W-semi-I-open and w-semi-I-closed sets

Navpreet Singh Noorie Associate Professor, Department of Mathematics, Punjabi University Patiala, Punjab (India).

Abstract: In this paper we will give various properties of w-semi-I-open and w-semi-I-closed sets. Also Examples are given throughout the paper.

Key Words and phrases: w- a- I- open, w-semi-I-open, w-pre-I-open, and w-B-I-open.

2000 **MSC**: 54C10, 54A05, 54D25, 54D30.

1. Introduction

In [3], Janković and Hamlett introduced the concept of \mathfrak{T} -open sets in topological spaces. In [1], Dontchev introduced the concept of pre- \mathfrak{T} -open sets and in [3] Hatir and Noiri introduced the notion of semi- \mathfrak{T} -open sets, α - \mathfrak{T} -open sets and β - \mathfrak{T} -open sets. The subject of ideals in topological spaces were introduced by Kuratowski[4] and further studied by Vaidyanathaswamy[5]. Corresponding to an ideal a new topology $\tau^*(\mathfrak{T}, \tau)$ called the *-topology was given which is generally finer than the original topology having the kuratowski closure operator cl^{*}(A) = A \cup A^*(\mathfrak{T}, \tau)[6], where A^*(\mathfrak{T}, \tau) = {x \in X : U \cap A \notin \mathfrak{T} \text{ for every open subset U of x in X called a local function of A with respect to \mathfrak{T} and τ . We will write τ^* for $\tau^*(\mathfrak{T}, \tau)$.

The following section contains some definitions and results that will be used in our further sections.

Definition 1.1.[4]: Let (X, τ) be a topological space. An ideal \mathfrak{T} on X is a collection of non-empty subsets of X such that (a) $\phi \in \mathfrak{T}$ (b) $A \in \mathfrak{T}$ and $B \in \mathfrak{T}$ implies $A \cup B \in \mathfrak{T}$ (c) $B \in \mathfrak{T}$ and $A \subset B$ implies $A \in \mathfrak{T}$.

Definition 1.2 : Let(X, τ , \mathfrak{T}) be an ideal space and A be any subset of X. Then A is said to be

- a.) \mathfrak{T} -open[3] if $A \subset int(A^*)$.
- b.) semi- \mathfrak{T} -open[2] if $A \subset cl^*(int(A))$.
- c.) pre- \mathfrak{T} -open[1] if $A \subset int(cl^*(A))$.
- d.) α \mathfrak{T} -open[2] if A \subset int(cl*(int(A))).
- e.) β - \mathfrak{T} -open[2] if A \subset cl(int(cl*(A))).

2. Results

Definition 2.1: Let (X,τ,\mathfrak{T}) be an ideal space and A be any subset of X. Then A is said to be

- a.) w- α \mathfrak{T} open if A \subset int(cl(int*(A))).
- b.) w-semi- \mathfrak{T} -open if $A \subset cl(int^*(A))$.
- c.) w-pre- \mathfrak{T} -open if $A \subset int^*(cl(A))$.
- d.) w- β - \mathfrak{T} -open if A \subset cl(int*(cl(A)))

Lemma 2.2: Let (X,τ) be any topological space and U and V be two open subsets of X. Then prove that

 $cl(U) \cap V \subset cl(U \cap V).$

Proof: Let $x \in cl(U) \cap V$. To prove $x \in cl(U \cap V)$. Let W be any open set containing x. Then $x \in V$ and v is open set implies that $V \cap W$ is also open set containing x. Now $x \in cl(U)$ implies that $V \cap W \cap U \neq \phi$ and so $W \cap (U \cap V) \neq \phi$ implies that $x \in cl(U \cap V)$.

Hence $cl(U) \cap V \subset cl(U \cap V)$.

Theorem 2.3: Let (X,τ, \mathfrak{T}) be an ideal space and A be any subset of X. Then prove that A is w-semi- \mathfrak{T} -open iff $cl(A) = cl(int^*(A))$.

Proof: Firstly, let A be w-semi- \mathfrak{T} -open subset of X. Then A \subset cl(int*(A) and so cl(A) \subset cl(cl(int*(A))).

But we know that cl(cl(A)) = cl(A). This implies that $cl(A) \subset cl(int^*(A))$. Also $int^*(A) \subset A$ implies that $cl(int^*(A)) \subset cl(A)$. Hence $cl(A) = cl(int^*(A))$.

Conversely, let $cl(A) = cl(int^*(A))$. We have to prove that A is w-semi- \mathfrak{T} -open.

Now, $A \subset cl(A)$ implies that $A \subset cl(int^*(A))$.

Hence A is w-semi-*T*-open.

Theorem 2.4: Let (X,τ, \mathfrak{T}) be an ideal space. Then a subset A of X is w-semi- \mathfrak{T} -open iff there exist τ^* -open subset G of X such that $G \subset A \subset cl(G)$.

Proof: Firstly, let A be w-semi- \mathfrak{T} -open subset of X. Then A \subset cl(int*(A)). Let G = int*(A). Since we know that int*(A) is open so G is τ^* -open subset of X such that G \subset A \subset cl(G).

Conversely, let there exist τ^* -open subset G of X such that $G \subset A \subset cl(G)$. Now $G \subset A$ implies that $int^*(G) \subset int^*(A)$ and so $G \subset int^*(A)$. Therefore, $A \subset cl(G)$ implies that $A \subset cl(int^*(A))$.

Hence A is w-semi-*T*-open.

Theorem 2.5: If A is w-semi- \mathfrak{T} -open subset of an ideal space (X, τ, \mathfrak{T}) and be any subset of X such that

 $A \subset B \subset cl(A)$ then prove that B is also w-semi- \mathfrak{T} -open.

Proof: Let A be any w-semi- \mathfrak{T} -open subset of X and B be any subset of X such that $A \subset B \subset cl(A)$. Now A is w-semi- \mathfrak{T} -open subset of X so by the above Theorem 2.4 there exist τ^* -open subset G of X such that $G \subset A \subset cl(G)$ and so $G \subset A \subset B \subset cl(A) \subset cl(cl(G))$. Therefore, $G \subset B \subset cl(G)$. Hence B is w-semi- \mathfrak{T} -open.

Theorem 2.6: Let (X, τ, \mathfrak{T}) be an ideal space. Then prove the following:

- (a) If $\{U_{\alpha}\}_{\alpha \in \Delta}$ be a family of w-semi- \mathfrak{T} -open subsets of X. Then prove that $\bigcup_{\alpha} U_{\alpha}$ is also a w-semi- \mathfrak{T} -open set.
- (b) If U is w-semi-ℑ-open subset of X and V is τ-open subset of X then prove that U∩V is also a w-semi-ℑ-open set.

Proof: (a) Since $\forall \alpha \in \Delta$, U_{α} is w-semi- \mathfrak{T} -open subset of X. So $U_{\alpha} \subset cl(int^*(U_{\alpha}))$.

Now $\bigcup_{\alpha} U_{\alpha} \subset \bigcup_{\alpha} cl(int * (U_{\alpha}))$ and so $\bigcup_{\alpha} U_{\alpha} \subset cl(\bigcup_{\alpha} int * (U_{\alpha}))$ since $\bigcup_{\alpha} cl(A_{\alpha}) \subset cl(\bigcup_{\alpha} A_{\alpha})$. Further, $\bigcup_{\alpha} int(A_{\alpha}) \subset int(\bigcup_{\alpha} A_{\alpha})$ implies that $\bigcup_{\alpha} U_{\alpha} \subset cl(int^*(\bigcup_{\alpha} U_{\alpha}))$. Hence $\bigcup_{\alpha} U_{\alpha}$ is w-semi- \mathfrak{T} -open subset of X.

(b)Let U be w-semi- \mathfrak{T} -open subset of X and V be τ^* -open subset of X. Then U \subset cl(int*(U)). Now U \cap V \subset cl(int*(U)) \cap V = cl(int*(U)) \cap int(V) since V is τ -open subset of X and so U \cap V \subset cl(int*(U) \cap int*(V)) using Lemma 2.2. But int*(A) \cap int*(B) = int*(A \cap B). Therefore, U \cap V \subset cl(int*(U \cap V)).

Hence $U \cap V$ is w-semi- \mathfrak{T} -open.

Next we introduce w-semi-*T*-closed sets.

Definition 2.7: Let (X,τ,\mathfrak{T}) be an ideal space. Then a subset C is called w-semi- \mathfrak{T} -closed if its complement X-C is w-semi- \mathfrak{T} -open.

Theorem 2.8: If a subset C of an ideal space (X,τ,\mathfrak{T}) is w-semi- \mathfrak{T} -closed then prove that $int(cl^*(C) \subset C)$.

Proof: Let C be any w-semi- \mathfrak{T} -closed subset of X. Then X-C is w-semi- \mathfrak{T} -open subset of X. Therefore,

 $X-C \subset cl(int^*(X-C)) = cl(X-cl^*(C))$ using cl(X-A) = X-int(A) or X-cl(A) = int(X-A) for any subset A of X and so $X-C \subset X-int(cl^*(C))$ and so $int(cl^*(C)) \subset C$.

Hence $int(cl^*(C)) \subset C$.

The following Example shows that in an ideal space (X,τ,\mathfrak{T}) for a subset A of X, the following result need not be true.

 $X-int^*(cl(A)) = cl(int^*(X-A)).$

Example 2.9: Let $X = \{a,b,c\}$ with $\tau = \{\phi, \{a\}, \{b\}, \{a,b\}, X\}$. And $\mathfrak{T} = \{\phi, \{a\}, \{b\}, \{a,b\}\}$. Then

 $\tau^* = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}.$

Now consider the subset $A = \{a\}$. So int* $\{X-A\} = int*\{b,c\} = \{b,c\}$ and $cl\{a\} = \{a,c\}$.

Then X-int*($cl{a}$) = X-int*{a,c} = X-{a,c} = {b}.

And $cl(int^{(X-{a})) = cl(int^{(b,c)} = cl_{b,c}) = cl_{b,c}$.

Hence $X - int^*(cl(A)) \neq cl(int^*(X-A)).$

Theorem 2.10: Let (X,τ,\mathfrak{T}) be an ideal space and let A be any subset of X such that

X- int*(cl(A)) = cl(int*(X-A)). Then prove that A is w-semi- \mathfrak{T} -closed subset of X if and only if int*(cl(A)) \subset A.

Proof: Firstly, let A be w-semi-I-closed subset of X. Then X-A is w-semi-I-open subset of X. So,

 $X-A \subset cl(int^*(X-A))$ and so $X-A \subset X-int^*(cl(A))$ and so $int^*(cl(A)) \subset A$.

Hence $int^*(cl(A)) \subset A$.

Conversely, let $int^*(cl(A)) \subset A$. We have to prove that A is w-semi- \mathfrak{T} -closed. We will prove that X-A is w-semi- \mathfrak{T} -open and so A is w-semi- \mathfrak{T} -closed.

Now, $int^*(cl(A)) \subset A$ implies that X-A \subset X – $int^*(cl(A))$ and so X-A \subset $cl(int^*(X-A))$.

Therefore, X-A is w-semi-*x*-open.

Hence A is w-semi- \mathfrak{T} -closed.

References

[1]J.Dontchev, On pre-I-open sets and a decomposition of I-continuity, Banyan Math. J., 2(1996).

- [2]E. Hatir and T.Noiri, On decompositions of continuity via idealization, Acta Math. Hunger., 96 (2002), 341-349.
- [3]D.Jankovic and T.R. Hamlett, New topologies from old via ideals, The American Mathematical Monthly, 97, No. 4 (1990), 295-310.
- [4] K. Kuratowski, Topology, volume I, Academic Press, New York, 1966.
- [5] R. Vaidyanathaswamy, The localisation Theory in Set Topology, Proc. Indian Acad. Sci., 20(1945), 51-61.

[6] -----, Set Topology, Chelsea Publishing Company, New York, 1946.