y) \cap A$, $y \in V$. Since $A = \bigcup_y S_y$ and each S_y contains at least one point from $g^{-1}(y)$, $y \in V$, the set A is τ^* -open in Y.

(d) \Rightarrow (e): For any set *A* in *Y*, let $g^{\#}(A)$ be closed in *Z*, then by Lemma 1.1(b), $(g(A^C))^C$ is closed in *Z* and so $g(A^C)$ is open in *Z*. Therefore, by (d), A^C is τ^* -open and so *A* is τ^* -closed in *Y*. Hence (e) holds.

(e) \Rightarrow (d): If f(A) is open in Z, then by Lemma 1.1(b), $g^{\#}(A^{C})$ is closed in Z. Therefore, by (e), A^{C} is τ^{*} -closed and so A is τ^{*} -open in Y. Hence (d) holds.

 $(d) \Rightarrow (a)$: Since for any set A in Y, $int(g(A)) \subseteq g(A)$, there exists $E \subseteq A$ such that g(E) = int(g(A)). Therefore, g(E) is open subset of Z and by (d), E is τ^* -open in Y. Therefore, $E \subseteq int^*(A)$ and so $g(E) \subseteq g(int^*(A))$. Hence $int(g(A)) \subseteq g(int^*(A))$, i.e., g is inversely-I-open.

The following corollary gives the sufficient condition for a pointwise-*I*-continuous map to be inversely-*I*-open.

Corollary 2.1. (a) Every pointwise-*I*-continuous injective map is inversely-*I*-open.

(b) Let $f: (Y, \tau, I) \to (Z, \sigma)$ be inversely-*I*-open. Then f is pointwise-*I*-continuous if f(Y) is open in Z.

Proof. We prove only (b). Let G be open in Z. Then $f(f^{-1}(G)) = G \cap f(Y)$ is open in Z, since f(Y) is open in Z. Then, $f^{-1}(G)$ is τ^* -open in Y by Theorem 2.3. Hence f is pointwise- \mathcal{I} -continuous.

Next theorem gives different characterizations of pointwise-*I*-closed maps (where a mapping $g : (X, \tau, I) \rightarrow (Y, \sigma, \mathcal{J})$ with $\mathcal{J} = f(I)$ is said to be pointwise-*I*-closed if the image of every closed set is $\sigma^*(f(I))$ - closed).

Theorem 2.4. For any map $g : (X, \tau, I) \to (Y, \sigma, \mathcal{J})$ with $\mathcal{J} = g(I)$, the following conditions are equivalent.

- (a) g is pointwise-I-closed;
- (b) for each subset S of X, $cl^*(g(S)) \subseteq g(cl(S))$;
- (c) for each subset S of X, $g^{\#}(int(S)) \subseteq int^{*}(g^{\#}(S))$;
- (d) for each open subset G of X, $g^{\#}(G)$ is σ^* -open in Y.

Proof. (a) \Rightarrow (b): Let *S* be any subset of *X*. Then $g(S) \subseteq g(cl(S))$. So $cl^*(g(S)) \subseteq cl^*(g(cl(S)))$. But cl(S) is closed subset of *X*, so by condition (a), $cl^*(g(cl(S))) = g(cl(S))$. Therefore, $cl^*(g(S)) \subseteq g(cl(S))$ and (b) holds.

(b) \Rightarrow (c): By Lemma 1.1(b) and condition (b), $g^{\#}(int(S)) = (g((int(S))^{C}))^{C} = (g(cl(S^{C})))^{C} \subseteq (cl^{*}(g(S^{C})))^{C} = (cl^{*}(g^{\#}(S))^{C})^{C} = int^{*}(g^{\#}(S))$. Hence, $g^{\#}(int(S)) \subseteq int^{*}(g^{\#}(S))$, and (c) holds.

(c)⇒(d): Let G be any open subset of X, then G = int(G) and (c) implies that $g^{\#}(G) \subseteq int^*(g^{\#}(G))$. Therefore, $g^{\#}(G)$ is σ^* -open set and (d) holds.

(d) \Rightarrow (a): Let *F* be any closed subset of *X*. Then (d) implies that $g^{\#}(F^{C})$ is σ^{*} -open in *Y*. Therefore, Lemma 1.1(b) implies that $(g(F))^{C} = g^{\#}(F^{C})$ is σ^{*} -open in *Y*. Thus, g(F) is σ^{*} -closed in *Y*, and hence *g* is pointwise-*I*-closed.

References

- [1] J. Kanicwski and Z.Piotrowski, "Concerning continuity apart from a meager set", *Proc. Amer. Math. Soc.*, **98**(2), 1986, pp. 324-328.
- [2] K.Kuratowski, *Topology*, volume I, Academic Press, New York, 1966.
- [3] N.S. Noorie and R. Bala, "Some Characterizations of open, closed and Continuous Mappings", *Int. J. Math. Mathematical Sci.*, Article ID527106, 5 pages(2008).
- [4] R. Vaidyanathswamy, "The localisation Theory in Set Topology", Proc. Indian Acad. Sci., 20, 1945, pp. 51-61.
- [5] _____, Set Topology, Chelsea Publishing Company, New York, 1946.